1
|
Bar-Tana J. mTORC1 syndrome (TorS): unifying paradigm for PASC, ME/CFS and PAIS. J Transl Med 2025; 23:297. [PMID: 40059164 PMCID: PMC11892318 DOI: 10.1186/s12967-025-06220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/10/2025] [Indexed: 05/13/2025] Open
Abstract
Post-acute SarS-Cov2 (PASC), Myalgia encephalomyelitis/Chronic fatigue syndrome (ME/CFS) and Post-acute infection syndrome (PAIS) consist of chronic post-acute infectious syndromes, sharing exhaustive fatigue, post exertional malaise, intermittent pain, postural tachycardia and neuro-cognitive-psychiatric dysfunction. However, the concerned shared pathophysiology is still unresolved in terms of upstream drivers and transducers. Also, risk factors which may determine vulnerability/progression to the chronic phase still remain to be defined. In lack of drivers and a cohesive pathophysiology, the concerned syndromes still remain unmet therapeutic needs. 'mTORC1 Syndrome' (TorS) implies an exhaustive disease entity driven by sustained hyper-activation of the mammalian target of rapamycin C1 (mTORC1), and resulting in a variety of disease aspects of the Metabolic Syndrome (MetS), non-alcoholic fatty liver disease, chronic obstructive pulmonary disease, some cancers, neurodegeneration and other [Bar-Tana in Trends Endocrinol Metab 34:135-145, 2023]. TorS may offer a cohesive insight of PASC, ME/CFS and PAIS drivers, pathophysiology, vulnerability and treatment options.
Collapse
Affiliation(s)
- Jacob Bar-Tana
- Hebrew University Medical School, 91120, Jerusalem, Israel.
| |
Collapse
|
2
|
Frankish BP, Murphy RM. Does AMPK bind glycogen in skeletal muscle or is the relationship correlative? Essays Biochem 2024; 68:337-347. [PMID: 39192605 DOI: 10.1042/ebc20240006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Since its discovery over five decades ago, an emphasis on better understanding the structure and functional role of AMPK has been prevalent. In that time, the role of AMPK as a heterotrimeric enzyme that senses the energy state of various cell types has been established. Skeletal muscle is a dynamic, plastic tissue that adapts to both functional and metabolic demands of the human body, such as muscle contraction or exercise. With a deliberate focus on AMPK in skeletal muscle, this review places a physiological lens to the association of AMPK and glycogen that has been established biochemically. It discusses that, to date, no in vivo association of AMPK with glycogen has been shown and this is not altered with interventions, either by physiological or biochemical utilisation of glycogen in skeletal muscle. The reason for this is likely due to the persistent phosphorylation of Thr148 in the β-subunit of AMPK which prevents AMPK from binding to carbohydrate domains. This review presents the correlative data that suggests AMPK senses glycogen utilisation through a direct interaction with glycogen, the biochemical data showing that AMPK can bind carbohydrate in vitro, and highlights that in a physiological setting of rodent skeletal muscle, AMPK does not directly bind to glycogen.
Collapse
Affiliation(s)
- Barnaby P Frankish
- Sport, Exercise and Nutrition Sciences, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia Insert Affiliation Text Here
| |
Collapse
|
3
|
Stanciu SM, Jinga M, Miricescu D, Stefani C, Nica RI, Stanescu-Spinu II, Vacaroiu IA, Greabu M, Nica S. mTOR Dysregulation, Insulin Resistance, and Hypertension. Biomedicines 2024; 12:1802. [PMID: 39200267 PMCID: PMC11351979 DOI: 10.3390/biomedicines12081802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Worldwide, diabetes mellitus (DM) and cardiovascular diseases (CVDs) represent serious health problems associated with unhealthy diet and sedentarism. Metabolic syndrome (MetS) is characterized by obesity, dyslipidemia, hyperglycemia, insulin resistance (IR) and hypertension. The mammalian target of rapamycin (mTOR) is a serine/threonine kinase with key roles in glucose and lipid metabolism, cell growth, survival and proliferation. mTOR hyperactivation disturbs glucose metabolism, leading to hyperglycemia and further to IR, with a higher incidence in the Western population. Metformin is one of the most used hypoglycemic drugs, with anti-inflammatory, antioxidant and antitumoral properties, having also the capacity to inhibit mTOR. mTOR inhibitors such as rapamycin and its analogs everolimus and temsirolimus block mTOR activity, decrease the levels of glucose and triglycerides, and reduce body weight. The link between mTOR dysregulation, IR, hypertension and mTOR inhibitors has not been fully described. Therefore, the main aim of this narrative review is to present the mechanism by which nutrients, proinflammatory cytokines, increased salt intake and renin-angiotensin-aldosterone system (RAAS) dysregulation induce mTOR overactivation, associated further with IR and hypertension development, and also mTOR inhibitors with higher potential to block the activity of this protein kinase.
