1
|
Albadawi EA. Structural and functional changes in the hippocampus induced by environmental exposures. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2025; 30:5-19. [PMID: 39800422 PMCID: PMC11753596 DOI: 10.17712/nsj.2025.1.20240052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The hippocampus, noted as (HC), plays a crucial role in the processes of learning, memory formation, and spatial navigation. Recent research reveals that this brain region can undergo structural and functional changes due to environmental exposures, including stress, noise pollution, sleep deprivation, and microgravity. This review synthesizes findings from animal and human studies, emphasizing the HC's plasticity in response to these factors. It examines changes in volume, architecture, neurogenesis, synaptic plasticity, and gene expression and highlights critical periods of vulnerability to environmental influences impacting cognition and behavior. It also investigates underlying mechanisms such as glucocorticoid signaling, epigenetic alterations, and neural circuit adaptations. Understanding how the HC reacts to various environmental exposures is vital for developing strategies to enhance cognitive resilience and mitigate negative effects on this crucial brain region. Further research is needed to identify protective and risk factors and create effective interventions.
Collapse
Affiliation(s)
- Emad A. Albadawi
- From the Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Abdelkader MAE, Mediatrice H, Lin D, Lin Z, Aggag SA. Mitigating Oxidative Stress and Promoting Cellular Longevity with Mushroom Extracts. Foods 2024; 13:4028. [PMID: 39766971 PMCID: PMC11727512 DOI: 10.3390/foods13244028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 01/15/2025] Open
Abstract
Oxidative stress can disrupt the body's ability to fight harmful free radicals, leading to premature aging and various health complications. This study investigated the antioxidant and anti-aging properties of four medicinal and edible mushrooms: Ganoderma lucidum, Hericium erinaceus, Pleurotus ostreatus, and Agaricus bisporus. The antioxidant activity of mushroom extracts was evaluated using (DPPH-ABTS-Reducing power). The anti-aging effects were assessed using Human Skin Fibroblasts (HSF) cells subjected to D-galactose-induced aging (30 g/L/72 h) and treated with mushroom extracts (0.03-0.25 mg/mL/72 h). The results demonstrated that all mushrooms have significant antioxidant and anti-aging properties, with low concentrations of extracts (0.03 mg/mL) effectively promoting cell proliferation at an 87% rate in the Agaricus bisporus extract, enhancing cell cycle progression by reducing the arrested cells in the G0/G1 phase to 75%, and promoting DNA synthesis in S phase by more than 16.36% in the Hericium erinaceus extract. Additionally, the extracts reduced DNA damage and Reactive Oxygen Species (ROS) levels, protecting cells from oxidative stress and potentially contributing to anti-aging effects. The mushrooms also exhibited immunomodulatory and anti-inflammatory effects by upregulating the IL-2, IL-4, and downregulating IL-6 expression, indicating their potential to promote general health. These findings suggest the potential of mushroom extracts as natural agents for reducing the negative effects of aging while promoting cellular health. Further research is required to explore the specific bioactive compounds responsible for these beneficial effects and to evaluate their efficacy in vivo.
Collapse
Affiliation(s)
- Menna-Allah E. Abdelkader
- China National Engineering Research Center of Juncao Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-A.E.A.); (H.M.); (Z.L.)
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt;
| | - Hatungimana Mediatrice
- China National Engineering Research Center of Juncao Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-A.E.A.); (H.M.); (Z.L.)
- Rwanda Agriculture and Animal Resources Development Board, P.O. Box 5016 Kigali, Rwanda
| | - Dongmei Lin
- China National Engineering Research Center of Juncao Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-A.E.A.); (H.M.); (Z.L.)
| | - Zhanxi Lin
- China National Engineering Research Center of Juncao Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-A.E.A.); (H.M.); (Z.L.)
