1
|
Molla Hoseyni BH, Lanjanian H, Beigi YZ, Salimi M, Zare-Mirakabad F, Masoudi-Nejad A. Molecular landscape of endometrioid Cancer: Integrating multiomics and deep learning for personalized survival prediction. Comput Biol Med 2025; 192:110284. [PMID: 40319755 DOI: 10.1016/j.compbiomed.2025.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 03/31/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND The endometrioid subtype of endometrial cancer is a significant health concern for women, making it crucial to study the factors influencing patient outcomes. METHOD This study presents a novel survival analysis pipeline applied to multiomics data, including transcriptome, methylation, and proteome data, extracted from endometrioid samples in the TCGA-UCEC project to identify potential survival biomarkers. A major innovation in our work was the development of a deep learning autoencoder designed to capture the complex non-linear relationships between biological variables and survival outcomes. To achieve this, we defined a new loss function specifically for the autoencoder. RESULT The newly defined loss function can lead to extracting more survival information. The output of our pipeline includes 346 features ranked by their survival importance based on SHAP analysis, with a focus on the top 30 features. We analyzed the biological pathways enriched by these omics data and their contributions. As a result, we identified a relationship between Vitamin D, its receptor, and the Galanin receptor pathways with survival in endometrioid cancer. CONCLUSION This study introduces an innovative approach to survival analysis using multi-omics data and deep learning, with a greater focus on censored data to extract more survival information. It offers potential biomarkers for improved prognostic evaluation in endometrial cancer and presents pathway associations related to survival. These findings contribute to a better understanding of the progression of endometrial cancer.
Collapse
Affiliation(s)
- Behnaz Haji Molla Hoseyni
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614335, Iran
| | - Hossein Lanjanian
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Molecular Biology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1417614335, Iran
| | - Yasaman Zohrab Beigi
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614335, Iran
| | - Mahdieh Salimi
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 1417614335, Iran
| | - Fatemeh Zare-Mirakabad
- Computational Biology Research Center (CBRC), Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, 1417614335, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614335, Iran; Laboratory of Systems Biology and Bioinformatics (LBB), School of Engineering Science, College of Engineering, University of Tehran, Tehran, 1417614335, Iran.
| |
Collapse
|
2
|
Wang Z, Li F, Liu W. Extracellular vesicles in endometrial-related diseases: role, potential and challenges. PeerJ 2025; 13:e19041. [PMID: 40093416 PMCID: PMC11910146 DOI: 10.7717/peerj.19041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Endometrial dysfunction underlies many common gynecologic disorders, such as endometriosis, endometrial cancer, intrauterine adhesions, and endometritis, which affect many women around the world. Extracellular vesicles play an important role in the pathophysiologic process of endometrial-related diseases. Extracellular vesicles are released by cells, which usually act as a form of intercellular communication, affecting biological processes such as fibrosis, angiogenesis, cell proliferation, and inflammatory responses by transferring their own proteins, lipids, RNA transcripts, and DNA for messaging, and play a key role in physiological dynamic homeostasis and disease development. This review combines the studies of the last decade, using the sub-description method to introduce the application of different sources of extracellular vesicles in the diagnosis and treatment of related diseases, and discusses the challenges faced by extracellular vesicles in the diagnostic and therapeutic application of endometriosis-related diseases, with the aim of contributing to our understanding of the mechanism of action of extracellular vesicles and their therapeutic roles, so as to provide a reference for the development of endometriosis-related diseases, as well as their prognosis and treatment.
Collapse
Affiliation(s)
- Zilu Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenqiong Liu
- Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Wei X, Xiong X, Wang P, Zhang S, Peng D. SIRT1-mediated deacetylation of FOXO3 enhances mitophagy and drives hormone resistance in endometrial cancer. Mol Med 2024; 30:147. [PMID: 39266959 PMCID: PMC11391609 DOI: 10.1186/s10020-024-00915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND The complex interplay between Sirtuin 1 (SIRT1) and FOXO3 in endometrial cancer (EC) remains understudied. This research aims to unravel the interactions of deacetylase SIRT1 and transcription factor FOXO3 in EC, focusing on their impact on mitophagy and hormone resistance. METHODS High-throughput sequencing, cell experiments, and bioinformatics tools were employed to investigate the roles and interactions of SIRT1 and FOXO3 in EC. Co-immunoprecipitation (Co-IP) assay was used to assess the interaction between SIRT1 and FOXO3 in RL95-2 cells. Functional assays were used to assess cell viability, proliferation, migration, invasion, apoptosis, and the expression of related genes and proteins. A mouse model of EC was established to evaluate tumor growth and hormone resistance under different interventions. Immunohistochemistry and TUNEL assays were used to assess protein expression and apoptosis in tumor tissues. RESULTS High-throughput transcriptome sequencing revealed a close association between SIRT1, FOXO3, and EC development. Co-IP showed a protein-protein interaction between SIRT1 and FOXO3. Overexpression of SIRT1 enhanced FOXO3 deacetylation and activity, promoting BNIP3 transcription and PINK1/Parkin-mediated mitophagy, which in turn promoted cell proliferation, migration, invasion, and inhibited apoptosis in vitro, as well as increased tumor growth and hormone resistance in vivo. These findings highlighted SIRT1 as an upstream regulator and potential therapeutic target in EC. CONCLUSION This study reveals a novel molecular mechanism underlying the functional relevance of SIRT1 in regulating mitophagy and hormone resistance through the deacetylation of FOXO3 in EC, thereby providing valuable insights for new therapeutic strategies.