Collapse
Affiliation(s)
- Silviu Marcel Stanciu
- Department of Internal Medicine and Gastroenterology, Carol Davila University of Medicine and Pharmacy, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania; (S.M.S.); (M.J.)
| | - Mariana Jinga
- Department of Internal Medicine and Gastroenterology, Carol Davila University of Medicine and Pharmacy, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania; (S.M.S.); (M.J.)
| | - Daniela Miricescu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Constantin Stefani
- Department of Family Medicine and Clinical Base, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania;
| | - Remus Iulian Nica
- Surgery Department, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania;
- Discipline of General Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanotari Blvd, 054474 Bucharest, Romania
| | - Iulia-Ioana Stanescu-Spinu
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Ileana Adela Vacaroiu
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Maria Greabu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Silvia Nica
- Emergency Discipline, University Hospital of Bucharest, 050098 Bucharest, Romania;
- Department of Emergency and First Aid, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| |
Collapse
|
4
|
Wang D, Yang L, Ding W, Chen Z, Yang X, Jiang Y, Liu Y. Licochalcone A alleviates abnormal glucolipid metabolism and restores energy homeostasis in diet-induced diabetic mice. Phytother Res 2024; 38:196-213. [PMID: 37850242 DOI: 10.1002/ptr.8044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Licochalcone A (LCA) is a bioactive chalcone compound identified in licorice. This study aimed to investigate the effects of LCA on glucolipid metabolism and energy homeostasis, as well as the underlying mechanisms. Blood glucose levels, oral glucose tolerance, serum parameters, and histopathology were examined in high-fat-high-glucose diet (HFD)-induced diabetic mice, with metformin as a positive control. Additionally, changes in key markers related to glucolipid metabolism and mitochondrial function were analyzed to comprehensively assess LCA's effects on metabolism. The results showed that LCA alleviated metabolic abnormalities in HFD-induced diabetic mice, which were manifested by suppression of lipogenesis, promotion of lipolysis, reduction of hepatic steatosis, increase in hepatic glycogenesis, and decrease in gluconeogenesis. In addition, LCA restored energy homeostasis by promoting mitochondrial biogenesis, enhancing mitophagy, and reducing adenosine triphosphate production. Mechanistically, the metabolic benefits of LCA were associated with the downregulation of mammalian target of rapamycin complex 1 and activation of adenosine monophosphate-activated protein kinase, the two central regulators of metabolism. This study demonstrates that LCA can alleviate abnormal glucolipid metabolism and restore energy balance in diet-induced diabetic mice, highlighting its therapeutical potential for the treatment of diabetes.
Collapse
Affiliation(s)
- Doudou Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wenwen Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ziyi Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxue Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Bar-Tana J. TorS - Reframing a rational for type 2 diabetes treatment. Diabetes Metab Res Rev 2024; 40:e3712. [PMID: 37615286 DOI: 10.1002/dmrr.3712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/11/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023]
Abstract
The mammalian target of rapamycin complex 1 syndrome (Tors), paradigm implies an exhaustive cohesive disease entity driven by a hyperactive mTORC1, and which includes obesity, type 2 diabetic hyperglycemia, diabetic dyslipidemia, diabetic cardiomyopathy, diabetic nephropathy, diabetic peripheral neuropathy, hypertension, atherosclerotic cardiovascular disease, non-alcoholic fatty liver disease, some cancers, neurodegeneration, polycystic ovary syndrome, psoriasis and other. The TorS paradigm may account for the efficacy of standard-of-care treatments of type 2 diabetes (T2D) in alleviating the glycaemic and non-glycaemic diseases of TorS in T2D and non-T2D patients. The TorS paradigm may generate novel treatments for TorS diseases.
Collapse
|
6
|
Elliehausen CJ, Anderson RM, Diffee GM, Rhoads TW, Lamming DW, Hornberger TA, Konopka AR. Geroprotector drugs and exercise: friends or foes on healthy longevity? BMC Biol 2023; 21:287. [PMID: 38066609 PMCID: PMC10709984 DOI: 10.1186/s12915-023-01779-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Physical activity and several pharmacological approaches individually combat age-associated conditions and extend healthy longevity in model systems. It is tantalizing to extrapolate that combining geroprotector drugs with exercise could extend healthy longevity beyond any individual treatment. However, the current dogma suggests that taking leading geroprotector drugs on the same day as exercise may limit several health benefits. Here, we review leading candidate geroprotector drugs and their interactions with exercise and highlight salient gaps in knowledge that need to be addressed to identify if geroprotector drugs can have a harmonious relationship with exercise.
Collapse
Affiliation(s)
- Christian J Elliehausen
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Rozalyn M Anderson
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Gary M Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy W Rhoads
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam R Konopka
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
7
|
Ungvari Z, Fazekas-Pongor V, Csiszar A, Kunutsor SK. The multifaceted benefits of walking for healthy aging: from Blue Zones to molecular mechanisms. GeroScience 2023; 45:3211-3239. [PMID: 37495893 PMCID: PMC10643563 DOI: 10.1007/s11357-023-00873-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
Physical activity, including walking, has numerous health benefits in older adults, supported by a plethora of observational and interventional studies. Walking decreases the risk or severity of various health outcomes such as cardiovascular and cerebrovascular diseases, type 2 diabetes mellitus, cognitive impairment and dementia, while also improving mental well-being, sleep, and longevity. Dose-response relationships for walking duration and intensity are established for adverse cardiovascular outcomes. Walking's favorable effects on cardiovascular risk factors are attributed to its impact on circulatory, cardiopulmonary, and immune function. Meeting current physical activity guidelines by walking briskly for 30 min per day for 5 days can reduce the risk of several age-associated diseases. Additionally, low-intensity physical exercise, including walking, exerts anti-aging effects and helps prevent age-related diseases, making it a powerful tool for promoting healthy aging. This is exemplified by the lifestyles of individuals in Blue Zones, regions of the world with the highest concentration of centenarians. Walking and other low-intensity physical activities contribute significantly to the longevity of individuals in these regions, with walking being an integral part of their daily lives. Thus, incorporating walking into daily routines and encouraging walking-based physical activity interventions can be an effective strategy for promoting healthy aging and improving health outcomes in all populations. The goal of this review is to provide an overview of the vast and consistent evidence supporting the health benefits of physical activity, with a specific focus on walking, and to discuss the impact of walking on various health outcomes, including the prevention of age-related diseases. Furthermore, this review will delve into the evidence on the impact of walking and low-intensity physical activity on specific molecular and cellular mechanisms of aging, providing insights into the underlying biological mechanisms through which walking exerts its beneficial anti-aging effects.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Setor K Kunutsor
- Diabetes Research Centre, University of Leicester, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4WP, UK.
