1
|
Pfeifer L, Mueller KK, Müller MT, Philipp LM, Sebens S, Classen B. Synthetic and plant-derived multivalent galactans as modulators of cancer-associated galectins-3 and -9. Int J Biol Macromol 2025; 305:141155. [PMID: 39971027 DOI: 10.1016/j.ijbiomac.2025.141155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/14/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Galectins are β-galactoside-binding proteins with numerous functions. Some of them are involved in proliferation and metastasis of cancer, making them promising therapeutic targets. As different plant glycans have been shown to bind to galectins, plant saccharides might be potential galectin inhibitors. To produce plant galactans rich in galactose and smaller in size, we degraded arabinogalactan-proteins from Echinacea purpurea and Zostera marina as well as arabinogalactan from larch. As galectin (Gal)-3 and -9 both have been described to be involved in cancer development, we quantified the binding capacities of the different galactans to both galectins by biolayer-interferometry. Our results revealed that all plant-derived galactans and Yariv reagents with terminal galactose and lactose residues bind to Gal-3 in micromolar ranges. Surprisingly, only the higher charged galactans from Zostera marina showed affinity to Gal-9. Investigations of two different pancreatic cancer cell lines (Panc1 and Panc89) and different cell variants thereof revealed that Gal-3 was expressed by both cell lines with a significantly higher Gal-3 level in Panc1 cells compared to Panc89 cells. Conversely, Gal-9 was only detected in Panc89 cells. The findings revealed that galactans are promising sources to develop galectin antagonists and plant galactans from different species express specificities for distinct galectins.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Kiel University, 24118 Kiel, Germany.
| | - Kim-Kristine Mueller
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Kiel University, 24118 Kiel, Germany.
| | - Maximilian Thal Müller
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Kiel University, 24118 Kiel, Germany; Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany.
| | - Lisa-Marie Philipp
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany.
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany.
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Kiel University, 24118 Kiel, Germany.
| |
Collapse
|
2
|
Kutyrieva-Nowak N, Leszczuk A, Denic D, Bellaidi S, Blazakis K, Gemeliari P, Lis M, Kalaitzis P, Zdunek A. In vivo and ex vivo study on cell wall components as part of the network in tomato fruit during the ripening process. HORTICULTURE RESEARCH 2024; 11:uhae145. [PMID: 38988613 PMCID: PMC11233857 DOI: 10.1093/hr/uhae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/13/2024] [Indexed: 07/12/2024]
Abstract
Ripening is a process involving various morphological, physiological, and biochemical changes in fruits. This process is affected by modifications in the cell wall structure, particularly in the composition of polysaccharides and proteins. The cell wall assembly is a network of polysaccharides and proteoglycans named the arabinoxylan pectin arabinogalactan protein1 (APAP1). The complex consists of the arabinogalactan protein (AGP) core with the pectin domain including arabinogalactan (AG) type II, homogalacturonan (HG), and rhamnogalacturonan I (RG-I). The present paper aims to determine the impact of a disturbance in the synthesis of one constituent on the integrity of the cell wall. Therefore, in the current work, we have tested the impact of modified expression of the SlP4H3 gene connected with proline hydroxylase (P4H) activity on AGP presence in the fruit matrix. Using an immunolabelling technique (CLSM), an immunogold method (TEM), molecular tools, and calcium mapping (SEM-EDS), we have demonstrated that disturbances in AGP synthesis affect the entire cell wall structure. Changes in the spatio-temporal AGP distribution may be related to the formation of a network between AGPs with other cell wall components. Moreover, the modified structure of the cell wall assembly induces morphological changes visible at the cellular level during the progression of the ripening process. These results support the hypothesis that AGPs and pectins are required for the proper progression of the physiological processes occurring in fruits.
Collapse
Affiliation(s)
| | - Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland
| | - Dusan Denic
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Samia Bellaidi
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Konstantinos Blazakis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Petroula Gemeliari
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Magdalena Lis
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland
| |
Collapse
|
3
|
Kalenborn S, Zühlke D, Riedel K, Amann RI, Harder J. Proteomic insight into arabinogalactan utilization by particle-associated Maribacter sp. MAR_2009_72. FEMS Microbiol Ecol 2024; 100:fiae045. [PMID: 38569650 PMCID: PMC11036162 DOI: 10.1093/femsec/fiae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 04/02/2024] [Indexed: 04/05/2024] Open
Abstract
Arabinose and galactose are major, rapidly metabolized components of marine particulate and dissolved organic matter. In this study, we observed for the first time large microbiomes for the degradation of arabinogalactan and report a detailed investigation of arabinogalactan utilization by the flavobacterium Maribacter sp. MAR_2009_72. Cellular extracts hydrolysed arabinogalactan in vitro. Comparative proteomic analyses of cells grown on arabinogalactan, arabinose, galactose, and glucose revealed the expression of specific proteins in the presence of arabinogalactan, mainly glycoside hydrolases (GH). Extracellular glycan hydrolysis involved five alpha-l-arabinofuranosidases affiliating with glycoside hydrolase families 43 and 51, four unsaturated rhamnogalacturonylhydrolases (GH105) and a protein with a glycoside hydrolase family-like domain. We detected expression of three induced TonB-dependent SusC/D transporter systems, one SusC, and nine glycoside hydrolases with a predicted periplasmatic location. These are affiliated with the families GH3, GH10, GH29, GH31, GH67, GH78, and GH115. The genes are located outside of and within canonical polysaccharide utilization loci classified as specific for arabinogalactan, for galactose-containing glycans, and for arabinose-containing glycans. The breadth of enzymatic functions expressed in Maribacter sp. MAR_2009_72 as response to arabinogalactan from the terrestrial plant larch suggests that Flavobacteriia are main catalysts of the rapid turnover of arabinogalactans in the marine environment.
Collapse
Affiliation(s)
- Saskia Kalenborn
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany
| | - Daniela Zühlke
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Str. 8, D-17489 Greifswald, Germany
| | - Katharina Riedel
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Str. 8, D-17489 Greifswald, Germany
| | - Rudolf I Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany
| | - Jens Harder
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany
| |
Collapse
|
4
|
Kutyrieva-Nowak N, Leszczuk A, Ezzat L, Kaloudas D, Zając A, Szymańska-Chargot M, Skrzypek T, Krokida A, Mekkaoui K, Lampropoulou E, Kalaitzis P, Zdunek A. The modified activity of prolyl 4 hydroxylases reveals the effect of arabinogalactan proteins on changes in the cell wall during the tomato ripening process. FRONTIERS IN PLANT SCIENCE 2024; 15:1365490. [PMID: 38571716 PMCID: PMC10987753 DOI: 10.3389/fpls.2024.1365490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Arabinogalactan proteins (AGPs) are proteoglycans with an unusual molecular structure characterised by the presence of a protein part and carbohydrate chains. Their specific properties at different stages of the fruit ripening programme make AGPs unique markers of this process. An important function of AGPs is to co-form an amorphous extracellular matrix in the cell wall-plasma membrane continuum; thus, changes in the structure of these molecules can determine the presence and distribution of other components. The aim of the current work was to characterise the molecular structure and localisation of AGPs during the fruit ripening process in transgenic lines with silencing and overexpression of SlP4H3 genes (prolyl 4 hydroxylase 3). The objective was accomplished through comprehensive and comparative in situ and ex situ analyses of AGPs from the fruit of transgenic lines and wild-type plants at specific stages of ripening. The experiment showed that changes in prolyl 4 hydroxylases (P4H3) activity affected the content of AGPs and the progress in their modifications in the ongoing ripening process. The analysis of the transgenic lines confirmed the presence of AGPs with high molecular weights (120-60 kDa) at all the examined stages, but a changed pattern of the molecular features of AGPs was found in the last ripening stages, compared to WT. In addition to the AGP molecular changes, morphological modifications of fruit tissue and alterations in the spatio-temporal pattern of AGP distribution at the subcellular level were detected in the transgenic lines with the progression of the ripening process. The work highlights the impact of AGPs and their alterations on the fruit cell wall and changes in AGPs associated with the progression of the ripening process.