| | - Sarah A. Aggag
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt;
| |
Collapse
|
3
|
Sharika R, Mongkolpobsin K, Rangsinth P, Prasanth MI, Nilkhet S, Pradniwat P, Tencomnao T, Chuchawankul S. Experimental Models in Unraveling the Biological Mechanisms of Mushroom-Derived Bioactives against Aging- and Lifestyle-Related Diseases: A Review. Nutrients 2024; 16:2682. [PMID: 39203820 PMCID: PMC11357205 DOI: 10.3390/nu16162682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Mushrooms have garnered considerable interest among researchers due to their immense nutritional and therapeutic properties. The presence of biologically active primary and secondary metabolites, which includes several micronutrients, including vitamins, essential minerals, and other dietary fibers, makes them an excellent functional food. Moreover, the dietary inclusion of mushrooms has been reported to reduce the incidence of aging- and lifestyle-related diseases, such as cancer, obesity, and stroke, as well as to provide overall health benefits by promoting immunomodulation, antioxidant activity, and enhancement of gut microbial flora. The multifunctional activities of several mushroom extracts have been evaluated by both in vitro and in vivo studies using cell lines along with invertebrate and vertebrate model systems to address human diseases and disorders at functional and molecular levels. Although each model has its own strengths as well as lacunas, various studies have generated a plethora of data regarding the regulating players that are modulated in order to provide various protective activities; hence, this review intends to compile and provide an overview of the plausible mechanism of action of mushroom-derived bioactives, which will be helpful in future medicinal explorations.
Collapse
Affiliation(s)
- Rajasekharan Sharika
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuljira Mongkolpobsin
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paweena Pradniwat
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriporn Chuchawankul
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Mitra S, Mitra M, Nandi DK, Saha M, Bandyopadhyay A. Efficacy of Lingzhi or Reishi Medicinal Mushroom Ganoderma lucidum (Agaricomycetes) Supplementation on Psychological Stress and Selective Fitness Profile Parameters in Female College Students in West Bengal, India. Int J Med Mushrooms 2024; 26:51-64. [PMID: 39241163 DOI: 10.1615/intjmedmushrooms.2024055300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Psychological disparities impact physical activity and fitness in sedentary female college students by affecting cardiovascular efficiency. Ganoderma lucidum, vitality-enhancing herb alleviates health and rejuvenates the mind-body to improve endurance fitness. A double-blinded, randomized, placebo-controlled parallel design study was conducted to determine whether supplementation of G. lucidum in daily dosages of 500 mg (GL500mg group) and 1000 mg (GL1000mg group) improves psychophysiological health capabilities during the different phases of the experimental trial. Analysis for pre-experimental trial (day 0), experimental trial (day 15), and post-experimental trial (after day 30) on anthropometric, psychological, physiological, and physical fitness parameters were executed. Seventy-eight participants (n = 78, age 20.64 ± 3.21 years) were assigned randomly and equally divided (n = 26) to one of the three treatment groups for intragroup and intergroup comparisons. Significant differences in the post-experimental GL1000mg group for heart rate (HR), maximal oxygen consumption (VO2max), physical work capacity (PWC170), and right-hand grip strength (P < 0.05) compared with the placebo group were observed. GL1000mg-supplemented group also significantly improved (P < 0.05) HR, VO2max and PWC170 (P < 0.001) after pre- to post-trials. Experimental trial between placebo and GL1000mg group and post-experimental trial between the GL500mg and GL1000mg group showed significant changes in VO2max(P < 0.001) and PWC170 (P < 0.05). Anxiety, depression, vitality and positive well-being scores significantly improved, leading to improved psychological well-being after GL1000mg supplementation. GL1000mg supplementation for 30 days might act as a longevity-promoting tonic for endurance and strength performance by ameliorating stress to improve the overall psychophysiological health, vitality and quality of life for better cardiovascular efficacy.