| |
Collapse
|
8
|
Almuraikhy S, Anwardeen N, Doudin A, Sellami M, Domling A, Agouni A, Al Thani AA, Elrayess MA. The Metabolic Switch of Physical Activity in Non-Obese Insulin Resistant Individuals. Int J Mol Sci 2023; 24:ijms24097816. [PMID: 37175541 PMCID: PMC10178125 DOI: 10.3390/ijms24097816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Healthy non-obese insulin resistant (IR) individuals are at higher risk of metabolic syndrome. The metabolic signature of the increased risk was previously determined. Physical activity can lower the risk of insulin resistance, but the underlying metabolic pathways remain to be determined. In this study, the common and unique metabolic signatures of insulin sensitive (IS) and IR individuals in active and sedentary individuals were determined. Data from 305 young, aged 20-30, non-obese participants from Qatar biobank, were analyzed. The homeostatic model assessment of insulin resistance (HOMA-IR) and physical activity questionnaires were utilized to classify participants into four groups: Active Insulin Sensitive (ISA, n = 30), Active Insulin Resistant (IRA, n = 20), Sedentary Insulin Sensitive (ISS, n = 21) and Sedentary Insulin Resistant (SIR, n = 23). Differences in the levels of 1000 metabolites between insulin sensitive and insulin resistant individuals in both active and sedentary groups were compared using orthogonal partial least square discriminate analysis (OPLS-DA) and linear models. The study indicated significant differences in fatty acids between individuals with insulin sensitivity and insulin resistance who engaged in physical activity, including monohydroxy, dicarboxylate, medium and long chain, mono and polyunsaturated fatty acids. On the other hand, the sedentary group showed changes in carbohydrates, specifically glucose and pyruvate. Both groups exhibited alterations in 1-carboxyethylphenylalanine. The study revealed different metabolic signature in insulin resistant individuals depending on their physical activity status. Specifically, the active group showed changes in lipid metabolism, while the sedentary group showed alterations in glucose metabolism. These metabolic discrepancies demonstrate the beneficial impact of moderate physical activity on high risk insulin resistant healthy non-obese individuals by flipping their metabolic pathways from glucose based to fat based, ultimately leading to improved health outcomes. The results of this study carry significant implications for the prevention and treatment of metabolic syndrome in non-obese individuals.
Collapse
Affiliation(s)
- Shamma Almuraikhy
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Groningen Research Institute of Pharmacy, Drug Design, Groningen University, 9713 AV Groningen, The Netherlands
| | - Najeha Anwardeen
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Asmma Doudin
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Maha Sellami
- Physical Education Department (PE), College of Education, Qatar University, Doha P.O. Box 2713, Qatar
| | - Alexander Domling
- Groningen Research Institute of Pharmacy, Drug Design, Groningen University, 9713 AV Groningen, The Netherlands
| | - Abdelali Agouni
- College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Asmaa A Al Thani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biomedical Sciences, College of Health Science, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohamed A Elrayess
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
9
|
Bar-Tana J. mTORC1 syndrome (TorS): unified paradigm for diabetes/metabolic syndrome. Trends Endocrinol Metab 2023; 34:135-145. [PMID: 36717300 DOI: 10.1016/j.tem.2023.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/30/2023]
Abstract
'Glucolipotoxicity' and 'insulin resistance' are claimed to drive type 2 diabetes (T2D) and the non-glycemic diseases of the metabolic syndrome (MetS) (obesity, dyslipidemia, hypertension). In line with that, glycemic and/or insulin control are considered to be primary goal in treating T2D/MetS. However, recent standard-of-care (SOC) treatments of T2D, initially designed to control T2D hyperglycemia, appear now to alleviate the cardio-renal and non-glycemic diseases of T2D/MetS independently of glucose lowering and insulin resistance, and in non-T2D patients altogether, calling for an alternative unifying pathophysiology/treatment paradigm for T2D/MetS. This opinion article proposes to replace the current 'glucolipotoxic/insulin-resistance' paradigm of T2D/MetS with an 'mammalian target of rapamycin complex 1 (mTORC1) syndrome' (TorS) paradigm, implying an exhaustive cohesive disease entity driven by an upstream hyperactive mTORC1, and which includes diabetic hyperglycemia, diabetic dyslipidemia, hypertension, diabetic macrovascular and microvascular disease, non-alcoholic fatty liver disease, some cancers, neurodegeneration, polycystic ovary syndrome (PCOS), psoriasis, and others. The TorS paradigm may account for the insulin-resistant glycemic context of TorS, combined with response to insulin of the non-glycemic diseases of TorS. The TorS paradigm may account for the efficacy of current antidiabetic SOC treatments in diabetic and nondiabetic patients. Most importantly, the TorS paradigm may generate novel treatments for TorS.