Collapse
Affiliation(s)
| | - Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Lamia Ezzat
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Dimitris Kaloudas
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Adrian Zając
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | | | - Tomasz Skrzypek
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, John Paul II Catholic University of Lublin, Lublin, Poland
| | - Afroditi Krokida
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Khansa Mekkaoui
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Evangelia Lampropoulou
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| |
Collapse
|
5
|
Ma Y, Johnson K. Arabinogalactan proteins - Multifunctional glycoproteins of the plant cell wall. Cell Surf 2023; 9:100102. [PMID: 36873729 PMCID: PMC9974416 DOI: 10.1016/j.tcsw.2023.100102] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Arabinogalactan-proteins (AGPs) are cell wall glycoproteins that make up a relatively small component of the extracellular matrix of plants yet have significant influence on wall mechanics and signalling. Present in walls of algae, bryophytes and angiosperms, AGPs have a wide range of functional roles, from signalling, cell expansion and division, embryogenesis, responses to abiotic and biotic stress, plant growth and development. AGPs interact with and influence wall matrix components and plasma membrane proteins to regulate developmental pathways and growth responses, yet the exact mechanisms remain elusive. Comprising a large gene family that is highly diverse, from minimally to highly glycosylated members, varying in their glycan heterogeneity, can be plasma membrane bound or secreted into the extracellular matrix, have members that are highly tissue specific to those with constitutive expression; all these factors have made it extremely challenging to categorise AGPs many qualities and roles. Here we attempt to define some key features of AGPs and their biological functions.
Collapse
Affiliation(s)
- Yingxuan Ma
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Kim Johnson
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Sciences, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
6
|
Nweke AB, Nagasato D, Matsuoka K. Secreted arabinogalactan protein from salt-adapted tobacco BY-2 cells appears to be glycosylphosphatidyl inositol-anchored and associated with lipophilic moieties. Biosci Biotechnol Biochem 2023; 87:1274-1284. [PMID: 37573142 DOI: 10.1093/bbb/zbad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Arabinogalactan proteins (AGPs) are plant extracellular proteoglycans associated with the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. This moiety is thought to be cleaved by phospholipase for secretion. Salt-adapted tobacco BY-2 cells were reported to secrete large amounts of AGPs into the medium. To investigate this mechanism, we expressed a fusion protein of tobacco sweet potato sporamin and AGP (SPO-AGP) in BY-2 cells and analyzed its fate after salt-adapting the cells. A two-phase separation analysis using Triton X-114 indicated that a significant proportion of SPO-AGP in the medium was recovered in the detergent phase, suggesting that this protein is GPI-anchored. Differential ultracentrifugation and a gradient density fractionation implicated extracellular vesicles or particles with SPO-AGP in the medium. Endogenous AGP secreted from salt-adapted and nontransgenic BY-2 cells behaved similarly to SPO-AGP. These results suggest that a part of the secreted AGPs from salt-adapted tobacco BY-2 cells are GPI-anchored and associated with particles or vesicles.
Collapse
Affiliation(s)
- Arinze Boniface Nweke
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Nagasato
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Ken Matsuoka
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Ismael M, Charras Q, Leschevin M, Herfurth D, Roulard R, Quéro A, Rusterucci C, Domon JM, Jungas C, Vermerris W, Rayon C. Seasonal Variation in Cell Wall Composition and Carbohydrate Metabolism in the Seagrass Posidonia oceanica Growing at Different Depths. PLANTS (BASEL, SWITZERLAND) 2023; 12:3155. [PMID: 37687400 PMCID: PMC10490095 DOI: 10.3390/plants12173155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Posidonia oceanica is a common seagrass in the Mediterranean Sea that is able to sequester large amounts of carbon. The carbon assimilated during photosynthesis can be partitioned into non-structural sugars and cell-wall polymers. In this study, we investigated the distribution of carbon in starch, soluble carbohydrates and cell-wall polymers in leaves and rhizomes of P. oceanica. Analyses were performed during summer and winter in meadows located south of the Frioul archipelago near Marseille, France. The leaves and rhizomes were isolated from plants collected in shallow (2 m) and deep water (26 m). Our results showed that P. oceanica stores more carbon as starch, sucrose and cellulose in summer and that this is more pronounced in rhizomes from deep-water plants. In winter, the reduction in photoassimilates was correlated with a lower cellulose content, compensated with a greater lignin content, except in rhizomes from deep-water plants. The syringyl-to-guaiacyl (S/G) ratio in the lignin was higher in leaves than in rhizomes and decreased in rhizomes in winter, indicating a change in the distribution or structure of the lignin. These combined data show that deep-water plants store more carbon during summer, while in winter the shallow- and deep-water plants displayed a different cell wall composition reflecting their environment.
Collapse
Affiliation(s)
- Marwa Ismael
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, 80039 Amiens, France; (M.I.); (M.L.); (D.H.); (R.R.); (A.Q.); (C.R.); (J.-M.D.)
| | - Quentin Charras
- Aix-Marseille University, CEA, CNRS, BIAM, LGBP Team, 13009 Marseille, France; (Q.C.); (C.J.)
| | - Maïté Leschevin
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, 80039 Amiens, France; (M.I.); (M.L.); (D.H.); (R.R.); (A.Q.); (C.R.); (J.-M.D.)
- Aix-Marseille University, CEA Cadarache, Zone Cité des Énergies BIAM, Bâtiment 1900, 13108 Saint-Paul-lez-Durance, France
| | - Damien Herfurth
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, 80039 Amiens, France; (M.I.); (M.L.); (D.H.); (R.R.); (A.Q.); (C.R.); (J.-M.D.)
| | - Romain Roulard
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, 80039 Amiens, France; (M.I.); (M.L.); (D.H.); (R.R.); (A.Q.); (C.R.); (J.-M.D.)
| | - Anthony Quéro
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, 80039 Amiens, France; (M.I.); (M.L.); (D.H.); (R.R.); (A.Q.); (C.R.); (J.-M.D.)
| | - Christine Rusterucci
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, 80039 Amiens, France; (M.I.); (M.L.); (D.H.); (R.R.); (A.Q.); (C.R.); (J.-M.D.)
| | - Jean-Marc Domon
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, 80039 Amiens, France; (M.I.); (M.L.); (D.H.); (R.R.); (A.Q.); (C.R.); (J.-M.D.)
| | - Colette Jungas
- Aix-Marseille University, CEA, CNRS, BIAM, LGBP Team, 13009 Marseille, France; (Q.C.); (C.J.)
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science and UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA;
| | - Catherine Rayon
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, 80039 Amiens, France; (M.I.); (M.L.); (D.H.); (R.R.); (A.Q.); (C.R.); (J.-M.D.)
| |
Collapse
|
8
|
Azariadis A, Vouligeas F, Salame E, Kouhen M, Rizou M, Blazakis K, Sotiriou P, Ezzat L, Mekkaoui K, Monzer A, Krokida A, Adamakis ID, Dandachi F, Shalha B, Kostelenos G, Figgou E, Giannoutsou E, Kalaitzis P. Response of Prolyl 4 Hydroxylases, Arabinogalactan Proteins and Homogalacturonans in Four Olive Cultivars under Long-Term Salinity Stress in Relation to Physiological and Morphological Changes. Cells 2023; 12:1466. [PMID: 37296587 PMCID: PMC10252747 DOI: 10.3390/cells12111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Olive (Olea europeae L.) salinity stress induces responses at morphological, physiological and molecular levels, affecting plant productivity. Four olive cultivars with differential tolerance to salt were grown under saline conditions in long barrels for regular root growth to mimic field conditions. Arvanitolia and Lefkolia were previously reported as tolerant to salinity, and Koroneiki and Gaidourelia were characterized as sensitive, exhibiting a decrease in leaf length and leaf area index after 90 days of salinity. Prolyl 4-hydroxylases (P4Hs) hydroxylate cell wall glycoproteins such as arabinogalactan proteins (AGPs). The expression patterns of P4Hs and AGPs under saline conditions showed cultivar-dependent differences in leaves and roots. In the tolerant cultivars, no changes in OeP4H and OeAGP mRNAs were observed, while in the sensitive cultivars, the majority of OeP4Hs and OeAGPs were upregulated in leaves. Immunodetection showed that the AGP signal intensity and the cortical cell size, shape and intercellular spaces under saline conditions were similar to the control in Arvanitolia, while in Koroneiki, a weak AGP signal was associated with irregular cells and intercellular spaces, leading to aerenchyma formation after 45 days of NaCl treatment. Moreover, the acceleration of endodermal development and the formation of exodermal and cortical cells with thickened cell walls were observed, and an overall decrease in the abundance of cell wall homogalacturonans was detected in salt-treated roots. In conclusion, Arvanitolia and Lefkolia exhibited the highest adaptive capacity to salinity, indicating that their use as rootstocks might provide increased tolerance to irrigation with saline water.
