1
|
Herdenberg C, Henriksson R, Hedman H, Rondahl V. Lrig3-deficient mice exhibit strain-specific alterations in liver fat accumulation, intestinal morphology, and middle ear inflammation. Gene 2025; 960:149539. [PMID: 40320098 DOI: 10.1016/j.gene.2025.149539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/13/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025]
Abstract
The transmembrane protein leucine-rich repeats and immunoglobulin-like domains 3 (LRIG3) regulates fat metabolism and bone morphogenetic protein (BMP) signaling. Lrig3-deficient mice exhibit impaired development of the snout and the inner ear lateral canal, neural defects, and cardiac hypertrophy in adulthood. However, no thorough and unbiased analysis of the physiological functions of Lrig3 has previously been performed. To address this knowledge gap, we performed histopathological examination of 42 tissues and organs from 1-year-old female C57BL/6JBomTac and 129S1-U mice with different Lrig3 genotypes. Among the scored pathologies, three were significantly associated with Lrig3 genotype: spontaneous macrovesicular hepatocellular degeneration (hepatocellular steatosis) was less prevalent in Lrig3-deficient C57BL/6JBomTac mice, whereas dilated or flaccid ileum and otitis media were more common in Lrig3-deficient 129S1-U mice. To further investigate hepatic steatosis phenotypes, 8-week-old C57BL/6JBomTac mice of both sexes and different Lrig3 genotypes were subjected to consuming a high-fat diet (HFD) for 8 weeks. The HFD regimen led to relatively few cases of hepatocellular steatosis, with no significant differences among the genotypes; however, female Lrig3-deficient mice presented reduced microvesicular hepatocellular degeneration compared with their wild-type littermates. This study revealed that Lrig3 regulates liver fat accumulation, intestinal morphology, and middle ear inflammation in a mouse strain-dependent manner.
Collapse
Affiliation(s)
- Carl Herdenberg
- Department of Diagnostics and Intervention, Oncology, Umeå University, SE-90187 Umeå, Sweden
| | - Roger Henriksson
- Department of Diagnostics and Intervention, Oncology, Umeå University, SE-90187 Umeå, Sweden
| | - Håkan Hedman
- Department of Diagnostics and Intervention, Oncology, Umeå University, SE-90187 Umeå, Sweden.
| | - Veronica Rondahl
- Department of Pathology and Wildlife Disease, National Veterinary Institute (SVA), SE-751 89 Uppsala, Sweden; Department of Animal Biosciences, Division for Anatomy, Physiology, Immunology, and Pathology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden(1)
| |
Collapse
|
2
|
Marañón P, Rey E, Isaza SC, Wu H, Rada P, Choya-Foces C, Martínez-Ruiz A, Martín MÁ, Ramos S, García-Monzón C, Cubero FJ, Valverde ÁM, González-Rodríguez Á. Inhibition of ALK3-mediated signalling pathway protects against acetaminophen-induced liver injury. Redox Biol 2024; 71:103088. [PMID: 38401290 PMCID: PMC10902147 DOI: 10.1016/j.redox.2024.103088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024] Open
Abstract
Acetaminophen (APAP)-induced liver injury is one of the most prevalent causes of acute liver failure (ALF). We assessed the role of the bone morphogenetic protein (BMP) type I receptors ALK2 and ALK3 in APAP-induced hepatotoxicity. The molecular mechanisms that regulate the balance between cell death and survival and the response to oxidative stress induced by APAP was assessed in cultured human hepatocyte-derived (Huh7) cells treated with pharmacological inhibitors of ALK receptors and with modulated expression of ALK2 or ALK3 by lentiviral infection, and in a mouse model of APAP-induced hepatotoxicity. Inhibition of ALK3 signalling with the pharmacological inhibitor DMH2, or by silencing of ALK3, showed a decreased cell death both by necrosis and apoptosis after APAP treatment. Also, upon APAP challenge, ROS generation was ameliorated and, thus, ROS-mediated JNK and P38 MAPK phosphorylation was reduced in ALK3-inhibited cells compared to control cells. These results were also observed in an experimental model of APAP-induced ALF in which post-treatment with DMH2 after APAP administration significantly reduced liver tissue damage, apoptosis and oxidative stress. This study shows the protective effect of ALK3 receptor inhibition against APAP-induced hepatotoxicity. Furthermore, findings obtained from the animal model suggest that BMP signalling might be a new pharmacological target for the treatment of ALF.
