1
|
Raghunandanan S, Priya R, Lin G, Alanazi F, Zoss A, Warren E, Stewart P, Yang XF. Positive feedback regulation between RpoS and BosR in the Lyme disease pathogen. mBio 2025; 16:e0276624. [PMID: 39873484 PMCID: PMC11898620 DOI: 10.1128/mbio.02766-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025] Open
Abstract
In Borrelia burgdorferi, the causative agent of Lyme disease, differential gene expression is primarily governed by the alternative sigma factor RpoS (σS). Understanding the regulation of RpoS is crucial for elucidating how B. burgdorferi is maintained throughout its enzootic cycle. Our recent studies have shown that the homolog of Fur/PerR repressor/activator BosR functions as an RNA-binding protein that controls the rpoS mRNA stability. However, the mechanisms regulating BosR, particularly in response to host signals and environmental cues, remain largely unclear. In this study, we uncovered a positive feedback loop between RpoS and BosR, wherein RpoS post-transcriptionally regulates BosR levels. Specifically, mutation or deletion of rpoS significantly reduced BosR levels, whereas artificial induction of rpoS resulted in a dose-dependent increase in BosR levels. Notably, RpoS does not affect bosR mRNA levels but instead modulates the turnover rate of the BosR protein. Moreover, we demonstrated that environmental cues do not directly influence bosR expression but instead induce rpoS transcription and RpoS production, thereby enhancing BosR protein levels. These findings reveal a new layer of complexity in the RpoN-RpoS regulatory pathway, challenging the existing paradigm and suggesting a need to re-evaluate the factors and signals previously implicated in regulating RpoS via BosR. This study provides new insights into the intricate regulatory networks underpinning B. burgdorferi's adaptation and survival in its enzootic cycle.IMPORTANCELyme disease is the most prevalent arthropod-borne infection in the United States. The etiological agent, Borreliella (or Borrelia) burgdorferi, is maintained in nature through an enzootic cycle involving a tick vector and a mammalian host. RpoS, the master regulator of differential gene expression, plays a crucial role in tick transmission and mammalian infection of B. burgdorferi. This study reveals a positive feedback loop between RpoS and a Fur/PerR homolog. Elucidating this regulatory network is essential for identifying potential therapeutic targets to disrupt B. burgdorferi's enzootic cycle. The findings also have broader implications for understanding the regulation of RpoS and Fur/PerR family in other bacteria.
Collapse
Affiliation(s)
- Sajith Raghunandanan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Raj Priya
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gaofeng Lin
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Fuad Alanazi
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Andrew Zoss
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elise Warren
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Philip Stewart
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Doskaliuk B, Zimba O. Borrelia burgdorferi and autoimmune mechanisms: implications for mimicry, misdiagnosis, and mismanagement in Lyme disease and autoimmune disorders. Rheumatol Int 2024; 44:2265-2271. [PMID: 38578312 PMCID: PMC11424747 DOI: 10.1007/s00296-024-05580-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
The genus Borrelia encompasses a diverse group of spirochetes transmitted primarily by ticks, with Borrelia burgdorferi causing Lyme disease, which is prevalent in North America and Europe. Borrelia's structural adaptations and ability to persist in diverse host tissues underscore its pathogenic potential. Beyond traditional infectious responses, Borrelia engages in complex interactions with the host immune system, contributing to autoimmune mechanisms such as molecular mimicry and persistent infections. This intricate interplay manifests in symptoms resembling various autoimmune diseases, including systemic lupus erythematosus, dermatomyositis, local scleroderma, and systemic sclerosis. However, these associations lack a precise explanation, emphasizing the need for further investigation. The cases of misdiagnosis between Lyme borreliosis and autoimmune diseases highlight the critical importance of accurate diagnostics and adherence to guidelines. Understanding Borrelia's impact on immune responses is pivotal for advancing diagnostics and targeted therapeutic interventions in Lyme borreliosis and its potential autoimmune implications.
