1
|
Qiu X, Wu W, Zhang S, Huang C, Lin D. 3-Hydroxybutyrate Promotes Myoblast Proliferation and Differentiation through Energy Metabolism and GPR109a-Mediated Ca 2+-NFAT Signaling Pathways. J Proteome Res 2025; 24:2063-2080. [PMID: 40099866 DOI: 10.1021/acs.jproteome.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Skeletal muscle wasting is a critical clinical problem associated with several diseases that significantly impair patient outcomes due to the progressive loss of muscle mass and function. This study explores the potential of 3-hydroxybutyrate (3-HB) as a therapeutic agent to counteract muscle atrophy by promoting the proliferation and differentiation of C2C12 myoblasts. Using nuclear magnetic resonance (NMR)-based metabolomics analysis, we uncover the underlying mechanisms by which 3-HB exerts its effects. Our findings demonstrate that 3-HB exerts its effects through two distinct mechanisms: as a metabolic substrate and as a signaling molecule. As a metabolic substrate, 3-HB enhances myoblast energy efficiency by stimulating the expression of G protein-coupled receptor 109a (GPR109a), which subsequently upregulates the 3-HB transporters MCT1 and CD147, the utilization enzyme OXCT1, and phosphorylated AMPK, thereby increasing ATP production. As a signaling molecule, 3-HB activates GPR109a, promoting calcium influx, improving calcium homeostasis, and increasing the expression of Ca2+-related proteins such as CAMKK2. This signaling cascade activates calcineurin (CaN), facilitating NFAT translocation to the nucleus and gene expression that drives myoblast proliferation and differentiation. By elucidating the dual regulatory roles of 3-HB in energy metabolism and cellular signaling, this study not only advances our understanding of muscle physiology but also highlights the potential of 3-HB as a novel therapeutic approach for the prevention or treatment of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Xu Qiu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wenfang Wu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuya Zhang
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen 361024, China
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Conejeros I, Velásquez ZD, Espinosa G, Rojas-Baron L, Grabbe M, Hermosilla C, Taubert A. AMPK and CAMKK activation participate in early events of Toxoplasma gondii-triggered NET formation in bovine polymorphonuclear neutrophils. Front Vet Sci 2025; 12:1557509. [PMID: 40171409 PMCID: PMC11960748 DOI: 10.3389/fvets.2025.1557509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects humans, eventually causing severe diseases like prenatal or ocular toxoplasmosis. T. gondii also infects cattle but rarely induces clinical signs in this intermediate host type. So far, the innate immune mechanisms behind the potential resistance of bovines to clinical T. gondii infections remain unclear. Here, we present evidence on sustained activation of bovine polymorphonuclear neutrophils PMN by T. gondii tachyzoites, which is linked to a rise in cytoplasmic calcium concentrations, an enhancement of calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK) and AMP-activated protein kinase (AMPK). NETosis is a specific form of programmed cell death, characterized by the release chromatin from the nucleus to the extracellular space resulting in formation of neutrophil extracellular traps (NETs). NETs can kill and entrap pathogens. In our experiments, NETosis was triggered by T. gondii, and this effector mechanism was enhanced by pre-treatments with the AMPK activator AICAR. Moreover, tachyzoite-mediated bovine neutrophil DNA release depended on MAPK- and store operated calcium entry- (SOCE) pathways since it was diminished by the inhibitors UO126 and 2-APB, respectively. Overall, we here provide new insights into early polymorphonuclear neutrophils responses against T. gondii for the bovine system.
Collapse
Affiliation(s)
- Iván Conejeros
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
3
|
Monterrubio-Ledezma F, Salcido-Gómez A, Zavaleta-Vásquez T, Navarro-García F, Cisneros B, Massieu L. The anti-senescence effect of D-β-hydroxybutyrate in Hutchinson-Gilford progeria syndrome involves progerin clearance by the activation of the AMPK-mTOR-autophagy pathway. GeroScience 2025:10.1007/s11357-024-01501-9. [PMID: 39821043 DOI: 10.1007/s11357-024-01501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025] Open
Abstract
D-β-hydroxybutyrate, BHB, has been previously proposed as an anti-senescent agent in vitro and in vivo in several tissues including vascular smooth muscle. Moreover, BHB derivatives as ketone esters alleviate heart failure. Here, we provide evidence of the potential therapeutic effect of BHB on Hutchinson-Gilford progeria syndrome (HGPS), a rare condition characterized by premature aging and heart failure, caused by the presence of progerin, the aberrant protein derived from LMNA/C gene c.1824C > T mutation. We have assessed several hallmarks of HGPS-senescent phenotype in vitro, such as progerin levels, nuclear morphometric aberrations, nucleolar expansion, cellular senescent morphology, SA-βGal-positive cells, H3K9me3 heterochromatin, γH2AX foci, Lamin B1, p21Waf1/Cip1 and p16CDKN2A abundance, and autophagy. Strikingly, BHB improved nuclear and nucleolar morphometrics, diminished the senescence-phenotype, and unstuck autophagy in HGPS as observed by an enhanced degradation of the cargo protein receptor SQSTM1/p62, suggesting the stimulation of the autophagic flux. Additionally, we observed a decrease in progerin abundance, the cause of senescence in HGPS. Furthermore, compound C, an inhibitor of AMPK, and SBI-0206965, an inhibitor of ULK1/2 and AMPK, which prevent autophagy activation, reversed BHB-induced progerin decline as well as its anti-senescent effect in an AMPK-mTORC1 dependent manner. Altogether, these results suggest that the anti-senescence effect of BHB involves progerin clearance by autophagy activation supporting the potential of BHB for HGPS therapeutics and further preclinical trials.