Collapse
Affiliation(s)
- Aristotelis Azariadis
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Filippos Vouligeas
- Department of Botany, Faculty of Biology, University of Athens, 15784 Athens, Greece
| | - Elige Salame
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Mohamed Kouhen
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Myrto Rizou
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Kostantinos Blazakis
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Penelope Sotiriou
- Department of Botany, Faculty of Biology, University of Athens, 15784 Athens, Greece
| | - Lamia Ezzat
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Khansa Mekkaoui
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Aline Monzer
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Afroditi Krokida
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | | | - Faten Dandachi
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Boushra Shalha
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | | | - Eleftheria Figgou
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Eleni Giannoutsou
- Department of Botany, Faculty of Biology, University of Athens, 15784 Athens, Greece
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| |
Collapse
|
9
|
Mueller KK, Pfeifer L, Schuldt L, Szövényi P, de Vries S, de Vries J, Johnson KL, Classen B. Fern cell walls and the evolution of arabinogalactan proteins in streptophytes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:875-894. [PMID: 36891885 DOI: 10.1111/tpj.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 05/27/2023]
Abstract
Significant changes have occurred in plant cell wall composition during evolution and diversification of tracheophytes. As the sister lineage to seed plants, knowledge on the cell wall of ferns is key to track evolutionary changes across tracheophytes and to understand seed plant-specific evolutionary innovations. Fern cell wall composition is not fully understood, including limited knowledge of glycoproteins such as the fern arabinogalactan proteins (AGPs). Here, we characterize the AGPs from the leptosporangiate fern genera Azolla, Salvinia, and Ceratopteris. The carbohydrate moiety of seed plant AGPs consists of a galactan backbone including mainly 1,3- and 1,3,6-linked pyranosidic galactose, which is conserved across the investigated fern AGPs. Yet, unlike AGPs of angiosperms, those of ferns contained the unusual sugar 3-O-methylrhamnose. Besides terminal furanosidic arabinose, Ara (Araf), the main linkage type of Araf in the ferns was 1,2-linked Araf, whereas in seed plants 1,5-linked Araf is often dominating. Antibodies directed against carbohydrate epitopes of AGPs supported the structural differences between AGPs of ferns and seed plants. Comparison of AGP linkage types across the streptophyte lineage showed that angiosperms have rather conserved monosaccharide linkage types; by contrast bryophytes, ferns, and gymnosperms showed more variability. Phylogenetic analyses of glycosyltransferases involved in AGP biosynthesis and bioinformatic search for AGP protein backbones revealed a versatile genetic toolkit for AGP complexity in ferns. Our data reveal important differences across AGP diversity of which the functional significance is unknown. This diversity sheds light on the evolution of the hallmark feature of tracheophytes: their elaborate cell walls.
Collapse
Affiliation(s)
- Kim-Kristine Mueller
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| | - Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| | - Lina Schuldt
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstr. 107, 8008, Zurich, Switzerland
- Zurich-Basel Plant Science Center (PSC), ETH Zürich, Tannenstrasse 1, 8092, Zürich, Switzerland
| | - Sophie de Vries
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
- Department of Applied Bioinformatics, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtsr. 1, 37077, Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidstr. 1, 37077, Goettingen, Germany
| | - Kim L Johnson
- Department of Animal, Plant and Soil Science, La Trobe Institute for Agriculture & Food, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| |
Collapse
|
10
|
Tan L, Xu J, Held M, Lamport DTA, Kieliszewski M. Arabinogalactan Structures of Repetitive Serine-Hydroxyproline Glycomodule Expressed by Arabidopsis Cell Suspension Cultures. PLANTS (BASEL, SWITZERLAND) 2023; 12:1036. [PMID: 36903897 PMCID: PMC10005752 DOI: 10.3390/plants12051036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Arabinogalactan-proteins (AGPs) are members of the hydroxyproline-rich glycoprotein (HRGP) superfamily. They are heavily glycosylated with arabinogalactans, which are usually composed of a β-1,3-linked galactan backbone with 6-O-linked galactosyl, oligo-1,6-galactosyl, or 1,6-galactan side chains that are further decorated with arabinosyl, glucuronosyl, rhamnosyl, and/or fucosyl residues. Here, our work with Hyp-O-polysaccharides isolated from (Ser-Hyp)32-EGFP (enhanced green fluorescent protein) fusion glycoproteins overexpressed in transgenic Arabidopsis suspension culture is consistent with the common structural features of AGPs isolated from tobacco. In addition, this work confirms the presence of β-1,6-linkage on the galactan backbone identified previously in AGP fusion glycoproteins expressed in tobacco suspension culture. Furthermore, the AGPs expressed in Arabidopsis suspension culture lack terminal-rhamnosyl residues and have a much lower level of glucuronosylation compared with those expressed in tobacco suspension culture. These differences not only suggest the presence of distinct glycosyl transferases for AGP glycosylation in the two systems, but also indicate the existence of minimum AG structures for type II AG functional features.
Collapse
Affiliation(s)
- Li Tan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, Athens, GA 30602, USA
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
| | - Michael Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | - Marcia Kieliszewski
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
11
|
Buck-Wiese H, Andskog MA, Nguyen NP, Bligh M, Asmala E, Vidal-Melgosa S, Liebeke M, Gustafsson C, Hehemann JH. Fucoid brown algae inject fucoidan carbon into the ocean. Proc Natl Acad Sci U S A 2023; 120:e2210561119. [PMID: 36584294 PMCID: PMC9910443 DOI: 10.1073/pnas.2210561119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/02/2022] [Indexed: 01/01/2023] Open
Abstract
Brown algae annually convert gigatons of carbon dioxide into carbohydrates, including the complex extracellular matrix polysaccharide fucoidan. Due to its persistence in the environment, fucoidan is potentially a pathway for marine carbon sequestration. Rates of fucoidan secretion by brown algae remain unknown due to the challenge of identifying and quantifying complex polysaccharides in seawater. We adapted the techniques of anion exchange chromatography, enzyme-linked immunosorbent assay, and biocatalytic enzyme-based assay for detection and quantification of fucoidan. We found the brown alga Fucus vesiculosus at the Baltic Sea coast of south-west Finland to secrete 0.3% of their biomass as fucoidan per day. Dissolved fucoidan concentrations in seawater adjacent to algae reached up to 0.48 mg L-1. Fucoidan accumulated during incubations of F. vesiculosus, significantly more in light than in darkness. Maximum estimation by acid hydrolysis indicated fucoidan secretion at a rate of 28 to 40 mg C kg-1 h-1, accounting for 44 to 50% of all exuded dissolved organic carbon. Composed only of carbon, oxygen, hydrogen, and sulfur, fucoidan secretion does not consume nutrients enabling carbon sequestration independent of algal growth. Extrapolated over a year, the algae sequester more carbon into secreted fucoidan than their biomass. The global utility of fucoidan secretion is an alternative pathway for carbon dioxide removal by brown algae without the need to harvest or bury algal biomass.
Collapse
Affiliation(s)
- Hagen Buck-Wiese
- Max Planck Institute for Marine Microbiology, 28359Bremen, Germany
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359Bremen, Germany
| | - Mona A. Andskog
- Centre for Coastal Biogeochemistry, Southern Cross University, 2480Lismore, Australia
| | - Nguyen P. Nguyen
- Max Planck Institute for Marine Microbiology, 28359Bremen, Germany
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359Bremen, Germany
| | - Margot Bligh
- Max Planck Institute for Marine Microbiology, 28359Bremen, Germany
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359Bremen, Germany
| | - Eero Asmala
- Geological Survey of Finland, Environmental Solutions, 02151Espoo, Finland
| | - Silvia Vidal-Melgosa
- Max Planck Institute for Marine Microbiology, 28359Bremen, Germany
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359Bremen, Germany
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, 28359Bremen, Germany
| | - Camilla Gustafsson
- University of Helsinki, Tvärminne Zoological Station, 10900Hanko, Finland
| | - Jan-Hendrik Hehemann
- Max Planck Institute for Marine Microbiology, 28359Bremen, Germany
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359Bremen, Germany
| |
Collapse
|
12
|
Leszczuk A, Zając A, Cybulska J, Stefaniuk D, Zdunek A. Working towards arabinogalactan proteins (AGPs) from fruit: carbohydrate composition and impact on fungal growth. BMC PLANT BIOLOGY 2022; 22:600. [PMID: 36539686 PMCID: PMC9764746 DOI: 10.1186/s12870-022-04009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Arabinogalactan proteins (AGPs) are extracellular matrix constituents involved in plant response to fungal infection. The aim of the current study was to investigate the antifungal effect of AGPs ex situ and to determine the structural features of AGPs that may have an influence on this activity. The features of AGPs isolated from fruit were investigated with molecular tools based on specific monoclonal antibodies recognizing carbohydrate AGP epitopes. The Antifungal (well-diffusion) Susceptibility Test and the Agar Invasion Test were used to assess the impact of AGPs on Penicillium notatum culture. RESULTS The results definitely ruled out the influence of AGPs on fungal growth. The immunochemical analyses revealed that AGPs consist mainly of carbohydrate chains composed of β-linked glucuronosyl residues recognized by LM2 and GlcA-β(1 → 3)-GalA-α(1 → 2) Rha recognized by JIM13, which do not have the same functional properties outside the plant cell in in vitro experimental conditions. CONCLUSIONS The action of a single cell wall component does not elicit any influence ex situ. The extensive accumulation of glycan chains of AGPs in infected tissue as a result of a complex mechanism occurring in the cell wall emphasizes the importance of dependencies between particular components of the extracellular matrix in response to fungal attack.