Collapse
Affiliation(s)
- Xuehua Wei
- Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, No. 253, Industry Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China
| | - Xiangpeng Xiong
- Department of Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, 336000, China
| | - Pingping Wang
- Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, No. 253, Industry Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China
| | - Shufang Zhang
- Department of Gynecology, Southern University of Science and Technology Hospital, Shenzhen, 518000, China
| | - Dongxian Peng
- Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, No. 253, Industry Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
4
|
Niebora J, Woźniak S, Domagała D, Data K, Farzaneh M, Zehtabi M, Dari MAG, Pour FK, Bryja A, Kulus M, Mozdziak P, Dzięgiel P, Kempisty B. The role of ncRNAs and exosomes in the development and progression of endometrial cancer. Front Oncol 2024; 14:1418005. [PMID: 39188680 PMCID: PMC11345653 DOI: 10.3389/fonc.2024.1418005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 08/28/2024] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecologic cancers. In recent years, research has focused on the genetic characteristics of the tumors to detail their prognosis and tailor therapy. In the case of EC, genetic mutations have been shown to underlie their formation. It is very important to know the mechanisms of EC formation related to mutations induced by estrogen, among other things. Noncoding RNAs (ncRNAs), composed of nucleotide transcripts with very low protein-coding capacity, are proving to be important. Their expression patterns in many malignancies can inhibit tumor formation and progression. They also regulate protein coding at the epigenetic, transcriptional, and posttranscriptional levels. MicroRNAs (miRNAs), several varieties of which are associated with normal endometrium as well as its tumor, also play a particularly important role in gene expression. MiRNAs and long noncoding RNAs (lncRNAs) affect many pathways in EC tissues and play important roles in cancer development, invasion, and metastasis, as well as resistance to anticancer drugs through mechanisms such as suppression of apoptosis and progression of cancer stem cells. It is also worth noting that miRNAs are highly precise, sensitive, and robust, making them potential markers for diagnosing gynecologic cancers and their progression. Unfortunately, as the incidence of EC increases, treatment becomes challenging and is limited to invasive tools. The prospect of using microRNAs as potential candidates for diagnostic and therapeutic use in EC seems promising. Exosomes are extracellular vesicles that are released from many types of cells, including cancer cells. They contain proteins, DNA, and various types of RNA, such as miRNAs. The noncoding RNA components of exosomes vary widely, depending on the physiology of the tumor tissue and the cells from which they originate. Exosomes contain both DNA and RNA and have communication functions between cells. Exosomal miRNAs mediate communication between EC cells, tumor-associated fibroblasts (CAFs), and tumor-associated macrophages (TAMs) and play a key role in tumor cell proliferation and tumor microenvironment formation. Oncogenes carried by tumor exosomes induce malignant transformation of target cells. During the synthesis of exosomes, various factors, such as genetic and proteomic data are upregulated. Thus, they are considered an interesting therapeutic target for the diagnosis and prognosis of endometrial cancer by analyzing biomarkers contained in exosomes. Expression of miRNAs, particularly miR-15a-5p, was elevated in exosomes derived from the plasma of EC patients. This may suggest the important utility of this biomarker in the diagnosis of EC. In recent years, researchers have become interested in the topic of prognostic markers for EC, as there are still too few identified markers to support the limited treatment of endometrial cancer. Further research into the effects of ncRNAs and exosomes on EC may allow for cancer treatment breakthroughs.
Collapse
Affiliation(s)
- Julia Niebora
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Sławomir Woźniak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Clinical Research Development Unit, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Khojasteh Pour
- Department of Obstetrics and Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC, United States
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
- Physiology Graduate Program, North Carolina State University, Raleigh, NC, United States
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czechia
| |
Collapse
|
5
|
Artuyants A, Guo G, Flinterman M, Middleditch M, Jacob B, Lee K, Vella L, Su H, Wilson M, Eva L, Shelling AN, Blenkiron C. The tumour-derived extracellular vesicle proteome varies by endometrial cancer histology and is confounded by an obesogenic environment. Proteomics 2024; 24:e2300055. [PMID: 38644352 DOI: 10.1002/pmic.202300055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/23/2024]
Abstract
Endometrial cancer, the most common gynaecological cancer worldwide, is closely linked to obesity and metabolic diseases, particularly in younger women. New circulating biomarkers have the potential to improve diagnosis and treatment selections, which could significantly improve outcomes. Our approach focuses on extracellular vesicle (EV) biomarker discovery by directly profiling the proteome of EVs enriched from frozen biobanked endometrial tumours. We analysed nine tissue samples to compare three clinical subgroups-low BMI (Body Mass Index) Endometrioid, high BMI Endometrioid, and Serous (any BMI)-identifying proteins related to histological subtype, BMI, and shared secreted proteins. Using collagenase digestion and size exclusion chromatography, we successfully enriched generous quantities of EVs (range 204.8-1291.0 µg protein: 1.38 × 1011-1.10 × 1012 particles), characterised by their size (∼150 nm), expression of EV markers (CD63/81), and proposed endometrial cancer markers (L1CAM, ANXA2). Mass spectrometry-based proteomic profiling identified 2075 proteins present in at least one of the 18 samples. Compared to cell lysates, EVs were successfully depleted for mitochondrial and blood proteins and enriched for common EV markers and large secreted proteins. Further analysis highlighted significant differences in EV protein profiles between the high BMI subgroup and others, underlining the impact of comorbidities on the EV secretome. Interestingly, proteins differentially abundant in tissue subgroups were largely not also differential in matched EVs. This research identified secreted proteins known to be involved in endometrial cancer pathophysiology and proposed novel diagnostic biomarkers (EIF6, MUC16, PROM1, SLC26A2).