Collapse
Affiliation(s)
- Jacob Bar-Tana
- Hebrew University Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
10
|
An Early and Sustained Inflammatory State Induces Muscle Changes and Establishes Obesogenic Characteristics in Wistar Rats Exposed to the MSG-Induced Obesity Model. Int J Mol Sci 2023; 24:ijms24054730. [PMID: 36902158 PMCID: PMC10003260 DOI: 10.3390/ijms24054730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 03/05/2023] Open
Abstract
The model of obesity induced by monosodium glutamate cytotoxicity on the hypothalamic nuclei is widely used in the literature. However, MSG promotes persistent muscle changes and there is a significant lack of studies that seek to elucidate the mechanisms by which damage refractory to reversal is established. This study aimed to investigate the early and chronic effects of MSG induction of obesity upon systemic and muscular parameters of Wistar rats. The animals were exposed to MSG subcutaneously (4 mg·g-1 b.w.) or saline (1.25 mg·g-1 b.w.) daily from PND01 to PND05 (n = 24). Afterwards, in PND15, 12 animals were euthanized to determine the plasma and inflammatory profile and to assess muscle damage. In PND142, the remaining animals were euthanized, and samples for histological and biochemical analyses were obtained. Our results suggest that early exposure to MSG reduced growth, increased adiposity, and inducted hyperinsulinemia and a pro-inflammatory scenario. In adulthood, the following were observed: peripheral insulin resistance, increased fibrosis, oxidative distress, and a reduction in muscle mass, oxidative capacity, and neuromuscular junctions, increased fibrosis, and oxidative distress. Thus, we can conclude that the condition found in adult life and the difficulty restoring in the muscle profile is related to the metabolic damage established early on.
Collapse
|
11
|
Paez HG, Pitzer CR, Alway SE. Age-Related Dysfunction in Proteostasis and Cellular Quality Control in the Development of Sarcopenia. Cells 2023; 12:cells12020249. [PMID: 36672183 PMCID: PMC9856405 DOI: 10.3390/cells12020249] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Sarcopenia is a debilitating skeletal muscle disease that accelerates in the last decades of life and is characterized by marked deficits in muscle strength, mass, quality, and metabolic health. The multifactorial causes of sarcopenia have proven difficult to treat and involve a complex interplay between environmental factors and intrinsic age-associated changes. It is generally accepted that sarcopenia results in a progressive loss of skeletal muscle function that exceeds the loss of mass, indicating that while loss of muscle mass is important, loss of muscle quality is the primary defect with advanced age. Furthermore, preclinical models have suggested that aged skeletal muscle exhibits defects in cellular quality control such as the degradation of damaged mitochondria. Recent evidence suggests that a dysregulation of proteostasis, an important regulator of cellular quality control, is a significant contributor to the aging-associated declines in muscle quality, function, and mass. Although skeletal muscle mammalian target of rapamycin complex 1 (mTORC1) plays a critical role in cellular control, including skeletal muscle hypertrophy, paradoxically, sustained activation of mTORC1 recapitulates several characteristics of sarcopenia. Pharmaceutical inhibition of mTORC1 as well as caloric restriction significantly improves muscle quality in aged animals, however, the mechanisms controlling cellular proteostasis are not fully known. This information is important for developing effective therapeutic strategies that mitigate or prevent sarcopenia and associated disability. This review identifies recent and historical understanding of the molecular mechanisms of proteostasis driving age-associated muscle loss and suggests potential therapeutic interventions to slow or prevent sarcopenia.
Collapse
Affiliation(s)
- Hector G. Paez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Christopher R. Pitzer
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Stephen E. Alway
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- The Tennessee Institute of Regenerative Medicine, Memphis, TN 38163, USA
- Correspondence:
| |
Collapse
|
12
|
Mann G, Riddell MC, Adegoke OAJ. Effects of Acute Muscle Contraction on the Key Molecules in Insulin and Akt Signaling in Skeletal Muscle in Health and in Insulin Resistant States. DIABETOLOGY 2022; 3:423-446. [DOI: 10.3390/diabetology3030032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Insulin signaling plays a key role in glucose uptake, glycogen synthesis, and protein and lipid synthesis. In insulin-resistant states like obesity and type 2 diabetes mellitus, these processes are dysregulated. Regular physical exercise is a potential therapeutic strategy against insulin resistance, as an acute bout of exercise increases glucose disposal during the activity and for hours into recovery. Chronic exercise increases the activation of proteins involved in insulin signaling and increases glucose transport, even in insulin resistant states. Here, we will focus on the effect of acute exercise on insulin signaling and protein kinase B (Akt) pathways. Activation of proximal proteins involved in insulin signaling (insulin receptor, insulin receptor substrate-1 (IRS-1), phosphoinoside-3 kinase (PI3K)) are unchanged in response to acute exercise/contraction, while activation of Akt and of its substrates, TBC1 domain family 1 (TBC1D1), and TBC domain family 4 (TBC1D4) increases in response to such exercise/contraction. A wide array of Akt substrates is also regulated by exercise. Additionally, AMP-activated protein kinase (AMPK) seems to be a main mediator of the benefits of exercise on skeletal muscle. Questions persist on how mTORC1 and AMPK, two opposing regulators, are both upregulated after an acute bout of exercise.