Collapse
Affiliation(s)
- Patricia Marañón
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.
| | - Esther Rey
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Stephania C Isaza
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Hanghang Wu
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (Centro Mixto CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Carmen Choya-Foces
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Antonio Martínez-Ruiz
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - María Ángeles Martín
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Madrid, Spain
| | - Sonia Ramos
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Madrid, Spain
| | - Carmelo García-Monzón
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Sols-Morreale (Centro Mixto CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Águeda González-Rodríguez
- Instituto de Investigaciones Biomédicas Sols-Morreale (Centro Mixto CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| |
Collapse
|
3
|
Hong OK, Kim ES, Son JW, Kim SR, Yoo SJ, Kwon HS, Lee SS. Alcohol-induced increase in BMP levels promotes fatty liver disease in male prediabetic stage Otsuka Long-Evans Tokushima Fatty rats. J Cell Biochem 2023; 124:459-472. [PMID: 36791312 DOI: 10.1002/jcb.30385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Alcohol consumption exacerbates liver abnormalities in animal models, but whether it increases the severity of liver disease in early diabetic or prediabetic rats is unclear. To investigate the molecular mechanisms underlying alcohol-induced liver steatosis or hepatitis, we used a prediabetic animal model. Otsuka Long-Evans Tokushima Fatty (OLETF) and Long-Evans Tokushima Fatty (LETO) rats were pair-fed with an ethanol-containing liquid diet for 6 weeks. Compared with controls, OLETF and LETO rats displayed more pronounced liver steatosis and higher plasma levels of serum glutamic oxaloacetic transaminase (SGOT) and serum glutamate pyruvate transaminase (SPGT), indicating liver injury. Ethanol-fed LETO (Pd-L-E) rats showed mild liver steatosis and no inflammation compared with ethanol-fed OLETF (Pd-O-E) rats. Although precursor and active SREBP-1 levels in the liver of ethanol-fed OLETF rats significantly increased compared with control diet-fed OLETF rats (Pd-O-C), those of Pd-L-E rats did not. Bone morphogenetic protein (BMP) and TGF-β1 balance in Pd-O-E rats was significantly altered because BMP signaling was upregulated by inducing BMP2, BMP4, BMP7, BMP9, Smad1, and Smad4, whereas TGF-β1, Smad3, and Erk were downregulated. Activation of TGF-β/Smad signaling inhibited BMP2 and BMP9 expression and increased epithelial-mesenchymal transition (EMT) marker levels (Hepcidin, Snail, and Twist) in the liver of LETO rats. Livers of ethanol-fed OLETF rats showed increased levels of vimentin, FSP-1, α-SMA, MMP1, MMP13, and collagen III compared with rats of other groups, whereas EMT marker levels did not change. Thus, BMP exerted anti- and/or pro-fibrotic effects in ethanol-fed rats. Therefore, BMP and TGF-β, two key members of the TGF-β superfamily, play important but diverse roles in liver steatosis in young LETO and OLETF rats.
