1
|
Furusho T, Das R, Hakui H, Sairavi A, Adachi K, Galbraith-Liss MS, Rajagopal P, Horikawa M, Luo S, Li L, Yamada K, Andeen N, Dissen GA, Nakai H. Enhancing gene transfer to renal tubules and podocytes by context-dependent selection of AAV capsids. Nat Commun 2024; 15:10728. [PMID: 39737896 PMCID: PMC11685967 DOI: 10.1038/s41467-024-54475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 11/13/2024] [Indexed: 01/01/2025] Open
Abstract
AAV vectors show promise for gene therapy; however, kidney gene transfer remains challenging. Here we conduct a barcode-seq-based comparison of 47 AAV capsids administered through different routes in mice, followed by individual validation. We find that local delivery of AAV-KP1, but not AAV9, via the renal vein or pelvis effectively transduces proximal tubules with minimal off-target liver transduction, while systemic AAV9, but not AAV-KP1, enhances proximal tubule and podocyte transduction in chronic kidney disease. We demonstrate that these contrasting observations are partly due to differences in their pharmacokinetics. Importantly, we show that renal pelvis injection overcomes pre-existing immunity, leading to robust and exclusive proximal tubule transduction, in non-human primates (NHPs). In addition, we highlight drastic differences in renal transduction profiles between mice and NHPs. Thus, this study provides mechanistic insights and underscores importance of context-dependent selection of AAV capsids to overcome challenges in gene delivery to the kidney.
Collapse
Affiliation(s)
- Taisuke Furusho
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Ranjan Das
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Hideyuki Hakui
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Anusha Sairavi
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Kei Adachi
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Mia S Galbraith-Liss
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Pratheppa Rajagopal
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Masahiro Horikawa
- Dotter Department of Interventional Radiology, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Shuhua Luo
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Lena Li
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Kentaro Yamada
- Dotter Department of Interventional Radiology, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Nicole Andeen
- Department of Pathology, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Gregory A Dissen
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
- Molecular Virology Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Hiroyuki Nakai
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, OR, USA.
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University School of Medicine, Portland, OR, USA.
| |
Collapse
|
2
|
Romagnoli S, Krekeler N, de Cramer K, Kutzler M, McCarthy R, Schaefer-Somi S. WSAVA guidelines for the control of reproduction in dogs and cats. J Small Anim Pract 2024; 65:424-559. [PMID: 38804079 DOI: 10.1111/jsap.13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 05/29/2024]
Affiliation(s)
- S Romagnoli
- Department of Animal Medicine, Production and Health, Viale dell'Università 16, University of Padova, Legnaro, 35020, Italy
| | - N Krekeler
- Department of Biomedical Sciences, Melbourne Veterinary School, Faculty of Science, Melbourne, VIC, Australia
| | - K de Cramer
- Department of Production Animals, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - M Kutzler
- Dept of Animal and Rangeland Sciences, Oregon State University, 112 Withycombe Hall, Corvallis, OR, 97331, USA
| | - R McCarthy
- Department of Veterinary Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, United States
| | - S Schaefer-Somi
- Center for Reproduction, Vetmeduni Vienna, Veterinärplatz 1, Vienna, 1210, Austria
| |
Collapse
|
3
|
Vansandt LM, Meinsohn MC, Godin P, Nagykery N, Sicher N, Kano M, Kashiwagi A, Chauvin M, Saatcioglu HD, Barnes JL, Miller AG, Thompson AK, Bateman HL, Donelan EM, González R, Newsom J, Gao G, Donahoe PK, Wang D, Swanson WF, Pépin D. Durable contraception in the female domestic cat using viral-vectored delivery of a feline anti-Müllerian hormone transgene. Nat Commun 2023; 14:3140. [PMID: 37280258 PMCID: PMC10244415 DOI: 10.1038/s41467-023-38721-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Eighty percent of the estimated 600 million domestic cats in the world are free-roaming. These cats typically experience suboptimal welfare and inflict high levels of predation on wildlife. Additionally, euthanasia of healthy animals in overpopulated shelters raises ethical considerations. While surgical sterilization is the mainstay of pet population control, there is a need for efficient, safe, and cost-effective permanent contraception alternatives. Herein, we report evidence that a single intramuscular treatment with an adeno-associated viral vector delivering an anti-Müllerian hormone transgene produces long-term contraception in the domestic cat. Treated females are followed for over two years, during which transgene expression, anti-transgene antibodies, and reproductive hormones are monitored. Mating behavior and reproductive success are measured during two mating studies. Here we show that ectopic expression of anti-Müllerian hormone does not impair sex steroids nor estrous cycling, but prevents breeding-induced ovulation, resulting in safe and durable contraception in the female domestic cat.