Collapse
Affiliation(s)
- Sudeep Mitra
- Sports and Exercise Physiology Laboratory, Department of Physiology, University of Calcutta, University Colleges of Science and Technology, Kolkata 700009, India
| | - Mousumi Mitra
- Laboratory of Human Performance, Department of Human Physiology and Department of BMLT, Raja Narendra Lal Khan Women's College (Autonomous), Midnapore 721102, West Bengal, India
| | - Dilip Kumar Nandi
- Laboratory of Human Performance, Department of Human Physiology and Department of BMLT, Raja Narendra Lal Khan Women's College (Autonomous), Midnapore 721102, West Bengal, India
| | - Mantu Saha
- Work Physiology and Yoga Laboratory, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Timarpur, Delhi 110054, India
| | | |
Collapse
|
5
|
Jatwani A, Tulsawani R. Ganoderma lucidum Induces Myogenesis Markers to Avert Damage to Skeletal Muscles in Rats Exposed to Hypobaric Hypoxia. High Alt Med Biol 2023; 24:287-295. [PMID: 34142874 DOI: 10.1089/ham.2020.0172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Jatwani, Arti, and Rajkumar Tulsawani. Ganoderma lucidum induces myogenesis markers to avert damage to skeletal muscles in rats exposed to hypobaric hypoxia. High Alt Med Biol. 24:287-295, 2023. Background: Hypobaric hypoxia (HH) has been reported to induce skeletal muscle loss and impair myogenesis. Aqueous extract of G. lucidum (AqGL) contains bioactive metabolites attributed to various pharmacological effects. In this study, protective effect of AqGL in ameliorating muscle mass loss following acute HH has been reported. Materials and Methods: Male Sprague-Dawley rats were divided into following five groups of six rats in each group: unexposed control (Group 1), 6 hours of HH exposure (Group 2), 6 hours of HH exposure+AqGL extract 50 mg/kg body weight (BW) (Group 3), 6 hours of HH exposure+AqGL extract 100 mg/kg BW (Group 4), and 6 hours of HH exposure+AqGL extract 200 mg/kg BW (Group 5). Experimental animals from all groups, except Group, 1 were exposed to HH, simulated altitude of 25,000 ft for 6 hours. After exposure period, gastrocnemius muscle was collected, weighed, and morphological, biochemical, and molecular markers were analyzed. Results: HH-exposed rat muscle showed significant (p < 0.05) increase in oxidative stress markers (reactive oxygen species & malondialdehyde), which was concomitant with decrease in its mass compared to controls. AqGL treatment significantly (p < 0.05) prevented muscle oxidative stress, restored reduced glutathione content, reduced protein carbonyl content and advanced oxidation protein product, and restored muscle mass loss at effective dose of 100 mg/kg BW. Furthermore, AqGL supplementation enhanced Myf5 (p < 0.01), MyoD (p < 0.01), MyoG (p < 0.05), and Mrf4 (nonsignificantly), brain-derived neurotrophic factor (p < 0.01), and interleukin 6 (p < 0.01) expression along with restoration of tumor necrosis factor alpha (p < 0.001) and myostatin (p < 0.05) in hypoxia-exposed muscle, evidencing induction of myogenesis markers. Moreover, histological analysis showed increased myocyte number; nuclei shifted toward the periphery in the treatment group supporting muscle regeneration. Conclusion: AqGL supplementation attenuates muscle mass loss by preventing oxidative stress and inducing modulation in myogenesis markers under HH environment.
Collapse
Affiliation(s)
- Arti Jatwani
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| | | |
Collapse
|
6
|
Chen X, Zhang J, Lin Y, Li Y, Wang H, Wang Z, Liu H, Hu Y, Liu L. Mechanism, prevention and treatment of cognitive impairment caused by high altitude exposure. Front Physiol 2023; 14:1191058. [PMID: 37731540 PMCID: PMC10507266 DOI: 10.3389/fphys.2023.1191058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/05/2023] [Indexed: 09/22/2023] Open
Abstract
Hypobaric hypoxia (HH) characteristics induce impaired cognitive function, reduced concentration, and memory. In recent years, an increasing number of people have migrated to high-altitude areas for work and study. Headache, sleep disturbance, and cognitive impairment from HH, severely challenges the physical and mental health and affects their quality of life and work efficiency. This review summarizes the manifestations, mechanisms, and preventive and therapeutic methods of HH environment affecting cognitive function and provides theoretical references for exploring and treating high altitude-induced cognitive impairment.