Collapse
Affiliation(s)
- Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Adrian Zając
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-400 Lublin, Poland
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Dawid Stefaniuk
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-400 Lublin, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
13
|
Moreira D, Lopes AL, Silva J, Ferreira MJ, Pinto SC, Mendes S, Pereira LG, Coimbra S, Pereira AM. New insights on the expression patterns of specific Arabinogalactan proteins in reproductive tissues of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:1083098. [PMID: 36531351 PMCID: PMC9755587 DOI: 10.3389/fpls.2022.1083098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 05/25/2023]
Abstract
Arabinogalactan proteins (AGPs) are hydroxyproline-rich glycoproteins containing a high proportion of carbohydrates, widely distributed in the plant kingdom and ubiquitously present in land plants. AGPs have long been suggested to play important roles in plant reproduction and there is already evidence that specific glycoproteins are essential for male and female gametophyte development, pollen tube growth and guidance, and successful fertilization. However, the functions of many of these proteins have yet to be uncovered, mainly due to the difficulty to study individual AGPs. In this work, we generated molecular tools to analyze the expression patterns of a subgroup of individual AGPs in different Arabidopsis tissues, focusing on reproductive processes. This study focused on six AGPs: four classical AGPs (AGP7, AGP25, AGP26, AGP27), one AG peptide (AGP24) and one chimeric AGP (AGP31). These AGPs were first selected based on their predicted expression patterns along the reproductive tissues from available RNA-seq data. Promoter analysis using β-glucuronidase fusions and qPCR in different Arabidopsis tissues allowed to confirm these predictions. AGP7 was mainly expressed in female reproductive tissues, more precisely in the style, funiculus, and integuments near the micropyle region. AGP25 was found to be expressed in the style, septum and ovules with higher expression in the chalaza and funiculus tissues. AGP26 was present in the ovules and pistil valves. AGP27 was expressed in the transmitting tissue, septum and funiculus during seed development. AGP24 was expressed in pollen grains, in mature embryo sacs, with highest expression at the chalazal pole and in the micropyle. AGP31 was expressed in the mature embryo sac with highest expression at the chalaza and, occasionally, in the micropyle. For all these AGPs a co-expression analysis was performed providing new hints on its possible functions. This work confirmed the detection in Arabidopsis male and female tissues of six AGPs never studied before regarding the reproductive process. These results provide novel evidence on the possible involvement of specific AGPs in plant reproduction, as strong candidates to participate in pollen-pistil interactions in an active way, which is significant for this field of study.
Collapse
Affiliation(s)
- Diana Moreira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Ana Lúcia Lopes
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Biosystems and Integrative Sciences Institute – BioISI, Porto, Portugal
| | - Jessy Silva
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
- Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Maria João Ferreira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Sara Cristina Pinto
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Sara Mendes
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Luís Gustavo Pereira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- GreenUPorto - Sustainable Agrifood Production Research Centre, Universidade do Porto, Porto, Portugal
| | - Sílvia Coimbra
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Ana Marta Pereira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| |
Collapse
|
14
|
Most of the rhamnogalacturonan-I from cultured Arabidopsis cell walls is covalently linked to arabinogalactan-protein. Carbohydr Polym 2022; 301:120340. [DOI: 10.1016/j.carbpol.2022.120340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/16/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
|
15
|
Manna V, Zoccarato L, Banchi E, Arnosti C, Grossart H, Celussi M. Linking lifestyle and foraging strategies of marine bacteria: selfish behaviour of particle-attached bacteria in the northern Adriatic Sea. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:549-558. [PMID: 35362215 PMCID: PMC9546125 DOI: 10.1111/1758-2229.13059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/13/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Microbe-mediated enzymatic hydrolysis of organic matter entails the production of hydrolysate, the recovery of which may be more or less efficient. The selfish uptake mechanism, recently discovered, allows microbes to hydrolyze polysaccharides and take up large oligomers, which are then degraded in the periplasmic space. By minimizing the hydrolysate loss, selfish behaviour may be profitable for free-living cells dwelling in a patchy substrate landscape. However, selfish uptake seems to be tailored to algal-derived polysaccharides, abundant in organic particles, suggesting that particle-attached microbes may use this strategy. We tracked selfish polysaccharides uptake in surface microbial communities of the northeastern Mediterranean Sea, linking the occurrence of this processing mode with microbial lifestyle. Additionally, we set up fluorescently labelled polysaccharides incubations supplying phytodetritus to investigate a 'pioneer' scenario for particle-attached microbes. Under both conditions, selfish behaviour was almost exclusively carried out by particle-attached microbes, suggesting that this mechanism may represent an advantage in the race for particle exploitation. Our findings shed light on the selfish potential of particle-attached microbes, suggesting multifaceted foraging strategies exerted by particle colonizers.
Collapse
Affiliation(s)
- Vincenzo Manna
- National Institute of Oceanography and Applied Geophysics – OGSDepartment of OceanographyTriesteItaly
| | - Luca Zoccarato
- Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB)Department of Experimental LimnologyZur alten Fischerhuette 2, D‐16775 StechlinGermany
| | - Elisa Banchi
- National Institute of Oceanography and Applied Geophysics – OGSDepartment of OceanographyTriesteItaly
| | - Carol Arnosti
- University of North Carolina – Chapel HillDepartment of Earth, Marine, and Environmental SciencesChapel HillNC27599USA
| | - Hans‐Peter Grossart
- Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB)Department of Experimental LimnologyZur alten Fischerhuette 2, D‐16775 StechlinGermany
- Potsdam UniversityInstitute for Biochemistry and BiologyMaulbeeralle 2, D‐14469 PotsdamGermany
| | - Mauro Celussi
- National Institute of Oceanography and Applied Geophysics – OGSDepartment of OceanographyTriesteItaly
| |
Collapse
|
16
|
Liu J, Meng J, Chen H, Li X, Su Z, Chen C, Ning T, He Z, Dai L, Xu C. Different responses of banana classical AGP genes and cell wall AGP components to low-temperature between chilling sensitive and tolerant cultivars. PLANT CELL REPORTS 2022; 41:1693-1706. [PMID: 35789423 DOI: 10.1007/s00299-022-02885-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Seventeen classical MaAGPs and 9 MbAGPs were identified and analyzed. MaAGP1/2/6/9/16/17, the antigens of JIM13 and LM2 antibodies are likely to be involved in banana chilling tolerance. Classical arabinogalactan proteins (AGPs) belong to glycosylphosphatidylinositol-anchored proteins, which are proved to be involved in signaling and cell wall metabolism upon stresses. However, rare information is available on the roles of classical AGPs in low temperature (LT) tolerance. Cultivation of banana in tropical and subtropical region is seriously threatened by LT stress. In the present study, 17 classical MaAGPs and nine MbAGPs in banana A and B genome were identified and characterized, respectively. Great diversity was present among different classical MaAGP/MbAGP members while five members (AGP3/6/11/13/14) showed 100% identity between these two gene families. We further investigated different responses of classical AGPs to LT between a chilling sensitive (CS) and tolerant (CT) banana cultivars. In addition, different changes in the temporal and spatial distribution of cell wall AGP components under LTs between these two cultivars were compared using immunofluorescence labeling. Seven classical MbAGPs were upregulated by LT(s) in the CT cultivar. Classical MaAGP4/6 was induced by LT(s) in both cultivars while MaAGP1/2/9/16/17 only in the CT cultivar. Moreover, these genes showed significantly higher transcription abundance in the CT cultivar than the CS one under LT(s) except classical MaAGP4. Similar results were observed with the epitopes of JIM13 and LM2 antibodies. The antigens of these antibodies and classical MaAGP1/2/6/9/16/17 might be related to LT tolerance of banana. These results provide additional information about plant classical AGPs and their involvement in LT tolerance, as well as their potential as candidate genes to be targeted when breeding CT banana.