Collapse
Affiliation(s)
- Lindsey M Vansandt
- Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, Cincinnati, OH, USA
| | - Marie-Charlotte Meinsohn
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Philippe Godin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Nicholas Nagykery
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Natalie Sicher
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Motohiro Kano
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Aki Kashiwagi
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Maeva Chauvin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Hatice D Saatcioglu
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Julie L Barnes
- Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, Cincinnati, OH, USA
| | - Amy G Miller
- Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, Cincinnati, OH, USA
| | - Amy K Thompson
- Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, Cincinnati, OH, USA
| | - Helen L Bateman
- Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, Cincinnati, OH, USA
| | - Elizabeth M Donelan
- Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, Cincinnati, OH, USA
| | - Raquel González
- Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, Cincinnati, OH, USA
| | - Jackie Newsom
- Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, Cincinnati, OH, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - William F Swanson
- Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, Cincinnati, OH, USA.
| | - David Pépin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Chen X, Lim DA, Lawlor MW, Dimmock D, Vite CH, Lester T, Tavakkoli F, Sadhu C, Prasad S, Gray SJ. Biodistribution of Adeno-Associated Virus Gene Therapy Following Cerebrospinal Fluid-Directed Administration. Hum Gene Ther 2023; 34:94-111. [PMID: 36606687 DOI: 10.1089/hum.2022.163] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Adeno-associated virus (AAV)-based gene therapies, exemplified by the approved therapy for spinal muscular atrophy, have the potential to deliver disease-course-altering treatments for central nervous system (CNS) indications. However, several clinical trials have reported severe adverse events, including patient deaths following high-dose systemic administration for muscle-directed gene transfer, highlighting the need to explore approaches utilizing lower doses when targeting the CNS. Animal models of disease provide insight into the response to new AAV therapies. However, translation from small to larger animals and eventually to humans is hampered by anatomical and biological differences across the species and their impact on AAV delivery. We performed a literature review of preclinical studies of AAV gene therapy biodistribution following cerebrospinal fluid (CSF) delivery (intracerebroventricular, intra-cisterna magna, and intrathecal lumbar). The reviewed literature varies greatly in the reported biodistribution of AAV following administration into the CSF. Differences between studies, including animal model, vector serotype used, method used to assess biodistribution, and route of administration, among other variables, contribute to differing outcomes and difficulties in translating these preclinical results. For example, only half of the published AAV-based gene therapy studies report vector copy number, the most direct readout following administration of a vector; none of these studies reported details such as the empty:full capsid ratio and quality of encapsidated genome. Analysis of the last decade's literature focusing on AAV-based gene therapies targeting the CNS underscores limitations of the body of knowledge and room for continued research. In particular, there is a need to understand the biodistribution achieved by different CSF-directed routes of administration and determining if specific cell types/structures of interest will be transduced. Our findings point to a clear need for a more systematic approach across the field to align the assessments and elements reported in preclinical research to enable more reliable translation across animal models and into human studies.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel A Lim
- Department of Neurological Surgery, Eli and Edythe Broad Center for Regeneration Medicine, and the Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Michael W Lawlor
- Medical College of Wisconsin and Diverge Translational Science Laboratory, Milwaukee, Wisconsin, USA
| | - David Dimmock
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Charles H Vite
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and
| | | | | | | | | | - Steven J Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Ail D, Dalkara D. Preexisting Neutralizing Antibodies against Different Adeno-Associated Virus Serotypes in Humans and Large Animal Models for Gene Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:117-123. [PMID: 37440023 DOI: 10.1007/978-3-031-27681-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Gene therapy is a potential cure for several inherited retinal dystrophies, and adeno-associated virus (AAV) has emerged as a vector of choice for therapeutic gene delivery to the retina. However, prior exposure to AAVs can cause a humoral immune response resulting in the presence of antibodies in the serum, which can subsequently interfere with the AAV-mediated gene therapy. The antibodies bind specifically to a serotype but often display broad cross-reactivity. A subset of these antibodies called neutralizing antibodies (NABs) can render the AAV inactive, thereby reducing the efficacy of the therapy. The preexisting NAB levels against different serotypes vary by species, and these variations need to be considered while designing studies. Since large animals often serve as preclinical models to test gene therapies, in this review we compile studies reporting preexisting NABs against commonly used AAV serotypes in humans and large animal models and discuss strategies to deal with NABs.