Collapse
Affiliation(s)
- Anastasiia Artuyants
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - George Guo
- Department of Physiology in the School of Medical Sciences, The University of Auckland, Auckland, New Zealand
- Mass Spectrometry Hub, The University of Auckland, Auckland, New Zealand
| | - Marcella Flinterman
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Martin Middleditch
- Technical Services, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Bincy Jacob
- Centre of eResearch, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Kate Lee
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Laura Vella
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Huaqi Su
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michelle Wilson
- Cancer and Blood, Auckland City Hospital, Auckland, New Zealand
- Department of Oncology, The University of Auckland, Auckland, New Zealand
| | - Lois Eva
- Department of Gynaecological Oncology, Auckland City Hospital, Auckland, New Zealand
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Andrew N Shelling
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
- Centre for Cancer Research, The University of Auckland, Auckland, New Zealand
| | - Cherie Blenkiron
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Capaci V, Kharrat F, Conti A, Salviati E, Basilicata MG, Campiglia P, Balasan N, Licastro D, Caponnetto F, Beltrami AP, Monasta L, Romano F, Di Lorenzo G, Ricci G, Ura B. The Deep Proteomics Approach Identified Extracellular Vesicular Proteins Correlated to Extracellular Matrix in Type One and Two Endometrial Cancer. Int J Mol Sci 2024; 25:4650. [PMID: 38731868 PMCID: PMC11083465 DOI: 10.3390/ijms25094650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Among gynecological cancers, endometrial cancer is the most common in developed countries. Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles that contain proteins involved in immune response and apoptosis. A deep proteomic approach can help to identify dysregulated extracellular matrix (ECM) proteins in EVs correlated to key pathways for tumor development. In this study, we used a proteomics approach correlating the two acquisitions-data-dependent acquisition (DDA) and data-independent acquisition (DIA)-on EVs from the conditioned medium of four cell lines identifying 428 ECM proteins. After protein quantification and statistical analysis, we found significant changes in the abundance (p < 0.05) of 67 proteins. Our bioinformatic analysis identified 26 pathways associated with the ECM. Western blotting analysis on 13 patients with type 1 and type 2 EC and 13 endometrial samples confirmed an altered abundance of MMP2. Our proteomics analysis identified the dysregulated ECM proteins involved in cancer growth. Our data can open the path to other studies for understanding the interaction among cancer cells and the rearrangement of the ECM.
Collapse
Affiliation(s)
- Valeria Capaci
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy (F.K.); (A.C.); (N.B.); (F.R.); (G.D.L.); (G.R.); (B.U.)
| | - Feras Kharrat
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy (F.K.); (A.C.); (N.B.); (F.R.); (G.D.L.); (G.R.); (B.U.)
| | - Andrea Conti
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy (F.K.); (A.C.); (N.B.); (F.R.); (G.D.L.); (G.R.); (B.U.)
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, 84084 Salerno, Italy; (E.S.); (P.C.)
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Salerno, Italy; (E.S.); (P.C.)
| | - Nour Balasan
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy (F.K.); (A.C.); (N.B.); (F.R.); (G.D.L.); (G.R.); (B.U.)
| | | | - Federica Caponnetto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (F.C.); (A.P.B.)
| | - Antonio Paolo Beltrami
- Department of Medicine, University of Udine, 33100 Udine, Italy; (F.C.); (A.P.B.)
- Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy
| | - Lorenzo Monasta
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy (F.K.); (A.C.); (N.B.); (F.R.); (G.D.L.); (G.R.); (B.U.)
| | - Federico Romano
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy (F.K.); (A.C.); (N.B.); (F.R.); (G.D.L.); (G.R.); (B.U.)
| | - Giovanni Di Lorenzo
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy (F.K.); (A.C.); (N.B.); (F.R.); (G.D.L.); (G.R.); (B.U.)
| | - Giuseppe Ricci
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy (F.K.); (A.C.); (N.B.); (F.R.); (G.D.L.); (G.R.); (B.U.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Blendi Ura
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy (F.K.); (A.C.); (N.B.); (F.R.); (G.D.L.); (G.R.); (B.U.)
| |
Collapse
|
7
|
Iavarone I, Molitierno R, Fumiento P, Vastarella MG, Napolitano S, Vietri MT, De Franciscis P, Ronsini C. MicroRNA Expression in Endometrial Cancer: Current Knowledge and Therapeutic Implications. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:486. [PMID: 38541212 PMCID: PMC10972089 DOI: 10.3390/medicina60030486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
Background and Objectives: An extracellular vesicle is part of a class of submicron particles derived from cells, mediating cellular crosstalk through microRNA (miRNA). MiRNA is a group of RNA molecules, each of which consists of 15-22 nucleotides and post-transcriptionally modulates gene expression. The complementary mRNAs-onto which the miRNAs hybridize-are involved in processes such as implantation, tumor suppression, proliferation, angiogenesis, and metastasis that define the entire tumor microenvironment. The endometrial biopsy is a standard technique used to recognize cellular atypia, but other non-invasive markers may reduce patient discomfort during the use of invasive methods. The present study aims to examine the distribution and the regulation of the differentially expressed miRNAs (DEMs) and EV-derived substances in women with endometrial cancer. Materials and Methods: We systematically searched the PubMed, EMBASE, Scopus, Cochrane Library, and ScienceDirect databases in April 2023, adopted the string "Endometrial Neoplasms AND Exosomes", and followed the recommendations in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. We selected all the studies that included patients with endometrial cancer and that described the regulation of miRNA molecules in that context. The differences in molecule expression between patients and controls were evaluated as significant when the proteins had a fold change of ±1.5. Results: Seventeen records fulfilled the inclusion criteria: a total of 371 patients and 273 controls were analyzed. The upregulated molecules that had the widest delta between endometrial cancer patients and controls-relative expression ≥ 1 > 3 log2(ratio)-were miR-20b-5p, miR-204-5p, miR-15a-5p, and miR-320a. In particular, miR-20b-5p and miR-204-5p were extracted from both serum and endometrial specimens, whereas miR-15a-5p was only isolated from plasma, and miR-320a was only extracted from the endometrial specimens. In parallel, the most downregulated miRNA in the endometrial cancer patients compared to the healthy subjects was miR-320a, which was found in the endometrial specimens. Conclusions: Although their epigenetic regulation remains unknown, these upregulated molecules derived from EVs are feasible markers for the early detection of endometrial cancer. The modulation of these miRNA molecules should be assessed during different treatments or if recurrence develops in response to a targeted treatment modality.