Collapse
Affiliation(s)
- Jing Liu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Meng
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Houbin Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoquan Li
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zuxiang Su
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Chengjie Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Tong Ning
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenting He
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Longyu Dai
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Chunxiang Xu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
17
|
Přerovská T, Jindřichová B, Henke S, Yvin JC, Ferrieres V, Burketová L, Lipovová P, Nguema-Ona E. Arabinogalactan Protein-Like Proteins From Ulva lactuca Activate Immune Responses and Plant Resistance in an Oilseed Crop. FRONTIERS IN PLANT SCIENCE 2022; 13:893858. [PMID: 35668790 PMCID: PMC9164130 DOI: 10.3389/fpls.2022.893858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Natural compounds isolated from macroalgae are promising, ecofriendly, and multifunctional bioinoculants, which have been tested and used in agriculture. Ulvans, for instance, one of the major polysaccharides present in Ulva spp. cell walls, have been tested for their plant growth-promoting properties as well as their ability to activate plant immune defense, on a large variety of crops. Recently, we have characterized for the first time an arabinogalactan protein-like (AGP-like) from Ulva lactuca, which exhibits several features associated to land plant AGPs. In land plant, AGPs were shown to play a role in several plant biological functions, including cell morphogenesis, reproduction, and plant-microbe interactions. Thus, isolated AGP-like proteins may be good candidates for either the plant growth-promoting properties or the activation of plant immune defense. Here, we have isolated an AGP-like enriched fraction from Ulva lactuca and we have evaluated its ability to (i) protect oilseed rape (Brassica napus) cotyledons against Leptosphaeria maculans, and (ii) its ability to activate immune responses. Preventive application of the Ulva AGP-like enriched fraction on oilseed rape, followed by cotyledon inoculation with the fungal hemibiotroph L. maculans, resulted in a major reduction of infection propagation. The noticed reduction correlated with an accumulation of H2O2 in treated cotyledons and with the activation of SA and ET signaling pathways in oilseed rape cotyledons. In parallel, an ulvan was also isolated from Ulva lactuca. Preventive application of ulvan also enhanced plant resistance against L. maculans. Surprisingly, reduction of infection severity was only observed at high concentration of ulvan. Here, no such significant changes in gene expression and H2O2 production were observed. Together, this study indicates that U. lactuca AGP-like glycoproteins exhibit promising elicitor activity and that plant eliciting properties of Ulva extract, might result not only from an ulvan-originated eliciting activities, but also AGP-like originated.
Collapse
Affiliation(s)
- Tereza Přerovská
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, Rennes, France
| | - Barbora Jindřichová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Svatopluk Henke
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Jean-Claude Yvin
- Agro Innovation International TIMAC AGRO, Laboratoire de Nutrition Végétale, Pôle Stress Biotique, Saint Malo, France
| | - Vincent Ferrieres
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, Rennes, France
| | - Lenka Burketová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Lipovová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Eric Nguema-Ona
- Agro Innovation International TIMAC AGRO, Laboratoire de Nutrition Végétale, Pôle Stress Biotique, Saint Malo, France
| |
Collapse
|
18
|
A Novel Sulfated Glycoprotein Elicitor Extracted from the Moroccan Green Seaweed Codium decorticatum Induces Natural Defenses in Tomato. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sulfated glycoproteins extracted for the first time from the Moroccan green seaweed Codium decorticatum were investigated for their ability to induce a natural defense metabolism in the roots and the upper leaves of tomato seedlings. The crude (AGB) and the purified fractions (AGP) were characterized chemically (Colorimetric assays) and structurally (SEC-MALS, GC-EI/MS, ATR-FTIR). The elicitor aqueous solutions (1 g/L) were applied by foliar spray and syringe infiltration into the internodal middle of 45-day-old tomato seedlings. Phenylalanine ammonia-lyase (PAL) activity, polyphenols, and lignin contents were measured in the roots and the leaves after 0 h, 12, 24, 48, and 72 h of treatment. The AGB and AGP extracts contained 37.67% and 48.38% of the total carbohydrates, respectively, and were mainly composed of galactose, glucose, arabinose, and a minor amount of xylose and rhamnose. They were characterized by an important molecular weight (Mw) > of 2000 × 103 g·mol−1 and a high degree of sulfation and protein (12–23% (w/w)), indicating that the extracted polysaccharides could be an arabinogalactan-rich protein present in the cell wall of the green seaweed C. decorticatum. Both crude and purified fractions exhibited an elicitor effect by inducing the PAL activity, the accumulation of phenolic compounds and lignin contents in the roots and the leaves of tomato seedlings. These responses were systemic in both the methods used (injection and foliar spray) and were mobilized throughout tissues that are not directly treated (roots and/or leaves). Regarding the elicitor activities, AGB and AGP presented globally similar patterns, which revealed the importance of crude extracts in the stimulation of plant immunity. These results suggest the new application of sulfated glycoprotein isolated from green seaweed in agriculture as inducers of natural defenses of plants.
Collapse
|
19
|
Pfeifer L, van Erven G, Sinclair EA, Duarte CM, Kabel MA, Classen B. Profiling the cell walls of seagrasses from A (Amphibolis) to Z (Zostera). BMC PLANT BIOLOGY 2022; 22:63. [PMID: 35120456 PMCID: PMC8815203 DOI: 10.1186/s12870-022-03447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The polyphyletic group of seagrasses shows an evolutionary history from early monocotyledonous land plants to the marine environment. Seagrasses form important coastal ecosystems worldwide and large amounts of seagrass detritus washed on beaches might also be valuable bioeconomical resources. Despite this importance and potential, little is known about adaptation of these angiosperms to the marine environment and their cell walls. RESULTS We investigated polysaccharide composition of nine seagrass species from the Mediterranean, Red Sea and eastern Indian Ocean. Sequential extraction revealed a similar seagrass cell wall polysaccharide composition to terrestrial angiosperms: arabinogalactans, pectins and different hemicelluloses, especially xylans and/or xyloglucans. However, the pectic fractions were characterized by the monosaccharide apiose, suggesting unusual apiogalacturonans are a common feature of seagrass cell walls. Detailed analyses of four representative species identified differences between organs and species in their constituent monosaccharide composition and lignin content and structure. Rhizomes were richer in glucosyl units compared to leaves and roots. Enhalus had high apiosyl and arabinosyl abundance, while two Australian species of Amphibolis and Posidonia, were characterized by high amounts of xylosyl residues. Interestingly, the latter two species contained appreciable amounts of lignin, especially in roots and rhizomes whereas Zostera and Enhalus were lignin-free. Lignin structure in Amphibolis was characterized by a higher syringyl content compared to that of Posidonia. CONCLUSIONS Our investigations give a first comprehensive overview on cell wall composition across seagrass families, which will help understanding adaptation to a marine environment in the evolutionary context and evaluating the potential of seagrass in biorefinery incentives.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Gijs van Erven
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Elizabeth A. Sinclair
- School of Biological Sciences and Oceans Institute, University of Western Australia, Crawley, WA Australia
| | - Carlos M. Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mirjam A. Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| |
Collapse
|
20
|
Pfeifer L, Utermöhlen J, Happ K, Permann C, Holzinger A, von Schwartzenberg K, Classen B. Search for evolutionary roots of land plant arabinogalactan-proteins in charophytes: presence of a rhamnogalactan-protein in Spirogyra pratensis (Zygnematophyceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:568-584. [PMID: 34767672 PMCID: PMC7612518 DOI: 10.1111/tpj.15577] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 05/31/2023]
Abstract
Charophyte green algae (CGA) are assigned to be the closest relatives of land plants and therefore enlighten processes in the colonization of terrestrial habitats. For the transition from water to land, plants needed significant physiological and structural changes, as well as with regard to cell wall composition. Sequential extraction of cell walls of Nitellopsis obtusa (Charophyceae) and Spirogyra pratensis (Zygnematophyceae) offered a comparative overview on cell wall composition of late branching CGA. Because arabinogalactan-proteins (AGPs) are considered common for all land plant cell walls, we were interested in whether these special glycoproteins are present in CGA. Therefore, we investigated both species with regard to characteristic features of AGPs. In the cell wall of Nitellopsis, no hydroxyproline was present and no AGP was precipitable with the β-glucosyl Yariv's reagent (βGlcY). By contrast, βGlcY precipitation of the water-soluble cell wall fraction of Spirogyra yielded a glycoprotein fraction rich in hydroxyproline, indicating the presence of AGPs. Putative AGPs in the cell walls of non-conjugating Spirogyra filaments, especially in the area of transverse walls, were detected by staining with βGlcY. Labelling increased strongly in generative growth stages, especially during zygospore development. Investigations of the fine structure of the glycan part of βGlcY-precipitated molecules revealed that the galactan backbone resembled that of AGPs with 1,3- 1,6- and 1,3,6-linked Galp moieties. Araf was present only in small amounts and the terminating sugars consisted predominantly of pyranosidic terminal and 1,3-linked rhamnose residues. We introduce the term 'rhamnogalactan-protein' for this special AGP-modification present in S. pratensis.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | - Jon Utermöhlen
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | - Kathrin Happ
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | - Charlotte Permann
- Department of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck 6020, Austria
| | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck 6020, Austria
| | | | - Birgit Classen
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| |
Collapse
|
21
|
"Neptune Balls" Polysaccharides: Disentangling the Wiry Seagrass Detritus. Polymers (Basel) 2021; 13:polym13244285. [PMID: 34960836 PMCID: PMC8703491 DOI: 10.3390/polym13244285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 01/21/2023] Open
Abstract
Each year, high amounts of dead seagrass material are washed ashore at beaches world-wide. In the Mediterranean region, the seagrass Posidonia oceanica is responsible for huge agglomerates of ball-like seagrass litter. As these are often removed due to touristic reasons, a reuse method would be a step towards a more ecologically oriented society. In this study, the main polysaccharide components were analyzed, in order to propose possible usage options. To do this, different aqueous fractions were extracted, analyzed by classical carbohydrate analysis methods (GC-FID/MS, colorimetric assay and elemental analysis), and purified by ion-exchange chromatography, as well as selective precipitation with a detecting agent for highly glycosylated glycoproteins. The obtained purified fractions were analyzed in detail and a linkage-type analysis of the most promising extract was conducted via permethylation. Only low amounts of glycoproteins, as well as medium amounts of the characteristic apiogalacturonan were likely to be present, while xylan seemed to be the most abundant polysaccharide in most fractions. A partial structural proposal showed general accordance with land plant xylans, presenting reuse options in the field of biofuel and bioplastic generation.