Collapse
Affiliation(s)
- Oak-Kee Hong
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sook Kim
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jang-Won Son
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Rae Kim
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soon Jib Yoo
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyuk-Sang Kwon
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seong-Su Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
4
|
Wang X, Kim S, Guan Y, Parker R, Rodrigues RM, Feng D, Lu SC, Gao B. Deletion of adipocyte prohibitin 1 exacerbates high-fat diet-induced steatosis but not liver inflammation and fibrosis. Hepatol Commun 2022; 6:3335-3348. [PMID: 36200169 PMCID: PMC9701483 DOI: 10.1002/hep4.2092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 01/21/2023] Open
Abstract
Adipose tissue dysfunction is closely associated with the development and progression of nonalcoholic fatty liver disease (NAFLD). Recent studies have implied an important role of prohibitin-1 (PHB1) in adipose tissue function. In the current study, we aimed to explore the function of adipocyte PHB1 in the development and progression of NAFLD. The PHB1 protein levels in adipose tissues were markedly decreased in mice fed a high-fat diet (HFD) compared to those fed a chow diet. To explore the function of adipocyte PHB1 in the progression of NAFLD, mice with adipocyte-specific (adipo) deletion of Phb1 (Phb1adipo-/- mice) were generated. Notably, Phb1adipo-/- mice did not develop obesity but displayed severe liver steatosis under HFD feeding. Compared to HFD-fed wild-type (WT) mice, HFD-fed Phb1adipo-/- mice displayed dramatically lower fat mass with significantly decreased levels of total adipose tissue inflammation, including macrophage and neutrophil number as well as the expression of inflammatory mediators. To our surprise, although liver steatosis in Phb1adipo-/- mice was much more severe, liver inflammation and fibrosis were similar to WT mice after HFD feeding. RNA sequencing analyses revealed that the interferon pathway was markedly suppressed while the bone morphogenetic protein 2 pathway was significantly up-regulated in the liver of HFD-fed Phb1adipo-/- mice compared with HFD-fed WT mice. Conclusion: HFD-fed Phb1adipo-/- mice display a subtype of the lean NAFLD phenotype with severe hepatic steatosis despite low adipose mass. This subtype of the lean NAFLD phenotype has similar inflammation and fibrosis as obese NAFLD in HFD-fed WT mice; this is partially due to reduced total adipose tissue inflammation and the hepatic interferon pathway.
Collapse
Affiliation(s)
- Xiaolin Wang
- Laboratory of Liver DiseasesNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA,Department of Infectious DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Seung‐Jin Kim
- Laboratory of Liver DiseasesNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA,Department of Biochemistry, College of Natural SciencesKangwon Institute of Inclusive Technology and Global/Gangwon Innovative Biologics‐Regional Leading Research Center, Kangwon National UniversityChuncheonKorea
| | - Yukun Guan
- Laboratory of Liver DiseasesNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| | - Richard Parker
- Laboratory of Liver DiseasesNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA,Leeds Liver UnitSt James's University HospitalLeedsUK
| | - Robim M. Rodrigues
- Laboratory of Liver DiseasesNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA,Department of In Vitro Toxicology and Dermato‐Cosmetology, Faculty of Medicine and PharmacyVrije Universiteit BrusselBrusselsBelgium
| | - Dechun Feng
- Laboratory of Liver DiseasesNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Department of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Bin Gao
- Laboratory of Liver DiseasesNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
5
|
Tian M, Zhang G, Ding S, Jiang Y, Jiang B, Ren D, Chen P. Lactobacillus plantarum T3 as an adsorbent of aflatoxin B1 effectively mitigates the toxic effects on mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Maretti-Mira AC, Salomon MP, Hsu AM, Kanel GC, Golden-Mason L. Hepatic damage caused by long-term high cholesterol intake induces a dysfunctional restorative macrophage population in experimental NASH. Front Immunol 2022; 13:968366. [PMID: 36159810 PMCID: PMC9495937 DOI: 10.3389/fimmu.2022.968366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive dietary cholesterol is preferentially stored in the liver, favoring the development of nonalcoholic steatohepatitis (NASH), characterized by progressive hepatic inflammation and fibrosis. Emerging evidence indicates a critical contribution of hepatic macrophages to NASH severity. However, the impact of cholesterol on these cells in the setting of NASH remains elusive. Here, we demonstrate that the dietary cholesterol content directly affects hepatic macrophage global gene expression. Our findings suggest that the modifications triggered by prolonged high cholesterol intake induce long-lasting hepatic damage and support the expansion of a dysfunctional pro-fibrotic restorative macrophage population even after cholesterol reduction. The present work expands the understanding of the modulatory effects of cholesterol on innate immune cell transcriptome and may help identify novel therapeutic targets for NASH intervention.