Collapse
Affiliation(s)
- Irene Iavarone
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| | - Rossella Molitierno
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| | - Pietro Fumiento
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| | - Maria Giovanna Vastarella
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| | - Stefania Napolitano
- Division of Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Maria Teresa Vietri
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Pasquale De Franciscis
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| | - Carlo Ronsini
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| |
Collapse
|
8
|
Mishra A, Mulpuru V, Mishra N. An Interaction Network Driven Approach for Identifying Cervical, Endometrial, Vulvar Carcinomic Biomarkers and Their Multi-targeted Inhibitory Agents from Few Widely Available Medicinal Plants. Appl Biochem Biotechnol 2023; 195:6893-6912. [PMID: 36951938 DOI: 10.1007/s12010-023-04441-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Differently expressed genes (DEGs) across cervical (CC), endometrial (EC), and vulvar carcinoma (VC) may serve as potential biomarkers for these progressive tumor conditions. In this study, DEGs of cervical (CC), endometrial (EC), and vulvar carcinoma (VC) were identified by microarray analysis. The interaction network between the identified 124 DEGs was constructed and analyzed to identify the hub genes and genes with high stress centrality. DEGs, namely, CDK1 and MMP9, were found to show highest degree and highest stress centrality respectively from the gene interaction network of 124 nodes and 1171 edges. DEG CDK1 is found to be overlapping in both cervical and endometrial carcinomic conditions while DEG MMP9 is found in vulvar carcinomic condition. Further, as it is studied that many phytochemicals play an important role as medicinal drugs, we have identified phytochemicals from few widely available medicinal plants and performed comprehensive computational study to identify a multi-targeted phytochemical against the identified DEGs, which are crucially responsible for the progression of these carcinomic conditions. Virtual screening of the phytochemicals against the target DEG protein structures with PDB IDs 4Y72 and 1GKC resulted in identifying the multi-targeted phytochemical against both the proteins. The molecular docking and dynamics simulation studies reveal that luteolin can act as a multi-targeted agent. Thus, the interactional and structural insights of luteolin toward the DEG proteins signify that it can be further explored as a multi-targeted agent against the cervical, endometrial, and vulvar carcinoma.
Collapse
Affiliation(s)
- Anamika Mishra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Viswajit Mulpuru
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Nidhi Mishra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India.
| |
Collapse
|
9
|
Lin Y, Liu S, Lin C, Lin P, Teng Z, Zhu G. Analysis of the characteristics of immune infiltration in endometrial carcinoma and its relationship with prognosis based on bioinformatics. Medicine (Baltimore) 2023; 102:e34156. [PMID: 37352032 PMCID: PMC10289749 DOI: 10.1097/md.0000000000034156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023] Open
Abstract
To explore immune-related molecules that affect the prognosis of endometrial carcinoma (EC) using bioinformatic data mining. The expression data related to EC were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. After differential expression analysis, the intersection with immune related genes in the ImmPort database was used to obtain immune related differentially expressed genes (IRDEGs). The correlation between clinicopathological information and the prognosis of IRDEGs was further analyzed to obtain prognosis related differentially expressed immune genes (PRDEIG). Gene correlation analysis and Gene Set Enrichment Analysis (GSEA) enrichment analysis showed that PRDEIG was enriched in cancer-related functional pathways. We then analyzed the relationship between PRDEIG and immune cell infiltration, and further analyzed the mRNA and protein expression of PRDEIG in EC using TCGA and the human protein expression atlas (THPA) databases. After the intersection of the differential expression analysis results and immune-related genes, 4 IRDEGs were obtained: osteoglycin (OGN), LTBP4, CXCL12, and SPP1. After analyzing the relationship between 4 IRDEGs and clinicopathological parameters and prognosis of patients with EC, revealed that only OGN was not only related to tumor immunity, but also affected the prognosis of patients with EC. Gene correlation and GSEA enrichment of OGN were analyzed. The results showed that OGN was significantly enriched in 6 functional pathways: epithelial mesenchymal transition, KRAS signaling up, myogenesis, UV response, allograft rejection and apical junction. In addition, it was also found that OGN was significantly correlated with a variety of immune cells. The results of TCGA and THPA database showed that the mRNA and protein expression levels of OGN decreased in EC. OGN may affect the epithelial mesenchymal transformation (EMT) of tumor by affecting the infiltration of tumor immune cells.
Collapse
Affiliation(s)
- Yao Lin
- Department of Obstetrics and Gynecology, The First Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Songyi Liu
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Chunlin Lin
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Penghang Lin
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Zuhong Teng
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Guangwei Zhu
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, China
| |
Collapse
|
10
|
Guo L, Chen H, Chen J, Gao C, Fu X, Zhou S, Wu W, Li T, Lin J, Yang T, Chen Z, Cao L. PBX1-promoted SFRP4 transcription inhibits cell proliferation and epithelial-mesenchymal transition in endometrial carcinoma. Tissue Cell 2023; 82:102083. [PMID: 37054536 DOI: 10.1016/j.tice.2023.102083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
OBJECTIVE To explore the effects and mechanisms of action of the PBX1/secreted frizzled-related protein 4 (SFRP4) axis in endometrial carcinoma (EC). METHODS The expression of PBX1 and SFRP4 was analyzed using bioinformatics prediction, followed by validation in EC cells using quantitative reverse transcription-polymerase chain reaction and western blotting. After transduction with overexpression vectors for PBX1 and SFRP4, migration, proliferation, and invasion of EC cells were measured, accompanied by the detection of E-cadherin, Snail, N-cadherin, Vimentin, β-catenin, GSK-3β, and C-myc expression. The association between PBX1 and SFRP4 was validated using dual luciferase reporter gene and chromatin immunoprecipitation assays. RESULTS PBX1 and SFRP4 were downregulated in EC cells. Overexpression of PBX1 or SFRP4 resulted in weakened cell proliferation, migration, and invasion, as well as decreased expression of Snail, N-cadherin, Vimentin, β-catenin, GSK-3β, and C-myc and increased expression of E-cadherin. PBX1 bound to the SFRP4 promoter and promoted its transcription. Knockdown of SFRP4 reversed the repression of overexpressed PBX1 in the malignant phenotypes and EMT of EC cells, and PBX1 repressed Wnt/β-catenin pathway activation by upregulating SFRP4 transcription. CONCLUSION PBX1 inhibited activation of the Wnt/β-catenin pathway by promoting SFRP4 transcription, thereby suppressing malignant phenotypes in EC cells and the EMT process.