Collapse
Affiliation(s)
- Xin Chen
- Department of Clinical Laboratory Medicine, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jiexin Zhang
- Department of Clinical Laboratory Medicine, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- Faculty of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Yuan Lin
- Sichuan Xincheng Biological Co., LTD., Chengdu, Sichuan, China
| | - Yan Li
- Department of General Surgery, The 77th Army Hospital, Leshan, Sichuan, China
| | - Han Wang
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Zhanhao Wang
- Department of Clinical Laboratory Medicine, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Huawei Liu
- Department of Clinical Laboratory Medicine, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yonghe Hu
- Faculty of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Lei Liu
- Medical Research Center, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Luz DA, Pinheiro AM, Fontes-Júnior EA, Maia CSF. Neuroprotective, neurogenic, and anticholinergic evidence of Ganoderma lucidum cognitive effects: Crucial knowledge is still lacking. Med Res Rev 2023; 43:1504-1536. [PMID: 37052237 DOI: 10.1002/med.21957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 12/14/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023]
Abstract
Ganoderma lucidum is a mushroom that has been widely used for centuries in Asian countries for its antiaging properties. It is popularly known as "Ling Zhi," "Reishi," and "Youngzhi," and because of its benefits, it is known as the "immortality mushroom." Pharmacological assays have revealed that G. lucidum ameliorates cognitive impairments through inhibition of β-amyloid and neurofibrillary tangle formation, antioxidant effect, reduction of inflammatory cytokine release and apoptosis, genic expression modulation, among other activities. Chemical investigations on G. lucidum have revealed the presence of metabolites such as triterpenes, which are the most explored in this field, as well as flavonoids, steroids, benzofurans, and alkaloids; in the literature, these have also been reported to have mnemonic activity. These properties of the mushroom make it a potential source of new drugs to prevent or reverse memory disorders, as actual medications are able to only alleviate some symptoms but are unable to stop the progress of cognitive impairments, with no impact on social, familiar, and personal relevance. In this review, we discuss the cognitive findings of G. lucidum reported in the literature, converging the proposed mechanisms through the several pathways that underlie memory and cognition processes. In addition, we highlight the gaps that deserve particular attention to support future studies.
Collapse
Affiliation(s)
- Diandra A Luz
- Laboratory of Pharmacology of Inflammation and Behavior, Institute of Health Science, Faculty of Pharmacy, Federal University of Pará, Belém, Pará, Brazil
| | - Alana M Pinheiro
- Laboratory of Pharmacology of Inflammation and Behavior, Institute of Health Science, Faculty of Pharmacy, Federal University of Pará, Belém, Pará, Brazil
| | - Enéas A Fontes-Júnior
- Laboratory of Pharmacology of Inflammation and Behavior, Institute of Health Science, Faculty of Pharmacy, Federal University of Pará, Belém, Pará, Brazil
| | - Cristiane S F Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Institute of Health Science, Faculty of Pharmacy, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
8
|
Flores-Rábago KM, Rivera-Mendoza D, Vilchis-Nestor AR, Juarez-Moreno K, Castro-Longoria E. Antibacterial Activity of Biosynthesized Copper Oxide Nanoparticles (CuONPs) Using Ganoderma sessile. Antibiotics (Basel) 2023; 12:1251. [PMID: 37627671 PMCID: PMC10451715 DOI: 10.3390/antibiotics12081251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Copper oxide nanoparticles (CuONPs) were synthesized using an eco-friendly method and their antimicrobial and biocompatibility properties were determined. The supernatant and extract of the fungus Ganoderma sessile yielded small, quasi-spherical NPs with an average size of 4.5 ± 1.9 nm and 5.2 ± 2.1 nm, respectively. Nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), and zeta potential analysis. CuONPs showed antimicrobial activity against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa). The half-maximal inhibitory concentration (IC50) for E. coli was 8.5 µg/mL, for P. aeruginosa was 4.1 µg/mL, and for S. aureus was 10.2 µg/mL. The ultrastructural analysis of bacteria exposed to CuONPs revealed the presence of small CuONPs all through the bacterial cells. Finally, the toxicity of CuONPs was analyzed in three mammalian cell lines: hepatocytes (AML-12), macrophages (RAW 264.7), and kidney (MDCK). Low concentrations (<15 µg/mL) of CuONPs-E were non-toxic to kidney cells and macrophages, and the hepatocytes were the most susceptible to CuONPs-S. The results obtained suggest that the CuONPs synthesized using the extract of the fungus G. sessile could be further evaluated for the treatment of superficial infectious diseases.