Collapse
Affiliation(s)
- Ana C. Maretti-Mira
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Ana C. Maretti-Mira,
| | - Matthew P. Salomon
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Angela M. Hsu
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Gary C. Kanel
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lucy Golden-Mason
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
7
|
Marañón P, Fernández-García CE, Isaza SC, Rey E, Gallego-Durán R, Montero-Vallejo R, de Cía JR, Ampuero J, Romero-Gómez M, García-Monzón C, González-Rodríguez Á. Bone morphogenetic protein 2 is a new molecular target linked to non-alcoholic fatty liver disease with potential value as non-invasive screening tool. Biomark Res 2022; 10:35. [PMID: 35614516 PMCID: PMC9131682 DOI: 10.1186/s40364-022-00383-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the commonest cause of chronic liver disease worldwide, being non-alcoholic steatohepatitis (NASH) its most clinically relevant form. Given the risks associated with taking a liver biopsy, the design of accurate non-invasive methods to identify NASH patients is of upmost importance. BMP2 plays a key role in metabolic homeostasis; however, little is known about its involvement in NAFLD onset and progression. This study aimed to elucidate the impact of BMP2 in NAFLD pathophysiology. METHODS Hepatic and circulating levels of BMP2 were quantified in serum and liver specimens from 115 biopsy-proven NAFLD patients and 75 subjects with histologically normal liver (NL). In addition, BMP2 content and release was determined in cultured human hepatocytes upon palmitic acid (PA) overload. RESULTS We found that BMP2 expression was abnormally increased in livers from NAFLD patients than in subjects with NL and this was reflected in higher serum BMP2 levels. Notably, we observed that PA upregulated BMP2 expression and secretion by human hepatocytes. An algorithm based on serum BMP2 levels and clinically relevant variables to NAFLD showed an AUROC of 0.886 (95%CI, 0.83-0.94) to discriminate NASH. We used this algorithm to develop SAN (Screening Algorithm for NASH): a SAN < 0.2 implied a low risk and a SAN ≥ 0.6 indicated high risk of NASH diagnosis. CONCLUSION This proof-of-concept study shows BMP2 as a new molecular target linked to NAFLD and introduces SAN as a simple and efficient algorithm to screen individuals at risk for NASH.
Collapse
Affiliation(s)
- Patricia Marañón
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, C/Maestro Vives 2, 28009, Madrid, Spain
| | - Carlos Ernesto Fernández-García
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, C/Maestro Vives 2, 28009, Madrid, Spain
| | - Stephania C Isaza
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, C/Maestro Vives 2, 28009, Madrid, Spain
| | - Esther Rey
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, C/Maestro Vives 2, 28009, Madrid, Spain
| | - Rocío Gallego-Durán
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Rocío Montero-Vallejo
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Javier Rodríguez de Cía
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, C/Maestro Vives 2, 28009, Madrid, Spain
| | - Javier Ampuero
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Manuel Romero-Gómez
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Carmelo García-Monzón
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, C/Maestro Vives 2, 28009, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Águeda González-Rodríguez
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, C/Maestro Vives 2, 28009, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain. .,Present address: Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029, Madrid, Spain.