Collapse
|
11
|
Zheng F, Wang J, Wang D, Yang Q. Clinical Application of Small Extracellular Vesicles in Gynecologic Malignancy Treatments. Cancers (Basel) 2023; 15:cancers15071984. [PMID: 37046644 PMCID: PMC10093031 DOI: 10.3390/cancers15071984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Small extracellular vesicles (sEVs) are the key mediators of intercellular communication. They have the potential for clinical use as diagnostic or therapeutic biomarkers and have been explored as vectors for drug delivery. Identification of reliable and noninvasive biomarkers, such as sEVs, is important for early diagnosis and precise treatment of gynecologic diseases to improve patient prognosis. Previous reviews have summarized routine sEVs isolation and identification methods; however, novel and unconventional methods have not been comprehensively described. This review summarizes a convenient method of isolating sEVs from body fluids and liquid biopsy-related sEV markers for early, minimally invasive diagnosis of gynecologic diseases. In addition, the characteristics of sEVs as drug carriers and in precision treatment and drug resistance are introduced, providing a strong foundation for identifying novel and potential therapeutic targets for sEV therapy. We propose potential directions for further research on the applications of sEVs in the diagnosis and treatment of gynecologic diseases.
Collapse
|
12
|
Bergsten TM, Li K, Lantvit DD, Murphy BT, Burdette JE. Kaempferol, a Phytoprogestin, Induces a Subset of Progesterone-Regulated Genes in the Uterus. Nutrients 2023; 15:1407. [PMID: 36986136 PMCID: PMC10051346 DOI: 10.3390/nu15061407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Progesterone functions as a steroid hormone involved in female reproductive physiology. While some reproductive disorders manifest with symptoms that can be treated by progesterone or synthetic progestins, recent data suggest that women also seek botanical supplements to alleviate these symptoms. However, botanical supplements are not regulated by the U.S. Food and Drug Administration and therefore it is important to characterize and quantify the inherent active compounds and biological targets of supplements within cellular and animal systems. In this study, we analyzed the effect of two natural products, the flavonoids, apigenin and kaempferol, to determine their relationship to progesterone treatment in vivo. According to immunohistochemical analysis of uterine tissue, kaempferol and apigenin have some progestogenic activity, but do not act in exactly the same manner as progesterone. More specifically, kaempferol treatment did not induce HAND2, did not change proliferation, and induced ZBTB16 expression. Additionally, while apigenin treatment did not appear to dramatically affect transcripts, kaempferol treatment altered some transcripts (44%) in a similar manner to progesterone treatment but had some unique effects as well. Kaempferol regulated primarily unfolded protein response, androgen response, and interferon-related transcripts in a similar manner to progesterone. However, the effects of progesterone were more significant in regulating thousands of transcripts making kaempferol a selective modifier of signaling in the mouse uterus. In summary, the phytoprogestins, apigenin and kaempferol, have progestogenic activity in vivo but also act uniquely.
Collapse
Affiliation(s)
| | | | | | | | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
13
|
Srivastava A, Vinod PK. Identification and Characterization of Metabolic Subtypes of Endometrial Cancer Using a Systems-Level Approach. Metabolites 2023; 13:metabo13030409. [PMID: 36984849 PMCID: PMC10054278 DOI: 10.3390/metabo13030409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
Endometrial cancer (EC) is the most common gynecological cancer worldwide. Understanding metabolic adaptation and its heterogeneity in tumor tissues may provide new insights and help in cancer diagnosis, prognosis, and treatment. In this study, we investigated metabolic alterations of EC to understand the variations in metabolism within tumor samples. Integration of transcriptomics data of EC (RNA-Seq) and the human genome-scale metabolic network was performed to identify the metabolic subtypes of EC and uncover the underlying dysregulated metabolic pathways and reporter metabolites in each subtype. The relationship between metabolic subtypes and clinical variables was explored. Further, we correlated the metabolic changes occurring at the transcriptome level with the genomic alterations. Based on metabolic profile, EC patients were stratified into two subtypes (metabolic subtype-1 and subtype-2) that significantly correlated to patient survival, tumor stages, mutation, and copy number variations. We observed the co-activation of the pentose phosphate pathway, one-carbon metabolism, and genes involved in controlling estrogen levels in metabolic subtype-2, which is linked to poor survival. PNMT and ERBB2 are also upregulated in metabolic subtype-2 samples and present on the same chromosome locus 17q12, which is amplified. PTEN and TP53 mutations show mutually exclusive behavior between subtypes and display a difference in survival. This work identifies metabolic subtypes with distinct characteristics at the transcriptome and genome levels, highlighting the metabolic heterogeneity within EC.
Collapse
|
14
|
Wang KH, Ding DC. The Role and Applications of Exosomes in Gynecological Cancer: A Review. Cell Transplant 2023; 32:9636897231195240. [PMID: 37632354 PMCID: PMC10467393 DOI: 10.1177/09636897231195240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/28/2023] Open
Abstract
Exosomes are phospholipid bilayer vesicles that are released by all types of cells, containing proteins, lipids, and nucleic acids such as DNAs and RNAs. Exosomes can be transferred between cells and play a variety of physiological and pathological regulatory functions. Noncoding RNAs, including micro RNAs, long noncoding RNAs, and circular RNAs, are the most studied biomolecules from exosomes and more and more studies found that noncoding RNAs play an important role in the diagnosis, prognosis, and treatment of diseases, including various types of cancer. Gynecological malignancies such as ovarian, endometrial, and cervical cancer seriously threaten women's life. Therefore, this article reviews the roles and applications of exosomes in gynecological malignancies, including the promotion or inhibition of tumor progression and regulation of tumor microenvironments, and as potential therapeutic targets for treating gynecological cancers.