Collapse
Affiliation(s)
- Gagandeep Mann
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | - Michael C. Riddell
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | | |
Collapse
|
13
|
Pinto AP, da Rocha AL, Teixeira GR, Rovina RL, Veras ASC, Frantz F, Pauli JR, de Moura LP, Cintra DE, Ropelle ER, Quadrilatero J, da Silva ASR. Rapamycin did not prevent the excessive exercise-induced hepatic fat accumulation. Life Sci 2022; 306:120800. [PMID: 35839860 DOI: 10.1016/j.lfs.2022.120800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Ana P Pinto
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Alisson L da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Giovana R Teixeira
- Multicentric Program of Postgraduate in Physiological Sciences, São Paulo State University (UNESP), School of Dentistry of Araçatuba, Araçatuba, São Paulo, Brazil; Department of Physical Education, State University of São Paulo (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Rafael L Rovina
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Allice S C Veras
- Multicentric Program of Postgraduate in Physiological Sciences, São Paulo State University (UNESP), School of Dentistry of Araçatuba, Araçatuba, São Paulo, Brazil
| | - Fabiani Frantz
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical, Toxicological, and Bromatological Analysis, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - José R Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leandro P de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Dennys E Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Joe Quadrilatero
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Adelino S R da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
14
|
Moreno-Cabañas A, Ortega JF, Morales-Palomo F, Ramirez-Jimenez M, Alvarez-Jimenez L, Mora-Rodriguez R. One Bout of Resistance Training Does Not Enhance Metformin Actions in Prediabetic and Diabetic Individuals. Med Sci Sports Exerc 2022; 54:1043-1050. [PMID: 35142713 DOI: 10.1249/mss.0000000000002889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to determine the separated and combined effects of metformin and resistance exercise on glycemic control, insulin sensitivity, and insulin-like growth factor 1 (IGF-1) in overweight/obese individuals with prediabetes and type 2 diabetes mellitus. METHODS Fourteen adults with a body mass index of 32.1 ± 4.1 kg·m-2, insulin resistance (HOMA-2 1.6 ± 0.6), and poor glycemic control (glycated hemoglobin, 6.9% ± 0.9%; 51.9 ± 10.7 mmol·mol-1) while taking metformin (1561 ± 470 g·d-1) were recruited. Participants underwent four 72-h long experimental trials in a randomized counterbalanced order, either 1) taking metformin (MET), 2) replacing metformin by placebo pills (PLAC), 3) taking placebo and undergoing a resistance training bout (RT + PLAC), and 4) taking metformin and undergoing the same RT bout (RT + MET). Interstitial fluid glucose concentration was frequently sampled to obtain 72-h glucose area under the curve (GAUC) and the percentage hyperglycemic glucose readings (>180 mg·dL-1; GPEAKS). Insulin sensitivity (i.e., HOMA-2) and IGF-1 were also assessed. RESULTS HOMA-2 was not affected by treatments. GAUC and GPEAKS were similarly reduced below PLAC during RT + MET and MET (all P < 0.05). In contrast, RT + PLAC did not affect glucose concentration. Metformin decreased serum IGF-1 concentrations (P = 0.006), and RT did not reverse this reduction. CONCLUSIONS A bout of full-body RT does not interfere or aid on metformin's blood glucose-lowering actions in individuals with prediabetes and type 2 diabetes mellitus.
Collapse
|
15
|
Tamas I, Major E, Horvath D, Keller I, Ungvari A, Haystead TA, MacDonald JA, Lontay B. Mechanisms by which smoothelin-like protein 1 reverses insulin resistance in myotubules and mice. Mol Cell Endocrinol 2022; 551:111663. [PMID: 35508278 DOI: 10.1016/j.mce.2022.111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Insulin resistance (InR) is manifested in skeletal muscle by decreased insulin-stimulated glucose uptake due to impaired insulin signaling and multiple post-receptor intracellular defects. Chronic glucose-induced insulin resistance leads to the activation of Ser/Thr kinases and elevated phosphorylation of insulin receptor substrate 1 (IRS1) on Ser residues. Phosphorylation of IRS1 triggers the dissociation of IRS1 and its downstream effector, phosphatidylinositol 3-kinase. In the present study, we provide evidence for the insulin-sensitizing role of smoothelin-like protein 1 (SMTNL1) that is a ligand-dependent co-regulator of steroid receptors, predominantly the progesterone receptor. SMTNL1 was transiently overexpressed in insulin-resistant C2C12 myotubes. A proteome profiler array revealed that mTOR and Ser/Thr kinases were SMTNL1-dependent signaling pathways. In the presence of progesterone, overexpression was coupled to decreased Ser phosphorylation of IRS1 at Ser307, Ser318, and Ser612 residues. SMTNL1 also induced the expression and activity of the p85 subunit of PI3K. SMTNL1 regulated the expression of PKCε, which phosphorylates IRS1 at Ser318 residue. SMTNL1 also regulated ERK1/2 and JNK, which phosphorylate IRS1 at Ser612 and Ser307, respectively. Real-time metabolic measurements of oxygen consumption rate and extracellular acidification rate revealed that SMTNL1 improved glycolysis and promoted the utilization of alternative carbon fuels. SMTNL1 also rescued the mitochondrial respiration defect induced by chronic insulin exposure. Collectively, SMTNL1 plays a crucial role in maintaining the physiological ratio of Tyr/Ser IRS1 phosphorylation and attenuates the insulin-signaling cascade that contributes to impaired glucose disposal, which makes it a potential therapeutic target for improving InR.