Collapse
Affiliation(s)
- Bohdana Doskaliuk
- Department of Patophysiology, Ivano-Frankivsk National Medical University, Halytska str. 2, Ivano-Frankivsk, 76000, Ukraine.
| | - Olena Zimba
- Department of Clinical Rheumatology and Immunology, University Hospital in Krakow, Kraków, Poland
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
- Department of Internal Medicine N2, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| |
Collapse
|
3
|
Raghunandanan S, Priya R, Lin G, Alanazi F, Zoss A, Warren E, Yang XF. Positive feedback regulation between RpoS and BosR in the Lyme disease pathogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613071. [PMID: 39314342 PMCID: PMC11419129 DOI: 10.1101/2024.09.14.613071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
In Borrelia burgdorferi, the Lyme disease pathogen, differential gene expression is primarily controlled by the alternative sigma factor RpoS (σS). Understanding how RpoS levels are regulated is crucial for elucidating how B. burgdorferi is maintained throughout its enzootic cycle. Our recent studies have shown that a homolog of Fur/PerR repressor/activator, BosR, functions as an RNA-binding protein that controls the rpoS mRNA stability. However, the mechanisms of regulation of BosR, particularly in response to host signals and environmental cues, remain largely unclear. In this study, we revealed a positive feedback loop between RpoS and BosR, where RpoS post-transcriptionally regulates BosR levels. Specifically, mutation or deletion of rpoS significantly reduced BosR levels, while artificial induction of rpoS resulted in a dose-dependent increase in BosR levels. Notably, RpoS does not affect bosR mRNA levels but instead modulates the turnover rate of the BosR protein. Furthermore, we demonstrated that environmental cues do not directly influence bosR expression but instead induce rpoS transcription and RpoS production, thereby enhancing BosR protein levels. This discovery adds a new layer of complexity to the RpoN-RpoS pathway and suggests the need to re-evaluate the factors and signals previously believed to regulate RpoS levels through BosR.
Collapse
Affiliation(s)
- Sajith Raghunandanan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Raj Priya
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Gaofeng Lin
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Fuad Alanazi
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Andrew Zoss
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Elise Warren
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
4
|
Williams MT, Zhang Y, Pulse ME, Berg RE, Allen MS. Suppression of host humoral immunity by Borrelia burgdorferi varies over the course of infection. Infect Immun 2024; 92:e0001824. [PMID: 38514468 PMCID: PMC11003232 DOI: 10.1128/iai.00018-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Borrelia burgdorferi, the spirochetal agent of Lyme disease, utilizes a variety of strategies to evade and suppress the host immune response, which enables it to chronically persist in the host. The resulting immune response is characterized by unusually strong IgM production and a lack of long-term protective immunity. Previous studies in mice have shown that infection with B. burgdorferi also broadly suppresses host antibody responses against unrelated antigens. Here, we show that mice infected with B. burgdorferi and concomitantly immunized with recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein had an abrogated antibody response to the immunization. To further define how long this humoral immune suppression lasts, mice were immunized at 2, 4, and 6 weeks post-infection. Suppression of host antibody production against the SARS-CoV-2 spike protein peaked at 2 weeks post-infection but continued for all timepoints measured. Antibody responses against the SARS-CoV-2 spike protein were also assessed following antibiotic treatment to determine whether this immune suppression persists or resolves following clearance of B. burgdorferi. Host antibody production against the SARS-CoV-2 spike protein returned to baseline following antibiotic treatment; however, anti-SARS-CoV-2 IgM remained high, comparable to levels found in B. burgdorferi-infected but untreated mice. Thus, our data demonstrate restored IgG responses following antibiotic treatment but persistently elevated IgM levels, indicating lingering effects of B. burgdorferi infection on the immune system following treatment.