Collapse
Affiliation(s)
- Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, R.O.C
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, R.O.C
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C
| |
Collapse
|
15
|
Chen Z, Wang X. The Role and Application of Exosomes and Their Cargos in Reproductive Diseases: A Systematic Review. Vet Sci 2022; 9:vetsci9120706. [PMID: 36548867 PMCID: PMC9785507 DOI: 10.3390/vetsci9120706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the incidence of the reproductive diseases is increasing year-by-year, leading to abortion or fetal arrest, which seriously affects the reproductive health of human beings and the reproductive efficiency of animals. Exosomes are phospholipid bilayer vesicles that are widely distributed in living organisms and released by the cells of various organs and tissues. Exosomes contain proteins, RNA, lipids, and other components and are important carriers of information transfer between cells, which play a variety of physiological and pathological regulatory functions. More and more studies have found that exosomes and their connotations play an important role in the diagnosis, prognosis and treatment of diseases. A systematic review was conducted in this manuscript and then highlights our knowledge about the diagnostic and therapeutic applications of exosomes to reproductive diseases, such as polycystic ovary syndrome (PCOS), endometriosis, premature ovarian failure (POF), preeclampsia, polycystic, endometrial cancer, cervical cancer, ovarian cancer, and prostate gland cancer.
Collapse
Affiliation(s)
- Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
- Correspondence:
| |
Collapse
|
16
|
Zhang R, Zou Y, Luo J. Application of Extracellular Vesicles in Gynecologic Cancer Treatment. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120740. [PMID: 36550946 PMCID: PMC9774372 DOI: 10.3390/bioengineering9120740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Ovarian, cervical, and endometrial cancer are the three most common gynecological malignancies that seriously threaten women's health. With the development of molecular biology technology, immunotherapy and targeted therapy for gynecologic tumors are being carried out in clinical treatment. Extracellular vesicles are nanosized; they exist in various body fluids and play an essential role in intercellular communication and in the regulation of various biological process. Several studies have shown that extracellular vesicles are important targets in gynecologic cancer treatment as they promote tumor growth, progression, angiogenesis, metastasis, chemoresistance, and immune system escape. This article reviews the progress of research into extracellular vesicles in common gynecologic tumors and discusses the role of extracellular vesicles in gynecologic tumor treatment.
Collapse
Affiliation(s)
- Renwen Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yixing Zou
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence:
| |
Collapse
|
17
|
Lucotti S, Kenific CM, Zhang H, Lyden D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J 2022; 41:e109288. [PMID: 36052513 PMCID: PMC9475536 DOI: 10.15252/embj.2021109288] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular cross talk between cancer cells and stromal and immune cells is essential for tumor progression and metastasis. Extracellular vesicles and particles (EVPs) are a heterogeneous class of secreted messengers that carry bioactive molecules and that have been shown to be crucial for this cell-cell communication. Here, we highlight the multifaceted roles of EVPs in cancer. Functionally, transfer of EVP cargo between cells influences tumor cell growth and invasion, alters immune cell composition and function, and contributes to stromal cell activation. These EVP-mediated changes impact local tumor progression, foster cultivation of pre-metastatic niches at distant organ-specific sites, and mediate systemic effects of cancer. Furthermore, we discuss how exploiting the highly selective enrichment of molecules within EVPs has profound implications for advancing diagnostic and prognostic biomarker development and for improving therapy delivery in cancer patients. Altogether, these investigations into the role of EVPs in cancer have led to discoveries that hold great promise for improving cancer patient care and outcome.
Collapse
Affiliation(s)
- Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Candia M Kenific
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
18
|
Research on the Guiding Effect of CTCs on Postoperative Adjuvant Therapy for Patients with Early Stage Endometrial Cancer. JOURNAL OF ONCOLOGY 2022; 2022:4327977. [PMID: 35685426 PMCID: PMC9174000 DOI: 10.1155/2022/4327977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
Abstract
Endometrial tumor has increased in occurrence and fatality in China during the last 11 years, owing to inconsistent hormone use and modifications in people living surrounding and lifestyles. One of the three main gynaecological tumors is endometrial carcinoma (EC). Longer waiting duration of operation was linked to a lower chance of sustainability in endometrial tumor patients. Despite the great sustainability rate of endometrial tumor, only around 46 percent of patients undergo adjuvant treatment. Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and circulating free DNA (cfDNA) are the most investigated tumor noninvasive indicators. These circulating biomarkers are important in the knowledge of metastasis and tumorigenesis, and they could help researchers comprehend how cancer dynamics evolve throughout the therapy and illness development. In patients with solid tumor, the existence of circulating tumor cells (CTCs) in the peripheral blood is linked to a weak prognosis. However, there is a scarcity of information on how to detect CTCs in endometrial cancer (EC). Hence, in this paper, we analyze the guiding effect of CTCs on postoperative adjuvant treatment for sufferers with initial phase endometrial tumor using multi-cox regression method. The dataset is selected and the blood samples are collected using plasma separation method. The CTC is detected using differential diagnosis. The morphology and biological features, Immunocytochemistry, Genomic analysis, Transcriptomic analysis, Proteomic analysis, and molecular analysis are performed and the outcomes are evaluated.