Collapse
Affiliation(s)
- Divya Ail
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
6
|
李 舒, 曹 春, 张 浩, 李 玉, 张 雄, 杨 子, 夏 燕, 王 磊, 吕 亚. [Prokaryotic expression of a recombinant protein of adeno-associated virus capsid conserved regions and preparation of its polyclonal antibody]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:944-948. [PMID: 35790447 PMCID: PMC9257366 DOI: 10.12122/j.issn.1673-4254.2022.06.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To express and purify the antigenic peptide of adeno-associated virus (AAV) capsid conserved regions in prokaryotic cells and prepare its rabbit polyclonal antibody. METHODS The DNA sequence encoding the conserved regions of AAV capsid protein was synthesized and cloned into the vector pET30a to obtain the plasmid pET30a-AAV-CR for prokaryotic expression and purification of the conserved peptides. Coomassie blue staining and Western blotting were used to identify the AAV conserved peptides. Japanese big ear white rabbits were immunized with AAV conserved region protein to prepare polyclonal antibody, with the rabbits injected with PBS as the control group. The antibody titer was determined with ELISA, and the performance of the antibody for recognizing capsid protein sequences of AAV1-AAV10 was assessed with Western blotting and immunofluorescence assay. RESULTS The plasmid pET30a-AAV-CR was successfully constructed, and a recombinant protein with a relative molecular mass of 17000 was obtained. The purified protein induced the production of antibodies against the conserved regions of AAV capsid in rabbits, and the titer of the purified antibodies reached 1:320 000. The antibodies were capable of recognizing a wide range of capsid protein sequences of AAV1-AAV10. CONCLUSION We successfully obtained the polyclonal antibodies against AAV capsid conserved region protein from rabbits, which facilitate future studies of AAV vector development and the biological functions of AAV.
Collapse
Affiliation(s)
- 舒月 李
- 肿瘤微环境与免疫治疗湖北省重点实验室//三峡大学医学院,湖北 宜昌 443000Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Three Gorges University Medical College, Yichang 443000, China
| | - 春雨 曹
- 肿瘤微环境与免疫治疗湖北省重点实验室//三峡大学医学院,湖北 宜昌 443000Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Three Gorges University Medical College, Yichang 443000, China
| | - 浩 张
- 肿瘤微环境与免疫治疗湖北省重点实验室//三峡大学医学院,湖北 宜昌 443000Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Three Gorges University Medical College, Yichang 443000, China
| | - 玉玲 李
- 肿瘤微环境与免疫治疗湖北省重点实验室//三峡大学医学院,湖北 宜昌 443000Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Three Gorges University Medical College, Yichang 443000, China
| | - 雄洲 张
- 肿瘤微环境与免疫治疗湖北省重点实验室//三峡大学医学院,湖北 宜昌 443000Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Three Gorges University Medical College, Yichang 443000, China
| | - 子灿 杨
- 肿瘤微环境与免疫治疗湖北省重点实验室//三峡大学医学院,湖北 宜昌 443000Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Three Gorges University Medical College, Yichang 443000, China
| | - 燕 夏
- 湖北民族大学附属民大医院风湿性疾病发生与干预湖北省重点实验室,湖北 恩施 445000Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Affiliated Hospital of Hubei University for Nationalities, Enshi 445000, China
| | - 磊 王
- 肿瘤微环境与免疫治疗湖北省重点实验室//三峡大学医学院,湖北 宜昌 443000Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Three Gorges University Medical College, Yichang 443000, China
| | - 亚丰 吕
- 肿瘤微环境与免疫治疗湖北省重点实验室//三峡大学医学院,湖北 宜昌 443000Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Three Gorges University Medical College, Yichang 443000, China
| |
Collapse
|
7
|