Collapse
|
22
|
Dubas E, Żur I, Moravčiková J, Fodor J, Krzewska M, Surówka E, Nowicka A, Gerši Z. Proteins, Small Peptides and Other Signaling Molecules Identified as Inconspicuous but Possibly Important Players in Microspores Reprogramming Toward Embryogenesis. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.745865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this review, we describe and integrate the latest knowledge on the signaling role of proteins and peptides in the stress-induced microspore embryogenesis (ME) in some crop plants with agricultural importance (i.e., oilseed rape, tobacco, barley, wheat, rice, triticale, rye). Based on the results received from the most advanced omix analyses, we have selected some inconspicuous but possibly important players in microspores reprogramming toward embryogenic development. We provide an overview of the roles and downstream effect of stress-related proteins (e.g., β-1,3-glucanases, chitinases) and small signaling peptides, especially cysteine—(e.g., glutathione, γ-thionins, rapid alkalinization factor, lipid transfer, phytosulfokine) and glycine-rich peptides and other proteins (e.g., fasciclin-like arabinogalactan protein) on acclimation ability of microspores and the cell wall reconstruction in a context of ME induction and haploids/doubled haploids (DHs) production. Application of these molecules, stimulating the induction and proper development of embryo-like structures and green plant regeneration, brings significant improvement of the effectiveness of DHs procedures and could result in its wider incorporation on a commercial scale. Recent advances in the design and construction of synthetic peptides–mainly cysteine-rich peptides and their derivatives–have accelerated the development of new DNA-free genome-editing techniques. These new systems are evolving incredibly fast and soon will find application in many areas of plant science and breeding.
Collapse
|
23
|
Villa-Rivera MG, Cano-Camacho H, López-Romero E, Zavala-Páramo MG. The Role of Arabinogalactan Type II Degradation in Plant-Microbe Interactions. Front Microbiol 2021; 12:730543. [PMID: 34512607 PMCID: PMC8424115 DOI: 10.3389/fmicb.2021.730543] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Arabinogalactans (AGs) are structural polysaccharides of the plant cell wall. A small proportion of the AGs are associated with hemicellulose and pectin. Furthermore, AGs are associated with proteins forming the so-called arabinogalactan proteins (AGPs), which can be found in the plant cell wall or attached through a glycosylphosphatidylinositol (GPI) anchor to the plasma membrane. AGPs are a family of highly glycosylated proteins grouped with cell wall proteins rich in hydroxyproline. These glycoproteins have important and diverse functions in plants, such as growth, cellular differentiation, signaling, and microbe-plant interactions, and several reports suggest that carbohydrate components are crucial for AGP functions. In beneficial plant-microbe interactions, AGPs attract symbiotic species of fungi or bacteria, promote the development of infectious structures and the colonization of root tips, and furthermore, these interactions can activate plant defense mechanisms. On the other hand, plants secrete and accumulate AGPs at infection sites, creating cross-links with pectin. As part of the plant cell wall degradation machinery, beneficial and pathogenic fungi and bacteria can produce the enzymes necessary for the complete depolymerization of AGs including endo-β-(1,3), β-(1,4) and β-(1,6)-galactanases, β-(1,3/1,6) galactanases, α-L-arabinofuranosidases, β-L-arabinopyranosidases, and β-D-glucuronidases. These hydrolytic enzymes are secreted during plant-pathogen interactions and could have implications for the function of AGPs. It has been proposed that AGPs could prevent infection by pathogenic microorganisms because their degradation products generated by hydrolytic enzymes of pathogens function as damage-associated molecular patterns (DAMPs) eliciting the plant defense response. In this review, we describe the structure and function of AGs and AGPs as components of the plant cell wall. Additionally, we describe the set of enzymes secreted by microorganisms to degrade AGs from AGPs and its possible implication for plant-microbe interactions.
Collapse
Affiliation(s)
- Maria Guadalupe Villa-Rivera
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Horacio Cano-Camacho
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Mexico
| | - Everardo López-Romero
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - María Guadalupe Zavala-Páramo
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Mexico
| |
Collapse
|
24
|
The Arabinogalactan Protein Family of Centaurium erythraea Rafn. PLANTS 2021; 10:plants10091870. [PMID: 34579403 PMCID: PMC8471777 DOI: 10.3390/plants10091870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 02/04/2023]
Abstract
Centaurium erythraea (centaury) is a medicinal plant with exceptional developmental plasticity in vitro and vigorous, often spontaneous, regeneration via shoot organogenesis and somatic embryogenesis, during which arabinogalactan proteins (AGPs) play an important role. AGPs are highly glycosylated proteins belonging to the super family of O-glycosylated plant cell surface hydroxyproline-rich glycoproteins (HRGPs). HRGPs/AGPs are intrinsically disordered and not well conserved, making their homology-based mining ineffective. We have applied a recently developed pipeline for HRGP/AGP mining, ragp, which is based on machine learning prediction of proline hydroxylation, to identify HRGP sequences in centaury transcriptome and to classify them into motif and amino acid bias (MAAB) classes. AGP sequences with low AG glycomotif representation were also identified. Six members of each of the three AGP subclasses, fasciclin-like AGPs, receptor kinase-like AGPs and AG peptides, were selected for phylogenetic and expression analyses. The expression of these 18 genes was recorded over 48 h following leaf mechanical wounding, as well as in 16 tissue samples representing plants from nature, plants cultivated in vitro, and developmental stages during shoot organogenesis and somatic embryogenesis. None of the selected genes were upregulated during both wounding recovery and regeneration. Possible functions of AGPs with the most interesting expression profiles are discussed.
Collapse
|
25
|
A Molecular Pinball Machine of the Plasma Membrane Regulates Plant Growth-A New Paradigm. Cells 2021; 10:cells10081935. [PMID: 34440704 PMCID: PMC8391756 DOI: 10.3390/cells10081935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/31/2022] Open
Abstract
Novel molecular pinball machines of the plasma membrane control cytosolic Ca2+ levels that regulate plant metabolism. The essential components involve: 1. an auxin-activated proton pump; 2. arabinogalactan glycoproteins (AGPs); 3. Ca2+ channels; 4. auxin-efflux "PIN" proteins. Typical pinball machines release pinballs that trigger various sound and visual effects. However, in plants, "proton pinballs" eject Ca2+ bound by paired glucuronic acid residues of numerous glycomodules in periplasmic AGP-Ca2+. Freed Ca2+ ions flow down the electrostatic gradient through open Ca2+ channels into the cytosol, thus activating numerous Ca2+-dependent activities. Clearly, cytosolic Ca2+ levels depend on the activity of the proton pump, the state of Ca2+ channels and the size of the periplasmic AGP-Ca2+ capacitor; proton pump activation is a major regulatory focal point tightly controlled by the supply of auxin. Auxin efflux carriers conveniently known as "PIN" proteins (null mutants are pin-shaped) pump auxin from cell to cell. Mechanosensitive Ca2+ channels and their activation by reactive oxygen species (ROS) are yet another factor regulating cytosolic Ca2+. Cell expansion also triggers proton pump/pinball activity by the mechanotransduction of wall stress via Hechtian adhesion, thus forming a Hechtian oscillator that underlies cycles of wall plasticity and oscillatory growth. Finally, the Ca2+ homeostasis of plants depends on cell surface external storage as a source of dynamic Ca2+, unlike the internal ER storage source of animals, where the added regulatory complexities ranging from vitamin D to parathormone contrast with the elegant simplicity of plant life. This paper summarizes a sixty-year Odyssey.