| |
Collapse
|
8
|
Sozen E, Demirel-Yalciner T, Sari D, Avcilar C, Samanci TF, Ozer NK. Deficiency of SREBP1c modulates autophagy mediated lipid droplet catabolism during oleic acid induced steatosis. Metabol Open 2021; 12:100138. [PMID: 34704008 PMCID: PMC8526780 DOI: 10.1016/j.metop.2021.100138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/05/2022] Open
Abstract
Objective Increased fatty acid and triglyceride synthesis in liver, majorly modulated by Sterol Regulator Elementing Binding Protein 1c (SREBP1c), is one of the main features of non-alcoholic fatty liver disease (NAFLD). In the present study, we aimed to identify the relation between SREBP1c and autophagy mediated lipid droplet (LD) catabolism in oleic acid (OA) induced lipid accumulation. Methods Increased LD formation and SREBP1c induction were identified in hepatocytes (AML12 cells) following the OA administration. SREBP1c level was reduced through siRNA against SREBP1c. The amount and the size of LDs were determined by BODIPY, while protein and mRNA expressions were identified by immunoblotting and qRT-PCR, respectively. LD-lysosome colocalization was determined with immunofluorescence. Results Increased LD formation and SREBP1c levels were determined at 0.06 mM OA concentration. SREBP1c silencing reduced the number of LDs, while increasing mRNA levels of PPARα. On the other hand, SREBP1c silencing in non-OA and OA treated cells enhanced autophagy mediated LD catabolism. Conclusion Our results implicate the effect of SREBP1c deficiency in modulating PPARα signaling and autophagy mediated LD catabolism against OA induced lipid accumulation.
Collapse
Key Words
- Autophagy
- FASN, Fatty acid synthase
- LAMP1, Lysosomal-associated membrane protein 1
- LC3, Microtubule-Associated Protein Light Chain 3
- LD, Lipid droplet
- Lipid accumulation
- NAFLD, Nonalcoholic fatty liver disease
- Non-alcoholic fatty liver disease
- OA, Oleic acid
- PA, Palmitic acid
- PPARα, Peroxisome proliferator activated receptor alpha
- SCD-1, Stereoyl-CoA desaturase-1
- SREBP, Sterol regulatory element binding protein
- SREBP1c
Collapse
Affiliation(s)
- Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul, 34854, Turkey.,Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Maltepe, Istanbul, 34854, Turkey
| | - Tugce Demirel-Yalciner
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul, 34854, Turkey
| | - Dyana Sari
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul, 34854, Turkey
| | - Ceren Avcilar
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul, 34854, Turkey
| | - Tuna Felix Samanci
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul, 34854, Turkey
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul, 34854, Turkey
| |
Collapse
|
9
|
Baboota RK, Blüher M, Smith U. Emerging Role of Bone Morphogenetic Protein 4 in Metabolic Disorders. Diabetes 2021; 70:303-312. [PMID: 33472940 DOI: 10.2337/db20-0884] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022]
Abstract
Bone morphogenetic proteins (BMPs) are a group of signaling molecules that belong to the TGF-β superfamily. Initially discovered for their ability to induce bone formation, BMPs are known to play a diverse and critical array of biological roles. We here focus on recent evidence showing that BMP4 is an important regulator of white/beige adipogenic differentiation with important consequences for thermogenesis, energy homeostasis, and development of obesity in vivo. BMP4 is highly expressed in, and released by, human adipose tissue, and serum levels are increased in obesity. Recent studies have now shown BMP4 to play an important role not only for white/beige/brown adipocyte differentiation and thermogenesis but also in regulating systemic glucose homeostasis and insulin sensitivity. It also has important suppressive effects on hepatic glucose production and lipid metabolism. Cellular BMP4 signaling/action is regulated by both ambient cell/systemic levels and several endogenous and systemic BMP antagonists. Reduced BMP4 signaling/action can contribute to the development of obesity, insulin resistance, and associated metabolic disorders. In this article, we summarize the pleiotropic functions of BMP4 in the pathophysiology of these diseases and also consider the therapeutic implications of targeting BMP4 in the prevention/treatment of obesity and its associated complications.
Collapse
Affiliation(s)
- Ritesh K Baboota
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Ulf Smith
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|