Collapse
Affiliation(s)
- Megan T. Williams
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
- The Tick-Borne Disease Research Laboratory, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Yan Zhang
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
- The Tick-Borne Disease Research Laboratory, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Mark E. Pulse
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rance E. Berg
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Michael S. Allen
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
- The Tick-Borne Disease Research Laboratory, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
5
|
Yuste RA, Muenkel M, Axarlis K, Gómez Benito MJ, Reuss A, Blacker G, Tal MC, Kraiczy P, Bastounis EE. Borrelia burgdorferi modulates the physical forces and immunity signaling in endothelial cells. iScience 2022; 25:104793. [PMID: 35992087 PMCID: PMC9389243 DOI: 10.1016/j.isci.2022.104793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/09/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
Borrelia burgdorferi (Bb), a vector-borne bacterial pathogen and the causative agent of Lyme disease, can spread to distant tissues in the human host by traveling in and through monolayers of endothelial cells (ECs) lining the vasculature. To examine whether Bb alters the physical forces of ECs to promote its dissemination, we exposed ECs to Bb and observed a sharp and transient increase in EC traction and intercellular forces, followed by a prolonged decrease in EC motility and physical forces. All variables returned to baseline at 24 h after exposure. RNA sequencing analysis revealed an upregulation of innate immune signaling pathways during early but not late Bb exposure. Exposure of ECs to heat-inactivated Bb recapitulated only the early weakening of EC mechanotransduction. The differential responses to live versus heat-inactivated Bb indicate a tight interplay between innate immune signaling and physical forces in host ECs and suggest their active modulation by Bb. Early exposure to Borrelia decreases endothelial cell motility and physical forces Early exposure to Borrelia also upregulates the host’s innate immune signaling pathways Host cell mechanics and signaling return to steady state at late exposure times Exposure to dead bacteria steadily reduces motility and physical forces of host cells
Collapse
|
6
|
Groshong AM, Grassmann AA, Luthra A, McLain MA, Provatas AA, Radolf JD, Caimano MJ. PlzA is a bifunctional c-di-GMP biosensor that promotes tick and mammalian host-adaptation of Borrelia burgdorferi. PLoS Pathog 2021; 17:e1009725. [PMID: 34265024 PMCID: PMC8323883 DOI: 10.1371/journal.ppat.1009725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/30/2021] [Accepted: 06/18/2021] [Indexed: 02/05/2023] Open
Abstract
In this study, we examined the relationship between c-di-GMP and its only known effector protein, PlzA, in Borrelia burgdorferi during the arthropod and mammalian phases of the enzootic cycle. Using a B. burgdorferi strain expressing a plzA point mutant (plzA-R145D) unable to bind c-di-GMP, we confirmed that the protective function of PlzA in ticks is c-di-GMP-dependent. Unlike ΔplzA spirochetes, which are severely attenuated in mice, the plzA-R145D strain was fully infectious, firmly establishing that PlzA serves a c-di-GMP-independent function in mammals. Contrary to prior reports, loss of PlzA did not affect expression of RpoS or RpoS-dependent genes, which are essential for transmission, mammalian host-adaptation and murine infection. To ascertain the nature of PlzA's c-di-GMP-independent function(s), we employed infection models using (i) host-adapted mutant spirochetes for needle inoculation of immunocompetent mice and (ii) infection of scid mice with in vitro-grown organisms. Both approaches substantially restored ΔplzA infectivity, suggesting that PlzA enables B. burgdorferi to overcome an early bottleneck to infection. Furthermore, using a Borrelia strain expressing a heterologous, constitutively active diguanylate cyclase, we demonstrate that 'ectopic' production of c-di-GMP in mammals abrogates spirochete virulence and interferes with RpoS function at the post-translational level in a PlzA-dependent manner. Structural modeling and SAXS analysis of liganded- and unliganded-PlzA revealed marked conformational changes that underlie its biphasic functionality. This structural plasticity likely enables PlzA to serve as a c-di-GMP biosensor that in its respective liganded and unliganded states promote vector- and host-adaptation by the Lyme disease spirochete.