Collapse
Affiliation(s)
- Karla M. Flores-Rábago
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada 22860, Mexico; (K.M.F.-R.); (D.R.-M.)
| | - Daniel Rivera-Mendoza
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada 22860, Mexico; (K.M.F.-R.); (D.R.-M.)
| | | | - Karla Juarez-Moreno
- Center for Applied Physics and Advanced Technology, UNAM, Juriquilla 76230, Mexico;
| | - Ernestina Castro-Longoria
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada 22860, Mexico; (K.M.F.-R.); (D.R.-M.)
| |
Collapse
|
9
|
Lin NH, Goh A, Lin SH, Chuang KA, Chang CH, Li MH, Lu CH, Chen WY, Wei PH, Pan IH, Perng MD, Wen SF. Neuroprotective Effects of a Multi-Herbal Extract on Axonal and Synaptic Disruption in Vitro and Cognitive Impairment in Vivo. J Alzheimers Dis Rep 2023; 7:51-76. [PMID: 36777330 PMCID: PMC9912829 DOI: 10.3233/adr-220056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Background Alzheimer's disease (AD) is a multifactorial disorder characterized by cognitive decline. Current available therapeutics for AD have limited clinical benefit. Therefore, preventive therapies for interrupting the development of AD are critically needed. Molecules targeting multifunction to interact with various pathlogical components have been considered to improve the therapeutic efficiency of AD. In particular, herbal medicines with multiplicity of actions produce cognitive benefits on AD. Bugu-M is a multi-herbal extract composed of Ganoderma lucidum (Antler form), Nelumbo nucifera Gaertn., Ziziphus jujuba Mill., and Dimocarpus longan, with the ability of its various components to confer resilience to cognitive deficits. Objective To evaluate the potential of Bugu-M on amyloid-β (Aβ) toxicity and its in vitro mechanisms and on in vivo cognitive function. Methods We illustrated the effect of Bugu-M on Aβ25-35-evoked toxicity as well as its possible mechanisms to diminish the pathogenesis of AD in rat cortical neurons. For cognitive function studies, 2-month-old female 3×Tg-AD mice were administered 400 mg/kg Bugu-M for 30 days. Behavioral tests were performed to assess the efficacy of Bugu-M on cognitive impairment. Results In primary cortical neuronal cultures, Bugu-M mitigated Aβ-evoked toxicity by reducing cytoskeletal aberrations and axonal disruption, restoring presynaptic and postsynaptic protein expression, suppressing mitochondrial damage and apoptotic signaling, and reserving neurogenic and neurotrophic factors. Importantly, 30-day administration of Bugu-M effectively prevented development of cognitive impairment in 3-month-old female 3×Tg-AD mice. Conclusion Bugu-M might be beneficial in delaying the progression of AD, and thus warrants consideration for its preventive potential for AD.