Collapse
|
19
|
Sykaras AG, Christofidis K, Politi E, Theocharis S. Exosomes on Endometrial Cancer: A Biomarkers Treasure Trove? Cancers (Basel) 2022; 14:cancers14071733. [PMID: 35406505 PMCID: PMC8996953 DOI: 10.3390/cancers14071733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022] Open
Abstract
Endometrial cancer (EC) is one of the main causes of cancer-related death among women. In the last decade, the incidence of EC is on the rise, and the relative 5-year survival remains unchanged. This creates a dire need for new diagnostic and therapeutic approaches that can only result from a deeper understanding of the pathogenesis of the disease. In this direction, exosomes are under heavy research, with two main aims: to identify the potential diagnostic and prognostic markers and to develop technologies based on their use as therapeutic vectors targeting EC cells. Exosomes are widely available in all bodily fluids and are sources of ideal biomarkers for liquid biopsies. They are extracellular vesicles containing DNA, RNA, lipids, and proteins, which they transfer between cells, serving multiple functions and being implicated in both the physiological processes and the pathogenesis of diseases. Of all the biomolecules contained in exosomes, microRNAs (miRNAs) seem to have the most clinical utility in the diagnosis and treatment of EC. Exosomal miRNAs mediate the communication between EC cells, cancer-associated fibroblasts (CAFs), and tumor-associated macrophages (TAMs) and have a pivotal role in the tumor cells' proliferation, epithelial to mesenchymal transition (EMT), and the formation of a tumor microenvironment. They participate in many processes that are tied to carcinogenesis and cancer progression, and they are therefore considered as attractive therapeutic targets. Here, we review the functions of exosomes in EC, focusing on potential biomarkers of diagnostic and prognostic significance or potential therapeutic use.
Collapse
Affiliation(s)
- Alexandros G. Sykaras
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.G.S.); (K.C.)
- Department of Cytopathology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Konstantinos Christofidis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.G.S.); (K.C.)
| | - Ekaterini Politi
- Department of Cytopathology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.G.S.); (K.C.)
- Correspondence:
| |
Collapse
|
20
|
Ye M, Wang J, Pan S, Zheng L, Wang ZW, Zhu X. Nucleic acids and proteins carried by exosomes of different origins as potential biomarkers for gynecologic cancers. Mol Ther Oncolytics 2022; 24:101-113. [PMID: 35024437 PMCID: PMC8718571 DOI: 10.1016/j.omto.2021.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Exosomes are extracellular vesicles with a diameter of 30-150 nm that function in mediating intercellular communication and intercellular material exchange. The liposomal membrane of exosomes protects the cargo carried by exosomes from degradation and assists in transporting cargo to recipient cells to regulate a variety of physiological and pathological processes. The incidence of gynecologic cancers is increasing annually, which is extremely harmful to the lives and health of women because such cancers are challenging to detect at the early stage. Recently, exosomes have emerged as novel biomarkers for diagnosing and predicting the development of gynecologic cancers. In particular, non-coding RNAs (microRNAs [miRNAs], long non-coding RNAs [lncRNAs], and circular RNAs [circRNAs]) carried by exosomes have been extensively investigated in gynecologic cancers. Therefore, the purpose of this review is to focus on the potential roles of exosomes of different origins in ovarian cancer, cervical cancer, and endometrial cancer, which will help to determine the molecular mechanism of carcinogenesis.
Collapse
Affiliation(s)
- Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Lihong Zheng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
21
|
Chen K, Liang J, Qin T, Zhang Y, Chen X, Wang Z. The Role of Extracellular Vesicles in Embryo Implantation. Front Endocrinol (Lausanne) 2022; 13:809596. [PMID: 35154016 PMCID: PMC8831238 DOI: 10.3389/fendo.2022.809596] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-coating nanoparticles derived from cells. The effect of cell-to-cell communication mediated by EVs has been investigated in different fields of physio-logical as well as pathological process in recent years. Reproduction, regarded as a definitive characteristic of organisms, has been a focus in both animal and medical sciences. It is well agreed that implantation is a critical event during early pregnancy in viviparous animals, and a proper implantation is essential for the establishment and maintenance of normal pregnancy. However, successful implantation requires the synchronized development of both the uterus and the embryo, therefore, in which well communication and opportune regulation are necessary. This review focuses on the progression of studies that reveal the role of EVs in early pregnancy, especially during implantation. Based on current evidence, EVs are produced and exist in the environment for implantation. It has been proved that EVs of different origins such as endometrium and embryo, have positive influences on embryo implantation. With their cargos of proteins and nucleic acids (especially microRNAs), EVs exert their effects including information transportation, immune stimulation and regulation of gene expression.
Collapse
|
22
|
Cheng Z, Zhou Y. The roles of MicroRNA-133 in gynecological tumors. Gynecol Minim Invasive Ther 2022; 11:83-87. [PMID: 35746911 PMCID: PMC9212183 DOI: 10.4103/gmit.gmit_79_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 11/04/2022] Open
|
23
|
The functions and potential roles of extracellular vesicle noncoding RNAs in gynecological malignancies. Cell Death Dis 2021; 7:258. [PMID: 34552067 PMCID: PMC8458395 DOI: 10.1038/s41420-021-00645-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/18/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are small membranous vesicles secreted by multiple kinds of cells and are widely present in human body fluids. EVs containing various constituents can transfer functional molecules from donor cells to recipient cells, thereby mediating intercellular communication. Noncoding RNAs (ncRNAs) are a type of RNA transcript with limited protein-coding capacity, that have been confirmed to be enriched in EVs in recent years. EV ncRNAs have become a hot topic because of their crucial regulating effect in disease progression, especially in cancer development. In this review, we summarized the biological functions of EV ncRNAs in the occurrence and progression of gynecological malignancies. In addition, we reviewed their potential applications in the diagnosis and treatment of gynecological malignancies.