Collapse
Affiliation(s)
- Ashley M. Groshong
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
- Department of Pediatrics, UConn Health, Farmington, Connecticut, United States of America
| | - André A. Grassmann
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
| | - Amit Luthra
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
| | - Melissa A. McLain
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
| | - Anthony A. Provatas
- Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
- Department of Pediatrics, UConn Health, Farmington, Connecticut, United States of America
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Science, UConn Health, Farmington, Connecticut, United States of America
- Department of Immunology, UConn Health, Farmington, Connecticut, United States of America
| | - Melissa J. Caimano
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
- Department of Pediatrics, UConn Health, Farmington, Connecticut, United States of America
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, United States of America
| |
Collapse
|
7
|
Ante VM, Farris LC, Saputra EP, Hall AJ, O'Bier NS, Oliva Chávez AS, Marconi RT, Lybecker MC, Hyde JA. The Borrelia burgdorferi Adenylate Cyclase, CyaB, Is Important for Virulence Factor Production and Mammalian Infection. Front Microbiol 2021; 12:676192. [PMID: 34113333 PMCID: PMC8186283 DOI: 10.3389/fmicb.2021.676192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, traverses through vastly distinct environments between the tick vector and the multiple phases of the mammalian infection that requires genetic adaptation for the progression of pathogenesis. Borrelial gene expression is highly responsive to changes in specific environmental signals that initiate the RpoS regulon for mammalian adaptation, but the mechanism(s) for direct detection of environmental cues has yet to be identified. Secondary messenger cyclic adenosine monophosphate (cAMP) produced by adenylate cyclase is responsive to environmental signals, such as carbon source and pH, in many bacterial pathogens to promote virulence by altering gene regulation. B. burgdorferi encodes a single non-toxin class IV adenylate cyclase (bb0723, cyaB). This study investigates cyaB expression along with its influence on borrelial virulence regulation and mammalian infectivity. Expression of cyaB was specifically induced with co-incubation of mammalian host cells that was not observed with cultivated tick cells suggesting that cyaB expression is influenced by cellular factor(s) unique to mammalian cell lines. The 3′ end of cyaB also encodes a small RNA, SR0623, in the same orientation that overlaps with bb0722. The differential processing of cyaB and SR0623 transcripts may alter the ability to influence function in the form of virulence determinant regulation and infectivity. Two independent cyaB deletion B31 strains were generated in 5A4-NP1 and ML23 backgrounds and complemented with the cyaB ORF alone that truncates SR0623, cyaB with intact SR0623, or cyaB with a mutagenized full-length SR0623 to evaluate the influence on transcriptional and posttranscriptional regulation of borrelial virulence factors and infectivity. In the absence of cyaB, the expression and production of ospC was significantly reduced, while the protein levels for BosR and DbpA were substantially lower than parental strains. Infectivity studies with both independent cyaB mutants demonstrated an attenuated phenotype with reduced colonization of tissues during early disseminated infection. This work suggests that B. burgdorferi utilizes cyaB and potentially cAMP as a regulatory pathway to modulate borrelial gene expression and protein production to promote borrelial virulence and dissemination in the mammalian host.
Collapse
Affiliation(s)
- Vanessa M Ante
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Lauren C Farris
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Elizabeth P Saputra
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Allie J Hall
- Department of Biology, University of Colorado at Colorado Springs, Colorado Springs, CO, United States
| | - Nathaniel S O'Bier
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Adela S Oliva Chávez
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Meghan C Lybecker
- Department of Biology, University of Colorado at Colorado Springs, Colorado Springs, CO, United States
| | - Jenny A Hyde
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| |
Collapse
|
8
|
Chaconas G, Moriarty TJ, Skare J, Hyde JA. Live Imaging. Curr Issues Mol Biol 2020; 42:385-408. [PMID: 33310914 PMCID: PMC7946808 DOI: 10.21775/cimb.042.385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Being able to vizualize a pathogen at a site of interaction with a host is an aesthetically appealing idea and the resulting images can be both informative as well as enjoyable to view. Moreover, the approaches used to derive these images can be powerful in terms of offering data unobtainable by other methods. In this article, we review three primary modalities for live imaging Borrelia spirochetes: whole animal imaging, intravital microscopy and live cell imaging. Each method has strengths and weaknesses, which we review, as well as specific purposes for which they are optimally utilized. Live imaging borriliae is a relatively recent development and there was a need of a review to cover the area. Here, in addition to the methods themselves, we also review areas of spirochete biology that have been significantly impacted by live imaging and present a collection of images associated with the forward motion in the field driven by imaging studies.
Collapse
Affiliation(s)
- George Chaconas
- Department of Biochemistry and Molecular Biology and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Tara J. Moriarty
- Faculties of Dentistry and Medicine (Laboratory Medicine and Pathobiology), University of Toronto, Toronto, Ontario, M5G 1G6, Canada
| | - Jon Skare
- Department of Microbial Pathogenesis and Immunology, Texas A & M University Health Science Center, Bryan, Texas, 77807, USA
| | - Jenny A. Hyde
- Department of Microbial Pathogenesis and Immunology, Texas A & M University Health Science Center, Bryan, Texas, 77807, USA
| |
Collapse
|