Collapse
Affiliation(s)
- Ni-Hsuan Lin
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Angela Goh
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Shyh-Horng Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Kai-An Chuang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chih-Hsuan Chang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Ming-Han Li
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chu-Hsun Lu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Wen-Yin Chen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Pei-Hsuan Wei
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - I-Hong Pan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Ming-Der Perng
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan,
School of Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan,Correspondence to: Shu-Fang Wen, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, 321, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35743946; E-mail: and Ming-Der Perng, College of Life Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35742024; E-mail:
| | - Shu-Fang Wen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan,Correspondence to: Shu-Fang Wen, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, 321, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35743946; E-mail: and Ming-Der Perng, College of Life Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35742024; E-mail:
| |
Collapse
|
10
|
Ganoderma tsugae prevents cognitive impairment and attenuates oxidative damage in d-galactose-induced aging in the rat brain. PLoS One 2022; 17:e0266331. [PMID: 35390035 PMCID: PMC8989198 DOI: 10.1371/journal.pone.0266331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
Lingzhi has long been regarded as having life-prolonging effects. Research in recent years has also reported that Lingzhi possesses anti-tumor, anti-inflammatory, immunomodulatory, hepatoprotective, and anti-lipogenic effects. The D-galactose (D-gal, 100 mg/kg/day)-induced aging Long-Evans rats were simultaneously orally administered a DMSO extract of Ganoderma tsugae (GTDE, 200 μg/kg/day) for 25 weeks to investigate the effects of GTDE on oxidative stress and memory deficits in the D-galactose-induced aging rats. We found that GTDE significantly improved the locomotion and spatial memory and learning in the aging rats. GTDE alleviated the aging-induced reduction of dendritic branching in neurons of the hippocampus and cerebral cortex. Immunoblotting revealed a significant increase in the protein expression levels of the superoxide dismutase-1 (SOD-1) and catalase, and the brain-derived neurotrophic factor (BDNF) in rats that received GTDE. D-gal-induced increase in the lipid peroxidation product 4-hydroxynonenal (4-HNE) was significantly attenuated after the administration of GTDE, and pyrin domain-containing 3 protein (NLRP3) revealed a significant decrease in NLRP3 expression after GTDE administration. Lastly, GTDE significantly reduced the advanced glycosylation end products (AGEs). In conclusion, GTDE increases antioxidant capacity and BDNF expression of the brain, protects the dendritic structure of neurons, and reduces aging-induced neuronal damage, thereby attenuating cognitive impairment caused by aging.
Collapse
|
11
|
Ding W, Zhang X, Yin X, Zhang Q, Wang Y, Guo C, Chen Y. Ganoderma lucidum aqueous extract inducing PHGPx to inhibite membrane lipid hydroperoxides and regulate oxidative stress based on single-cell animal transcriptome. Sci Rep 2022; 12:3139. [PMID: 35210474 PMCID: PMC8873301 DOI: 10.1038/s41598-022-06985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 02/10/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, the single-cell eukaryotic model organism Tetrahymena thermophila was used as an experimental material to reveal the anti-aging mechanism of Ganoderma lucidum aqueous extract. After treatment with the G. lucidum aqueous extract, the logarithmic phase was extended, and the maximum density of T. thermophila increased to 5.5 × 104 cells/mL. The aqueous extract was more effective than the main active monomers of G. lucidum. The membrane integrity in the cell including mitochondria and nucleus appeared improvement after treatment with the G. lucidum aqueous extract, which observed by ammonia silver staining and transmission electron microscopy. Gene Ontology (GO) functional enrichment of the differentially expressed genes in transcriptome showed that the G. lucidum aqueous extract promoted the biological metabolic process of membrane components. According to Kyoto Encyclopedia of Genes and Genomes (KEGG), the glutathione metabolism process was enhanced in both growth phases. Protein–protein interaction (PPI) network analysis illustrated that phospholipid hydroperoxide glutathione peroxidase (PHGPx) played a key role in the anti-aging mechanism. The results suggested that G. lucidum aqueous extract improved the GPX activity as well as reduced the malondialdehyde content and cell damage. More importantly, the expression of PHGPx was promoted to reduce the oxidation degree of the membrane lipids and enhance the integrity of the membrane to achieve anti-aging effects.
Collapse
Affiliation(s)
- Wenqiao Ding
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China.,College of Biology and Food Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Xueying Zhang
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China
| | - Xiaoyu Yin
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China
| | - Qing Zhang
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China
| | - Ying Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Ying Chen
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China. .,School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| |
Collapse
|
12
|
Peng X, Luo RC, Su H, Zhou L, Ran XQ, Guo YR, Yao YG, Qiu M. ((±)-Spiroganoapplanin A, a complex polycyclic meroterpenoid dimer from Ganoderma applanatum displaying the potential against Alzheimer’s disease. Org Chem Front 2022. [DOI: 10.1039/d2qo00246a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pair of meroterpenoid dimers, (±)-spiroganoapplanain A (1) represents a new subtype of Ganoderma meroterpenoid dimers with a 6/5/5/6/5/6 hexacyclic system were isolated from Ganoderma applanatum. Their structures were determined...