Collapse
|
24
|
Esfandyari S, Elkafas H, Chugh RM, Park HS, Navarro A, Al-Hendy A. Exosomes as Biomarkers for Female Reproductive Diseases Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms22042165. [PMID: 33671587 PMCID: PMC7926632 DOI: 10.3390/ijms22042165] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Cell-cell communication is an essential mechanism for the maintenance and development of various organs, including the female reproductive system. Today, it is well-known that the function of the female reproductive system and successful pregnancy are related to appropriate follicular growth, oogenesis, implantation, embryo development, and proper fertilization, dependent on the main regulators of cellular crosstalk, exosomes. During exosome synthesis, selective packaging of different factors into these vesicles happens within the originating cells. Therefore, exosomes contain both genetic and proteomic data that could be applied as biomarkers or therapeutic targets in pregnancy-associated disorders or placental functions. In this context, the present review aims to compile information about the potential exosomes with key molecular cargos that are dysregulated in female reproductive diseases which lead to infertility, including polycystic ovary syndrome (PCOS), premature ovarian failure (POF), Asherman syndrome, endometriosis, endometrial cancer, cervical cancer, ovarian cancer, and preeclampsia, as well as signaling pathways related to the regulation of the reproductive system and pregnancy outcome during these pathological conditions. This review might help us realize the etiology of reproductive dysfunction and improve the early diagnosis and treatment of the related complications.
Collapse
Affiliation(s)
- Sahar Esfandyari
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hoda Elkafas
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Pharmacology and Toxicology, Egyptian Drug Authority (EDA) Formally, (NODCAR), Cairo 35521, Egypt
| | - Rishi Man Chugh
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hang-soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
| | - Antonia Navarro
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
- Correspondence: ; Tel.: +1-773-832-0742
| |
Collapse
|
25
|
Gu X, Zheng Q, Chu Q, Zhu H. HAND2-AS1: A functional cancer-related long non-coding RNA. Biomed Pharmacother 2021; 137:111317. [PMID: 33556872 DOI: 10.1016/j.biopha.2021.111317] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression and carcinogenesis. The lncRNA heart and neural crest derivatives expressed transcript 2 antisense RNA 1 (HAND2‑AS1) suppresses tumor growth, and its expression level was lower in tumor tissues than in adjacent normal tissues of most types of human cancers, including non-small cell lung cancer, ovarian cancer, breast cancer, gastric cancer, colorectal cancer, cervical cancer, endometrial cancer, prostate cancer, and esophagus squamous cell carcinoma. However, one study reported that the HAND2‑AS1 expression was upregulated in hepatocellular carcinoma tissues comparing with non-tumor tissues and it promoted tumor development. The aberrant expression of HAND2-AS1 was strongly linked to tumor progression and prognosis. Moreover, HAND2-AS1 was involved in tumor cell proliferation, differentiation, apoptosis, and cellular glucose metabolism. This review summarizes data on the expression profile, functions, underlying mechanism, and clinical value of HAND2-AS1 in cancer. The expression profile of HAND2-AS1 in 33 tumors was evaluated by bioinformatics analysis of The Cancer Genome Atlas.
Collapse
Affiliation(s)
- Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
26
|
Bai Y, Guo J, Liu Z, Li Y, Jin S, Wang T. The Role of Exosomes in the Female Reproductive System and Breast Cancers. Onco Targets Ther 2020; 13:12567-12586. [PMID: 33324075 PMCID: PMC7733408 DOI: 10.2147/ott.s281909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Exosomes are nanoscale extracellular vesicles released by nearly all cell types. Exosomes were originally considered as waste receptacles for discarding unwanted cellular products; however, these organelles are now considered to be important for cell communication by delivering biologically active molecules such as proteins, DNA, non-coding RNA and mRNA. Studies have revealed that exosomes are closely related to several diseases, especially cancers. Exosomes are indispensable for the emergence and progression of tumor. Here, we review the status of research on exosomes in the female reproductive system cancers and breast cancer, focusing on their biological roles in chemical resistance and immune responses, as well as their underlying applications in drug delivery and nanotherapy and as biological markers for tumor diagnosis.
Collapse
Affiliation(s)
- Yuqi Bai
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Jie Guo
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Zhongshan Liu
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Yunfeng Li
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Shunzi Jin
- NHC Key Laboratory of Radiobiology, Jilin University, Changchun, People's Republic of China
| | - Tiejun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
27
|
Bradfield A, Button L, Drury J, Green DC, Hill CJ, Hapangama DK. Investigating the Role of Telomere and Telomerase Associated Genes and Proteins in Endometrial Cancer. Methods Protoc 2020; 3:E63. [PMID: 32899298 PMCID: PMC7565490 DOI: 10.3390/mps3030063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 12/16/2022] Open
Abstract
Endometrial cancer (EC) is the commonest gynaecological malignancy. Current prognostic markers are inadequate to accurately predict patient survival, necessitating novel prognostic markers, to improve treatment strategies. Telomerase has a unique role within the endometrium, whilst aberrant telomerase activity is a hallmark of many cancers. The aim of the current in silico study is to investigate the role of telomere and telomerase associated genes and proteins (TTAGPs) in EC to identify potential prognostic markers and therapeutic targets. Analysis of RNA-seq data from The Cancer Genome Atlas identified differentially expressed genes (DEGs) in EC (568 TTAGPs out of 3467) and ascertained DEGs associated with histological subtypes, higher grade endometrioid tumours and late stage EC. Functional analysis demonstrated that DEGs were predominantly involved in cell cycle regulation, while the survival analysis identified 69 DEGs associated with prognosis. The protein-protein interaction network constructed facilitated the identification of hub genes, enriched transcription factor binding sites and drugs that may target the network. Thus, our in silico methods distinguished many critical genes associated with telomere maintenance that were previously unknown to contribute to EC carcinogenesis and prognosis, including NOP56, WFS1, ANAPC4 and TUBB4A. Probing the prognostic and therapeutic utility of these novel TTAGP markers will form an exciting basis for future research.
Collapse
Affiliation(s)
- Alice Bradfield
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
| | - Lucy Button
- Faculty of Health and Life Sciences, University of Liverpool, Brownlow Hill, Liverpool L69 7ZX, UK;
| | - Josephine Drury
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
| | - Daniel C. Green
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK;
| | - Christopher J. Hill
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
| | - Dharani K. Hapangama
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
- Liverpool Women’s NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool L8 7SS, UK
| |
Collapse
|