Collapse
|
26
|
Arabinogalactan-proteins from non-coniferous gymnosperms have unusual structural features. Carbohydr Polym 2021; 261:117831. [PMID: 33766335 DOI: 10.1016/j.carbpol.2021.117831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/24/2022]
Abstract
Arabinogalactan-proteins (AGPs), important signalling molecules of the plant cell wall, are structurally extensively investigated in angiosperms, but information on AGPs in gymnosperms is still limited. We characterized AGPs from the gymnosperms Ginkgo biloba, Ephedra distachya, Encephalartos longifolius and Cycas revoluta. The protein contents are comparable to that of angiosperm AGPs. Hydroxyproline is the site of linking the carbohydrate part and was detected in all AGPs with highest concentration in Cycas AGP (1.1 % of the AGP). Interestingly, with the exception of Cycas, all AGPs contained the monosaccharide 3-O-methylrhamnose not present in angiosperm polysaccharides. The carbohydrate moieties of Cycas and Ephredra showed the main components 1,3,6-linked galactose and terminal arabinose typical of angiosperm AGPs, whereas that of Ginkgo AGP was unique with 1,4-linked galactose as dominant structural element. Bioinformatic search for glycosyltransferases in Ginkgo genome also revealed a lower number of galactosyltransferases responsible for biosynthesis of the 1,3-Gal/1,6-Gal AGP backbone.
Collapse
|
27
|
Ajayi OO, Held MA, Showalter AM. Two β-glucuronosyltransferases involved in the biosynthesis of type II arabinogalactans function in mucilage polysaccharide matrix organization in Arabidopsis thaliana. BMC PLANT BIOLOGY 2021; 21:245. [PMID: 34051740 PMCID: PMC8164333 DOI: 10.1186/s12870-021-03012-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/26/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Arabinogalactan-proteins (AGPs) are heavily glycosylated with type II arabinogalactan (AG) polysaccharides attached to hydroxyproline residues in their protein backbone. Type II AGs are necessary for plant growth and critically important for the establishment of normal cellular functions. Despite the importance of type II AGs in plant development, our understanding of the underlying role of these glycans/sugar residues in mucilage formation and seed coat epidermal cell development is poorly understood and far from complete. One such sugar residue is the glucuronic acid residues of AGPs that are transferred onto AGP glycans by the action of β-glucuronosyltransferase genes/enzymes. RESULTS Here, we have characterized two β-glucuronosyltransferase genes, GLCAT14A and GLCAT14C, that are involved in the transfer of β-glucuronic acid (GlcA) to type II AGs. Using a reverse genetics approach, we observed that glcat14a-1 mutants displayed subtle alterations in mucilage pectin homogalacturonan (HG) compared to wild type (WT), while glcat14a-1glcat14c-1 mutants displayed much more severe mucilage phenotypes, including loss of adherent mucilage and significant alterations in cellulose ray formation and seed coat morphology. Monosaccharide composition analysis showed significant alterations in the sugar amounts of glcat14a-1glcat14c-1 mutants relative to WT in the adherent and non-adherent seed mucilage. Also, a reduction in total mucilage content was observed in glcat14a-1glcat14c-1 mutants relative to WT. In addition, glcat14a-1glcat14c-1 mutants showed defects in pectin formation, calcium content and the degree of pectin methyl-esterification (DM) as well as reductions in crystalline cellulose content and seed size. CONCLUSIONS These results raise important questions regarding cell wall polymer interactions and organization during mucilage formation. We propose that the enzymatic activities of GLCAT14A and GLCAT14C play partially redundant roles and are required for the organization of the mucilage matrix and seed size in Arabidopsis thaliana. This work brings us a step closer towards identifying potential gene targets for engineering plant cell walls for industrial applications.
Collapse
Affiliation(s)
- Oyeyemi O. Ajayi
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701 USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701 USA
| | - Michael A. Held
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701 USA
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 USA
| | - Allan M. Showalter
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701 USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701 USA
| |
Collapse
|
28
|
Pfeifer L, Baumann A, Petersen LM, Höger B, Beitz E, Classen B. Degraded Arabinogalactans and Their Binding Properties to Cancer-Associated Human Galectins. Int J Mol Sci 2021; 22:ijms22084058. [PMID: 33920014 PMCID: PMC8071012 DOI: 10.3390/ijms22084058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Galectins represent β-galactoside-binding proteins with numerous functions. Due to their role in tumor progression, human galectins-1, -3 and -7 (Gal-1, -3 and -7) are potential targets for cancer therapy. As plant derived glycans might act as galectin inhibitors, we prepared galactans by partial degradation of plant arabinogalactan-proteins. Besides commercially purchased galectins, we produced Gal-1 and -7 in a cell free system and tested binding capacities of the galectins to the galactans by biolayer-interferometry. Results for commercial and cell-free expressed galectins were comparable confirming functionality of the cell-free produced galectins. Our results revealed that galactans from Echinacea purpurea bind to Gal-1 and -7 with KD values of 1–2 µM and to Gal-3 slightly stronger with KD values between 0.36 and 0.70 µM depending on the sensor type. Galactans from the seagrass Zostera marina with higher branching of the galactan and higher content of uronic acids showed stronger binding to Gal-3 (0.08–0.28 µM) compared to galactan from Echinacea. The results contribute to knowledge on interactions between plant polysaccharides and galectins. Arabinogalactan-proteins have been identified as a new source for production of galactans with possible capability to act as galectin inhibitors.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany; (L.P.); (A.B.)
| | - Alexander Baumann
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany; (L.P.); (A.B.)
| | - Lea Madlen Petersen
- Department of Pharmaceutical Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany; (L.M.P.); (B.H.); (E.B.)
| | - Bastian Höger
- Department of Pharmaceutical Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany; (L.M.P.); (B.H.); (E.B.)
| | - Eric Beitz
- Department of Pharmaceutical Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany; (L.M.P.); (B.H.); (E.B.)
| | - Birgit Classen
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany; (L.P.); (A.B.)
- Correspondence: ; Tel.: +49-431-8801130
| |
Collapse
|
29
|
Přerovská T, Henke S, Bleha R, Spiwok V, Gillarová S, Yvin JC, Ferrières V, Nguema-Ona E, Lipovová P. Arabinogalactan-like Glycoproteins from Ulva lactuca (Chlorophyta) Show Unique Features Compared to Land Plants AGPs. JOURNAL OF PHYCOLOGY 2021; 57:619-635. [PMID: 33338254 DOI: 10.1111/jpy.13121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 05/21/2023]
Abstract
Arabinogalactan proteins (AGPs) encompass a diverse group of plant cell wall proteoglycans, which play an essential role in plant development, signaling, plant-microbe interactions, and many others. Although they are widely distributed throughout the plant kingdom and extensively studied, they remain largely unexplored in the lower plants, especially in seaweeds. Ulva species have high economic potential since various applications were previously described including bioremediation, biofuel production, and as a source of bioactive compounds. This article presents the first experimental confirmation of AGP-like glycoproteins in Ulva species and provides a simple extraction protocol of Ulva lactuca AGP-like glycoproteins, their partial characterization and unique comparison to scarcely described Solanum lycopersicum AGPs. The reactivity with primary anti-AGP antibodies as well as Yariv reagent showed a great variety between Ulva lactuca and Solanum lycopersicum AGP-like glycoproteins. While the amino acid analysis of the AGP-like glycoproteins purified by the β-d-glucosyl Yariv reagent showed a similarity between algal and land plant AGP-like glycoproteins, neutral saccharide analysis revealed unique glycosylation of the Ulva lactuca AGP-like glycoproteins. Surprisingly, arabinose and galactose were not the most prevalent monosaccharides and the most outstanding was the presence of 3-O-methyl-hexose, which has never been described in the AGPs. The exceptional structure of the Ulva lactuca AGP-like glycoproteins implies a specialized adaptation to the marine environment and might bring new insight into the evolution of the plant cell wall.