Collapse
|
13
|
Zhang D, Cao Q, Jing L, Zhao X, Ma H. Establishment of a hypobaric hypoxia-induced cell injury model in PC12 cells. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:614-620. [PMID: 34986528 PMCID: PMC8732250 DOI: 10.3724/zdxbyxb-2021-0343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022]
Abstract
To construct a hypobaric hypoxia-induced cell injury model. Rat pheochromocytoma PC12 cells were randomly divided into control group, normobaric hypoxia group and hypobaric hypoxia group. The cells in control group were cultured at normal condition, while cells in other two groups were cultured in normobaric hypoxia and hypobaric hypoxia conditions, respectively. CCK-8 method was used to detect cell viability to determine the optimal modeling conditions like the oxygen concentration, atmospheric pressure and low-pressure hypoxia time. The contents of lactate dehydrogenase (LDH), superoxide dismutase (SOD) and malondialdehyde (MDA) were detected by microplate method. The apoptosis ratio and cell cycle were analyzed by flow cytometry. The hypobaric hypoxia-induced cell injury model can be established by culturing for 24 h at 1% oxygen concentration and 41 kPa atmospheric pressure. Compared with the control group and normobaric hypoxia group, the activity of LDH and the content of MDA in hypobaric hypoxia group were significantly increased, the activity of SOD was decreased, the percentage of apoptosis was increased (all <0.05), and the cell cycle was arrested in G0/G1 phase. A stable and reliable cell injury model induced by hypobaric hypoxia has been established with PC12 cells, which provides a suitable cell model for the experimental study on nerve injury induced by hypoxia at high altitude.
Collapse
Affiliation(s)
- Dongmei Zhang
- 2. Second Department of Infectious Disease Control and Prevention, Center for Disease Control and Prevention, Western War Zone, Chengdu 610000, China
| | - Qilu Cao
- 2. Second Department of Infectious Disease Control and Prevention, Center for Disease Control and Prevention, Western War Zone, Chengdu 610000, China
| | - Linlin Jing
- 2. Second Department of Infectious Disease Control and Prevention, Center for Disease Control and Prevention, Western War Zone, Chengdu 610000, China
| | - Xiuhua Zhao
- 2. Second Department of Infectious Disease Control and Prevention, Center for Disease Control and Prevention, Western War Zone, Chengdu 610000, China
| | - Huiping Ma
- 2. Second Department of Infectious Disease Control and Prevention, Center for Disease Control and Prevention, Western War Zone, Chengdu 610000, China
| |
Collapse
|
14
|
Zhang Y, Li H, Song L, Xue J, Wang X, Song S, Wang S. Polysaccharide from Ganoderma lucidum ameliorates cognitive impairment by regulating the inflammation of the brain-liver axis in rats. Food Funct 2021; 12:6900-6914. [PMID: 34338268 DOI: 10.1039/d1fo00355k] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ganoderma lucidum (G. lucidum) polysaccharide-1 (GLP-1) is one of the polysaccharides isolated from the fruiting bodies of G. lucidum. Inflammation in the brain-liver axis plays a vital role in the progress of cognitive impairment. In this study, the beneficial effect of GLP-1 on d-galactose (d-gal) rats was carried out by regulating the inflammation of the brain-liver axis. A Morris water maze test was used to assess the cognitive ability of d-gal rats. ELISA and/or western blot analysis were used to detect the blood ammonia and inflammatory cytokines levels in the brain-liver axis. Metabolomic analysis was used to evaluate the changes of small molecule metabolomics between the brain and liver. As a result, GLP-1 could obviously ameliorate the cognitive impairment of d-gal rats. The mechanism was related to the decreasing levels of TNF-α, IL-6, phospho-p38MAPK, phospho-p53, and phospho-JNK1 + JNK2 + JNK3, the increasing levels of IL-10 and TGF-β1, and the regulation of the metabolic disorders of the brain-liver axis. Our study suggests that G. lucidum could be exploited as an effective food or health care product to prevent and delay cognitive impairment and improve the quality of life.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P.R. China.
| | | | | | | | | | | | | |
Collapse
|