Rapti K, Grimm D. Adeno-Associated Viruses (AAV) and Host Immunity - A Race Between the Hare and the Hedgehog. Front Immunol 2021; 12:753467. [PMID: 34777364 PMCID: PMC8586419 DOI: 10.3389/fimmu.2021.753467] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated viruses (AAV) have emerged as the lead vector in clinical trials and form the basis for several approved gene therapies for human diseases, mainly owing to their ability to sustain robust and long-term in vivo transgene expression, their amenability to genetic engineering of cargo and capsid, as well as their moderate toxicity and immunogenicity. Still, recent reports of fatalities in a clinical trial for a neuromuscular disease, although linked to an exceptionally high vector dose, have raised new caution about the safety of recombinant AAVs. Moreover, concerns linger about the presence of pre-existing anti-AAV antibodies in the human population, which precludes a significant percentage of patients from receiving, and benefitting from, AAV gene therapies. These concerns are exacerbated by observations of cellular immune responses and other adverse events, including detrimental off-target transgene expression in dorsal root ganglia. Here, we provide an update on our knowledge of the immunological and molecular race between AAV (the “hedgehog”) and its human host (the “hare”), together with a compendium of state-of-the-art technologies which provide an advantage to AAV and which, thus, promise safer and more broadly applicable AAV gene therapies in the future.
Collapse
Affiliation(s)
- Kleopatra Rapti
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany.,German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF) and German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Erkrankungen (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Adeno-Associated Vector-Delivered CRISPR/ SaCas9 System Reduces Feline Leukemia Virus Production In Vitro. Viruses 2021; 13:v13081636. [PMID: 34452500 PMCID: PMC8402633 DOI: 10.3390/v13081636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/16/2022] Open
Abstract
Feline leukemia virus (FeLV) is a retrovirus of cats worldwide. High viral loads are associated with progressive infection and the death of the host, due to FeLV-associated disease. In contrast, low viral loads, an effective immune response, and a better clinical outcome can be observed in cats with regressive infection. We hypothesize that by lowering viral loads in progressively infected cats, using CRISPR/SaCas9-assisted gene therapy, the cat’s immune system may be permitted to direct the infection towards a regressive outcome. In a step towards this goal, the present study evaluates different adeno-associated vectors (AAVs) for their competence in delivering a gene editing system into feline cells, followed by investigations of the CRISPR/SaCas9 targeting efficiency for different sites within the FeLV provirus. Nine natural AAV serotypes, two AAV hybrid strains, and Anc80L65, an in silico predicted AAV ancestor, were tested for their potential to infect different feline cell lines and feline primary cells. AAV-DJ revealed superior infection efficiency and was thus employed in subsequent transduction experiments. The introduction of double-strand breaks, using the CRISPR/SaCas9 system targeting 12 selected FeLV provirus sites, was confirmed by T7 endonuclease 1 (T7E1), as well as Tracking of Indels by Decomposition (TIDE) analysis. The highest percentage (up to 80%) of nonhomologous end-joining (NHEJ) was found in the highly conserved gag and pol regions. Subsequent transduction experiments, using AAV-DJ, confirmed indel formation and showed a significant reduction in FeLV p27 antigen for some targets. The targeting of the FeLV provirus was efficient when using the CRISPR/SaCas9 approach in vitro. Whether the observed extent of provirus targeting will be sufficient to provide progressively FeLV-infected cats with the means to overcome the infection needs to be further investigated in vivo.
Collapse
|