Collapse
Affiliation(s)
- Istvan Tamas
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Evelin Major
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Daniel Horvath
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ilka Keller
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adam Ungvari
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Timothy A Haystead
- Duke University School of Medicine, Department of Pharmacology and Cancer Biology, Durham, NC, USA
| | - Justin A MacDonald
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Beata Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
16
|
Maciel JIHN, Zazula MF, Rodrigues DFS, De Toni Boaro C, Boaretto ML, de Andrade BZ, Schneider SCS, Naliwaiko K, Torrejais MM, Costa RM, de Fátima Chasko Ribeiro L, Bertolini GRF. Whole-Body Vibration Promotes Skeletal Muscle Restructuring and Reduced Obesogenic Effect of MSG in Wistar Rats. Appl Biochem Biotechnol 2022; 194:3594-3608. [PMID: 35460454 DOI: 10.1007/s12010-022-03923-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/02/2022]
Abstract
The negative changes of obesity to the locomotor system are a major concern in the current scenario, where obesity and metabolic syndrome are recurrent in Western societies. A physical exercise is an important tool as a way to rehabilitate obesity, highlighting whole-body vibration, as it is an easy-access modality with few restrictions. In this sense, we sought to evaluate the effect of whole-body vibration on the extensor digitorum longus muscle on a monosodium glutamate-induced obesity model. The main findings of the present study are related to the ability of the treatment with vibration to reduce the obesogenic characteristics and slow down the dyslipidemic condition of the animals. Likewise, the vibration promoted by the vibrating platform was essential in the recovery of the muscle structure, as well as the recovery of the muscle's oxidative capacity, initially compromised by obesity.
Collapse
Affiliation(s)
- Jhyslayne Ignácia Hoff Nunes Maciel
- Laboratório de Estudo das Lesões e Recursos Fisioterapêuticos, Universidade Estadual do Oeste do Paraná (Unioeste), Universitária St, 2069, Zip code: 85819110 , Paraná, Cascavel, Brasil
| | - Matheus Felipe Zazula
- Laboratório de Plasticidade Morfofuncional, Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, Paraná, Brasil
| | | | | | - Mariana Laís Boaretto
- Laboratório de Estudo das Lesões e Recursos Fisioterapêuticos, Universidade Estadual do Oeste do Paraná (Unioeste), Universitária St, 2069, Zip code: 85819110 , Paraná, Cascavel, Brasil
| | | | - Sara Cristina Sagae Schneider
- Laboratório de Estudo das Lesões e Recursos Fisioterapêuticos, Universidade Estadual do Oeste do Paraná (Unioeste), Universitária St, 2069, Zip code: 85819110 , Paraná, Cascavel, Brasil
| | - Katya Naliwaiko
- Laboratório de Plasticidade Morfofuncional, Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, Paraná, Brasil
| | | | - Rose Meire Costa
- Laboratório de Biologia Estrutural e Funcional, Unioeste, Cascavel, Paraná, Brasil
| | | | - Gladson Ricardo Flor Bertolini
- Laboratório de Estudo das Lesões e Recursos Fisioterapêuticos, Universidade Estadual do Oeste do Paraná (Unioeste), Universitária St, 2069, Zip code: 85819110 , Paraná, Cascavel, Brasil.
| |
Collapse
|
17
|
Burghardt KJ, Calme G, Caruso M, Howlett BH, Sanders E, Msallaty Z, Mallisho A, Seyoum B, Qi YA, Zhang X, Yi Z. Profiling the Skeletal Muscle Proteome in Patients on Atypical Antipsychotics and Mood Stabilizers. Brain Sci 2022; 12:259. [PMID: 35204022 PMCID: PMC8870450 DOI: 10.3390/brainsci12020259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Atypical antipsychotics (AAP) are used in the treatment of severe mental illness. They are associated with several metabolic side effects including insulin resistance. The skeletal muscle is the primary tissue responsible for insulin-stimulated glucose uptake. Dysfunction of protein regulation within the skeletal muscle following treatment with AAPs may play a role in the associated metabolic side effects. The objective of this study was to measure protein abundance in the skeletal muscle of patients on long-term AAP or mood stabilizer treatment. Cross-sectional muscle biopsies were obtained from patients with bipolar disorder and global protein abundance was measured using stable isotope labeling by amino acid (SILAC) combined with high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Sixteen patients completed muscle biopsies and were included in the proteomic analyses. A total of 40 proteins were significantly different between the AAP group and the mood stabilizer group. In-silico pathway analysis identified significant enrichment in several pathways including glucose metabolism, cell cycle, apoptosis, and folate metabolism. Proteome abundance changes also differed based on protein biological processes and function. In summary, significant differences in proteomic profiles were identified in the skeletal muscle between patients on AAPs and mood stabilizers. Future work is needed to validate these findings in prospectively sampled populations.
Collapse
Affiliation(s)
- Kyle J. Burghardt
- Department of Pharmacy Practice, University Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Suite 2190, Detroit, MI 48201, USA; (G.C.); (B.H.H.); (E.S.)
| | - Griffin Calme
- Department of Pharmacy Practice, University Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Suite 2190, Detroit, MI 48201, USA; (G.C.); (B.H.H.); (E.S.)
| | - Michael Caruso
- Department of Pharmaceutical Science, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA; (M.C.); (X.Z.); (Z.Y.)
| | - Bradley H. Howlett
- Department of Pharmacy Practice, University Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Suite 2190, Detroit, MI 48201, USA; (G.C.); (B.H.H.); (E.S.)
| | - Elani Sanders
- Department of Pharmacy Practice, University Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Suite 2190, Detroit, MI 48201, USA; (G.C.); (B.H.H.); (E.S.)
| | - Zaher Msallaty
- Division of Endocrinology, School of Medicine, Wayne State University, 4201 St Antoine, Detroit, MI 48201, USA; (Z.M.); (A.M.); (B.S.)
| | - Abdullah Mallisho
- Division of Endocrinology, School of Medicine, Wayne State University, 4201 St Antoine, Detroit, MI 48201, USA; (Z.M.); (A.M.); (B.S.)
| | - Berhane Seyoum
- Division of Endocrinology, School of Medicine, Wayne State University, 4201 St Antoine, Detroit, MI 48201, USA; (Z.M.); (A.M.); (B.S.)