Collapse
Affiliation(s)
- Tereza Přerovská
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, 35000, Rennes, France
| | - Svatopluk Henke
- Department of Carbohydrates and Cerials, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
| | - Roman Bleha
- Department of Carbohydrates and Cerials, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
| | - Vojtěch Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
| | - Simona Gillarová
- Department of Carbohydrates and Cerials, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
| | - Jean-Claude Yvin
- Centre Mondial de l'Innovation Roullier, Laboratoire de Nutrition Végétal, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Vincent Ferrières
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, 35000, Rennes, France
| | - Eric Nguema-Ona
- Centre Mondial de l'Innovation Roullier, Laboratoire de Nutrition Végétal, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Petra Lipovová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
| |
Collapse
|
30
|
Strasser R, Seifert G, Doblin MS, Johnson KL, Ruprecht C, Pfrengle F, Bacic A, Estevez JM. Cracking the "Sugar Code": A Snapshot of N- and O-Glycosylation Pathways and Functions in Plants Cells. FRONTIERS IN PLANT SCIENCE 2021; 12:640919. [PMID: 33679857 PMCID: PMC7933510 DOI: 10.3389/fpls.2021.640919] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/22/2021] [Indexed: 05/04/2023]
Abstract
Glycosylation is a fundamental co-translational and/or post-translational modification process where an attachment of sugars onto either proteins or lipids can alter their biological function, subcellular location and modulate the development and physiology of an organism. Glycosylation is not a template driven process and as such produces a vastly larger array of glycan structures through combinatorial use of enzymes and of repeated common scaffolds and as a consequence it provides a huge expansion of both the proteome and lipidome. While the essential role of N- and O-glycan modifications on mammalian glycoproteins is already well documented, we are just starting to decode their biological functions in plants. Although significant advances have been made in plant glycobiology in the last decades, there are still key challenges impeding progress in the field and, as such, holistic modern high throughput approaches may help to address these conceptual gaps. In this snapshot, we present an update of the most common O- and N-glycan structures present on plant glycoproteins as well as (1) the plant glycosyltransferases (GTs) and glycosyl hydrolases (GHs) responsible for their biosynthesis; (2) a summary of microorganism-derived GHs characterized to cleave specific glycosidic linkages; (3) a summary of the available tools ranging from monoclonal antibodies (mAbs), lectins to chemical probes for the detection of specific sugar moieties within these complex macromolecules; (4) selected examples of N- and O-glycoproteins as well as in their related GTs to illustrate the complexity on their mode of action in plant cell growth and stress responses processes, and finally (5) we present the carbohydrate microarray approach that could revolutionize the way in which unknown plant GTs and GHs are identified and their specificities characterized.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Georg Seifert
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Monika S. Doblin
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- The Sino-Australia Plant Cell Wall Research Centre, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Kim L. Johnson
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- The Sino-Australia Plant Cell Wall Research Centre, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Colin Ruprecht
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Fabian Pfrengle
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- The Sino-Australia Plant Cell Wall Research Centre, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - José M. Estevez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
31
|
Hromadová D, Soukup A, Tylová E. Arabinogalactan Proteins in Plant Roots - An Update on Possible Functions. FRONTIERS IN PLANT SCIENCE 2021; 12:674010. [PMID: 34079573 PMCID: PMC8165308 DOI: 10.3389/fpls.2021.674010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 05/05/2023]
Abstract
Responsiveness to environmental conditions and developmental plasticity of root systems are crucial determinants of plant fitness. These processes are interconnected at a cellular level with cell wall properties and cell surface signaling, which involve arabinogalactan proteins (AGPs) as essential components. AGPs are cell-wall localized glycoproteins, often GPI-anchored, which participate in root functions at many levels. They are involved in cell expansion and differentiation, regulation of root growth, interactions with other organisms, and environmental response. Due to the complexity of cell wall functional and regulatory networks, and despite the large amount of experimental data, the exact molecular mechanisms of AGP-action are still largely unknown. This dynamically evolving field of root biology is summarized in the present review.
Collapse
|
32
|
Pfeifer L, Classen B. The Cell Wall of Seagrasses: Fascinating, Peculiar and a Blank Canvas for Future Research. FRONTIERS IN PLANT SCIENCE 2020; 11:588754. [PMID: 33193541 PMCID: PMC7644952 DOI: 10.3389/fpls.2020.588754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/07/2020] [Indexed: 05/12/2023]
Abstract
Seegrasses are a polyphyletic group of angiosperm plants, which evolved from early monocotyledonous land plants and returned to the marine environment around 140 million years ago. Today, seagrasses comprise the five families Zosteraceae, Hydrocharitaceae, Posidoniaceae, Cymodoceaceae, and Ruppiaceae and form important coastal ecosystems worldwide. Despite of this ecological importance, the existing literature on adaption of these angiosperms to the marine environment and especially their cell wall composition is limited up to now. A unique feature described for some seagrasses is the occurrence of polyanionic, low-methylated pectins mainly composed of galacturonic acid and apiose (apiogalacturonans). Furthermore, sulfated galactans have been detected in some species. Recently, arabinogalactan-proteins (AGPs), highly glycosylated proteins of the cell wall of land plants, have been isolated for the first time from a seagrass of the baltic sea. Obviously, seagrass cell walls are characterized by new combinations of structural polysaccharide and glycoprotein elements known from macroalgae and angiosperm land plants. In this review, current knowledge on cell walls of seagrasses is summarized and suggestions for future investigations are given.
Collapse
Affiliation(s)
| | - Birgit Classen
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Faculty of Mathematics and Natural Sciences, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
33
|
Lopez-Hernandez F, Tryfona T, Rizza A, Yu XL, Harris MOB, Webb AAR, Kotake T, Dupree P. Calcium Binding by Arabinogalactan Polysaccharides Is Important for Normal Plant Development. THE PLANT CELL 2020; 32:3346-3369. [PMID: 32769130 PMCID: PMC7534474 DOI: 10.1105/tpc.20.00027] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/17/2020] [Accepted: 07/31/2020] [Indexed: 05/19/2023]
Abstract
Arabinogalactan proteins (AGPs) are a family of plant extracellular proteoglycans involved in many physiological events. AGPs are often anchored to the extracellular side of the plasma membrane and are highly glycosylated with arabinogalactan (AG) polysaccharides, but the molecular function of this glycosylation remains largely unknown. The β-linked glucuronic acid (GlcA) residues in AG polysaccharides have been shown in vitro to bind to calcium in a pH-dependent manner. Here, we used Arabidopsis (Arabidopsis thaliana) mutants in four AG β-glucuronyltransferases (GlcAT14A, -B, -D, and -E) to understand the role of glucuronidation of AG. AG isolated from glcat14 triple mutants had a strong reduction in glucuronidation. AG from a glcat14a/b/d triple mutant had lower calcium binding capacity in vitro than AG from wild-type plants. Some mutants had multiple developmental defects such as reduced trichome branching. glcat14a/b/e triple mutant plants had severely limited seedling growth and were sterile, and the propagation of calcium waves was perturbed in roots. Several of the developmental phenotypes were suppressed by increasing the calcium concentration in the growth medium. Our results show that AG glucuronidation is crucial for multiple developmental processes in plants and suggest that a function of AGPs might be to bind and release cell-surface apoplastic calcium.
Collapse
Affiliation(s)
| | - Theodora Tryfona
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Annalisa Rizza
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Xiaolan L Yu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Matthew O B Harris
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Toshihisa Kotake
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| |
Collapse
|
34
|
Validation of a Rapid GC-MS Procedure for Quantitative Distinction between 3-O-Methyl- and 4-O-Methyl-Hexoses and Its Application to a Complex Carbohydrate Sample. SEPARATIONS 2020. [DOI: 10.3390/separations7030042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Methylation of one hydroxyl group of monosaccharides occurs in some bacteria, fungi, worms, molluscs, and also in plants. Although knowledge on the exact functions of this process is missing, methylation is an option to modulate glycan structures thereby leading to new biological activities. In plants, methylated monosaccharides are often present in minor amounts and, therefore, overseen in analytical investigations. A special difficulty is the distinction between 3-O-methyl- and 4-O-methyl-hexoses, due to similar fragmentation patterns of methylated alditol acetates in gas-chromatography with mass spectrometric detection and, in the case of galactose, identical retention times due to symmetry. We, therefore, developed and validated an easy method for the quantitative distinction between 3-O-methyl- and 4-O-methyl-hexoses and showed its functionality by quantification of 3-O-methyl galactose in a high molecular weight polysaccharide mixture from the charophyte Spirogyra. A systematic search for methylated monosaccharides in different plant lineages may offer new insights in plant cell wall evolution.
Collapse
|