| | - Yue A. Qi
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Xiangmin Zhang
- Department of Pharmaceutical Science, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA; (M.C.); (X.Z.); (Z.Y.)
| | - Zhengping Yi
- Department of Pharmaceutical Science, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA; (M.C.); (X.Z.); (Z.Y.)
| |
Collapse
|
18
|
Kido K, Egawa T, Fujiyoshi H, Suzuki H, Kawanaka K, Hayashi T. AMPK is indispensable for overload-induced muscle glucose uptake and glycogenesis but dispensable for inducing hypertrophy in mice. FASEB J 2021; 35:e21459. [PMID: 33710687 DOI: 10.1096/fj.202002164r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/16/2021] [Accepted: 02/04/2021] [Indexed: 02/05/2023]
Abstract
Chronic muscle loading (overload) induces skeletal muscles to undergo hypertrophy and to increase glucose uptake. Although AMP-activated protein kinase (AMPK) reportedly serves as a negative regulator of hypertrophy and a positive regulator of glucose uptake, its role in overload-induced skeletal muscle hypertrophy and glucose uptake is unclear. This study aimed to determine whether AMPK regulates overload-induced hypertrophy and glucose uptake in skeletal muscles. To this end, skeletal muscle overload was induced through unilateral synergist ablations in wild-type (WT) and transgenic mice, expressing the dominant-negative mutation of AMPK (AMPK-DN). After 14 days, parameters, including muscle fiber cross-sectional area (CSA), glycogen level, and in vivo [3 H]-2-deoxy-D-glucose uptake, were assessed. No significant difference was observed in body weight or blood glucose level between the WT and AMPK-DN mice. However, the 14-day muscle overload activated the AMPK pathway in WT mice skeletal muscle, whereas this response was impaired in the AMPK-DN mice. Despite a normal CSA gain in each fiber type, the AMPK-DN mice demonstrated a significant impairment of overload-induced muscle glucose uptake and glycogenesis, compared to WT mice. Moreover, 14-day overload-induced changes in GLUT4 and HKII expression levels were reduced in AMPK-DN mice, compared to WT mice. This study demonstrated that AMPK activation is indispensable for overload-induced muscle glucose uptake and glycogenesis; however, it is dispensable for the induction of hypertrophy in AMPK-DN mice. Furthermore, the AMPK/GLUT4 and HKII axes may regulate overload-induced muscle glucose uptake and glycogenesis.
Collapse
Affiliation(s)
- Kohei Kido
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan.,Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
| | - Tatsuro Egawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Haruna Fujiyoshi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Hikari Suzuki
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Kentaro Kawanaka
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan.,Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
| | - Tatsuya Hayashi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Zakaria NF, Hamid M, Khayat ME. Amino Acid-Induced Impairment of Insulin Signaling and Involvement of G-Protein Coupling Receptor. Nutrients 2021; 13:nu13072229. [PMID: 34209599 PMCID: PMC8308393 DOI: 10.3390/nu13072229] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Amino acids are needed for general bodily function and well-being. Despite their importance, augmentation in their serum concentration is closely related to metabolic disorder, insulin resistance (IR), or worse, diabetes mellitus. Essential amino acids such as the branched-chain amino acids (BCAAs) have been heavily studied as a plausible biomarker or even a cause of IR. Although there is a long list of benefits, in subjects with abnormal amino acids profiles, some amino acids are correlated with a higher risk of IR. Metabolic dysfunction, upregulation of the mammalian target of the rapamycin (mTOR) pathway, the gut microbiome, 3-hydroxyisobutyrate, inflammation, and the collusion of G-protein coupled receptors (GPCRs) are among the indicators and causes of metabolic disorders generating from amino acids that contribute to IR and the onset of type 2 diabetes mellitus (T2DM). This review summarizes the current understanding of the true involvement of amino acids with IR. Additionally, the involvement of GPCRs in IR will be further discussed in this review.
Collapse
Affiliation(s)
- Nur Fatini Zakaria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Muhajir Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mohd Ezuan Khayat
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence:
| |
Collapse
|
20
|
Eickelschulte S, Hartwig S, Leiser B, Lehr S, Joschko V, Chokkalingam M, Chadt A, Al-Hasani H. AKT/AMPK-mediated phosphorylation of TBC1D4 disrupts the interaction with insulin-regulated aminopeptidase. J Biol Chem 2021; 296:100637. [PMID: 33872597 PMCID: PMC8131924 DOI: 10.1016/j.jbc.2021.100637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 12/26/2022] Open
Abstract
TBC1D4 is a 160 kDa multidomain Rab GTPase-activating protein (RabGAP) and a downstream target of the insulin- and contraction-activated kinases AKT and AMPK. Phosphorylation of TBC1D4 has been linked to translocation of GLUT4 from storage vesicles (GSVs) to the cell surface. However, its impact on enzymatic activity is not well understood, as previous studies mostly investigated the truncated GAP domain lacking the known phosphorylation sites. In the present study, we expressed and purified recombinant full-length TBC1D4 using a baculovirus system. Size-exclusion chromatography and coimmunoprecipitation experiments revealed that full-length TBC1D4 forms oligomers of ∼600 kDa. Compared with the truncated GAP domain, full-length TBC1D4 displayed similar substrate specificity, but had a markedly higher specific GAP activity toward Rab10. Using high-resolution mass spectrometry, we mapped 19 Ser/Thr phosphorylation sites in TBC1D4. We determined Michaelis–Menten kinetics using in vitro phosphorylation assays with purified kinases and stable isotope-labeled γ-[18O4]-ATP. These data revealed that Ser324 (KM ∼6 μM) and Thr649 (KM ∼25 μM) were preferential sites for phosphorylation by AKT, whereas Ser348, Ser577, Ser595 (KM ∼10 μM), Ser711 (KM ∼79 μM), and Ser764 were found to be preferred targets for AMPK. Phosphorylation of TBC1D4 by AKT or AMPK did not alter the intrinsic RabGAP activity, but did disrupt interaction with insulin-regulated aminopeptidase (IRAP), a resident protein of GSVs implicated in GLUT4 trafficking. These findings provide evidence that insulin and contraction may regulate TBC1D4 function primarily by disrupting the recruitment of the RabGAP to GLUT4 vesicles.
Collapse
Affiliation(s)
- Samaneh Eickelschulte
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Sonja Hartwig
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Ben Leiser
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Stefan Lehr
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Viola Joschko
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Manopriya Chokkalingam
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Alexandra Chadt
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany.
| |
Collapse
|
21
|
Suginohara T, Wakabayashi K, Ato S, Ogasawara R. Effect of 2-deoxyglucose-mediated inhibition of glycolysis on the regulation of mTOR signaling and protein synthesis before and after high-intensity muscle contraction. Metabolism 2021; 114:154419. [PMID: 33161019 DOI: 10.1016/j.metabol.2020.154419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Glycolysis controls mTORC1 signaling and protein synthesis. In skeletal muscle, glucose metabolism increases with both exercise/contraction intensity and volume, and therefore, high-intensity muscle contraction (HiMC) such as resistance exercise facilitates glycolysis including glucose uptake and glycogen breakdown. However, it is unknown whether glycolysis regulates HiMC-induced mTORC1 activation and increase in protein synthesis. METHODS To determine whether glycolysis regulates basal and HiMC-induced mTORC1 signaling and protein synthesis, we employed 2-deoxyglucose (2-DG) to inhibit glycolysis and isometrically contracted the gastrocnemius muscle of Sprague Dawley rats using percutaneous electrical stimulation. RESULTS Inhibition of glycolysis by 2-DG inhibited basal phosphorylation of p70S6K and 4E-BP1 (downstream targets of mTORC1) and protein synthesis (all P < 0.05) independent of AMPK phosphorylation. AMPK phosphorylation was comparably increased after HiMC at 0 h post HiMC and returned to basal levels 6 h post HiMC in both vehicle- and 2-DG-treated groups. Glycolysis inhibition attenuated muscle contraction-induced phosphorylation of 4E-BP1 at 6 h post HiMC (P < 0.05) but not p70S6K phosphorylation and protein synthesis. CONCLUSION Although glycolysis is involved in basal but not HiMC-induced muscle protein synthesis, it regulates both basal and HiMC-induced mTORC1 signaling, and may play key roles in skeletal muscle adaptation to HiMC.
Collapse
Affiliation(s)
- Takeshi Suginohara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Koki Wakabayashi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Satoru Ato
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Riki Ogasawara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan.
| |
Collapse
|
22
|
The acute vs. chronic effect of exercise on insulin sensitivity: nothing lasts forever. Cardiovasc Endocrinol Metab 2020; 10:149-161. [PMID: 34386716 PMCID: PMC8352615 DOI: 10.1097/xce.0000000000000239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Supplemental Digital Content is available in the text. Regular exercise causes chronic adaptations in anatomy/physiology that provide first-line defense for disease prevention/treatment (‘exercise is medicine’). However, transient changes in function that occur following each exercise bout (acute effect) are also important to consider. For example, in contrast to chronic adaptations, the effect of exercise on insulin sensitivity is predominantly rooted in a prolonged acute effect (PAE) that can last up to 72 h. Untrained individuals and individuals with lower insulin sensitivity benefit more from this effect and even trained individuals with high insulin sensitivity restore most of a detraining-induced loss following one session of resumed training. Consequently, exercise to combat insulin resistance that begins the pathological journey to cardiometabolic diseases including type 2 diabetes (T2D) should be prescribed with precision to elicit a PAE on insulin sensitivity to serve as a first-line defense prior to pharmaceutical intervention or, when such intervention is necessary, a potential adjunct to it. Video Abstract: http://links.lww.com/CAEN/A27
Collapse
|
23
|
Shenkman BS. How Postural Muscle Senses Disuse? Early Signs and Signals. Int J Mol Sci 2020; 21:E5037. [PMID: 32708817 PMCID: PMC7404025 DOI: 10.3390/ijms21145037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
A mammalian soleus muscle along with other "axial" muscles ensures the stability of the body under the Earth's gravity. In rat experiments with hindlimb suspension, zero-gravity parabolic flights as well as in human dry immersion studies, a dramatic decrease in the electromyographic (EMG) activity of the soleus muscle has been repeatedly shown. Most of the motor units of the soleus muscle convert from a state of activity to a state of rest which is longer than under natural conditions. And the state of rest gradually converts to the state of disuse. This review addresses a number of metabolic events that characterize the earliest stage of the cessation of the soleus muscle contractile activity. One to three days of mechanical unloading are accompanied by energy-dependent dephosphorylation of AMPK, accumulation of the reactive oxygen species, as well as accumulation of resting myoplasmic calcium. In this transition period, a rapid rearrangement of the various signaling pathways occurs, which, primarily, results in a decrease in the rate of protein synthesis (primarily via inhibition of ribosomal biogenesis and activation of endogenous inhibitors of mRNA translation, such as GSK3β) and an increase in proteolysis (via upregulation of muscle-specific E3-ubiquitin ligases).
Collapse
Affiliation(s)
- Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia
| |
Collapse
|