Collapse
Affiliation(s)
- Feliciano Monterrubio-Ledezma
- Department of Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Ashley Salcido-Gómez
- Department of Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
| | - Tania Zavaleta-Vásquez
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Fernando Navarro-García
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Lourdes Massieu
- Department of Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.
| |
Collapse
|
4
|
Conejeros I, Velásquez ZD, Rojas-Barón L, Espinosa G, Hermosilla C, Taubert A. The CAMKK/AMPK Pathway Contributes to Besnoitia besnoiti-Induced NETosis in Bovine Polymorphonuclear Neutrophils. Int J Mol Sci 2024; 25:8442. [PMID: 39126009 PMCID: PMC11313139 DOI: 10.3390/ijms25158442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Besnoitia besnoiti is an obligate intracellular apicomplexan parasite and the causal agent of bovine besnoitiosis. Bovine besnoitiosis has a considerable economic impact in Africa and Asia due to reduced milk production, abortions, and bull infertility. In Europe, bovine besnoitiosis is classified as an emerging disease. Polymorphonuclear neutrophils (PMN) are one of the most abundant leukocytes in cattle blood and amongst the first immunological responders toward invading pathogens. In the case of B. besnoiti, bovine PMN produce reactive oxygen species (ROS), release neutrophil extracellular traps (NETs), and show increased autophagic activities upon exposure to tachyzoite stages. In that context, the general processes of NETosis and autophagy were previously reported as associated with AMP-activated protein kinase (AMPK) activation. Here, we study the role of AMPK in B. besnoiti tachyzoite-induced NET formation, thereby expanding the analysis to both upstream proteins, such as the calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK), and downstream signaling and effector molecules, such as the autophagy-related proteins ULK-1 and Beclin-1. Current data revealed early AMPK activation (<30 min) in both B. besnoiti-exposed and AMPK activator (AICAR)-treated bovine PMN. This finding correlated with upstream responses on the level of CAMKK activation. Moreover, these reactions were accompanied by an augmented autophagic activity, as represented by enhanced expression of ULK-1 but not of Beclin-1. Referring to neutrophil effector functions, AICAR treatments induced both AMPK phosphorylation and NET formation, without affecting cell viability. In B. besnoiti tachyzoite-exposed PMN, AICAR treatments failed to affect oxidative responses, but led to enhanced NET formation, thereby indicating that AMPK and autophagic activation synergize with B. besnoiti-driven NETosis.
Collapse
Affiliation(s)
- Iván Conejeros
- Institute of Parasitology, Justus Liebig University of Giessen, 35392 Giessen, Germany; (Z.D.V.); (L.R.-B.); (G.E.); (C.H.); (A.T.)
| | | | | | | | | | | |
Collapse
|
5
|
Krogstad KC, Fehn JF, Mamedova LK, Bernard MP, Bradford BJ. Effects of rumen-protected niacin on inflammatory response to repeated intramammary lipopolysaccharide challenges. J Dairy Sci 2024:S0022-0302(24)00927-5. [PMID: 38876216 DOI: 10.3168/jds.2024-24974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/15/2024] [Indexed: 06/16/2024]
Abstract
Nutritional strategies that improve an animal's resilience to various challenges may improve animal health and welfare. One such nutrient is niacin which has reduced inflammation in mice, humans, and swine; however, niacin's anti-inflammatory effects have not been investigated in cattle. Our objective was to determine whether rumen-protected niacin (RPN) alters lactating dairy cows' inflammatory response to intramammary lipopolysaccharide (LPS) challenges, whether RPN resulted in any carry-over effects, and whether repeated LPS challenges result in signs of immune tolerance or innate immune training. Twenty healthy, late-lactation Holstein cows (232 ± 65 d in milk; 39 ± 5.8 kg/d of milk) were enrolled in a randomized complete block experiment which lasted 70 d. Cows received 26 g/d of RPN or no top-dress (CON) for the first 42 d of the experiment. During the final milking of d 27 and 55, cows were challenged in their rear-right mammary gland (RR) with 100 µg of LPS suspended in 5 mL of phosphate buffered saline. Milk yield, milk conductivity, and feed intake were measured daily. Milk composition was measured on d 14, 23, 24, 30, 37, 45, and 52. Blood samples were collected at 0, 8, 12, 24, 48, 72, 96, and 120 h after each LPS challenge, whereas RR quarter milk samples were collected at 0, 8, 16, 24, 48, 72, 96, 120, 144, and 168 h after each LPS challenge. Body temperature was measured continuously during each challenge with an intravaginal thermometer. Linear mixed models with repeated measures were used to analyze the results. Before LPS challenge, RPN did not affect feed intake or milk production, but it reduced SCS (1.24 ± 0.41 vs. 0.05 ± 0.45). After challenge, RPN did not affect feed intake, milk production, milk composition, SCS, body temperature, plasma glucose, or plasma insulin concentrations. Our results suggest RPN reduced peak plasma haptoglobin and lipopolysaccharide binding protein (LBP) during the 1st LPS challenge. Plasma haptoglobin tended to be less after the 2nd challenge for cows previously supplemented RPN while LBP was similar for each treatment group after the 2nd challenge. The 2nd LPS challenge resulted in decreased plasma haptoglobin compared with the 1st LPS challenge, suggestive of tolerance but it also induced a greater peak SCS than the 1st LPS challenge. Our results suggest that repeated LPS challenges promote a systemic tolerance but heightened local response to LPS-induced mastitis. Feeding RPN reduced SCS before challenge and reduced plasma acute phase proteins after challenge suggesting that RPN may reduce systemic inflammation without altering the local inflammatory responses.
Collapse
Affiliation(s)
- K C Krogstad
- Department of Animal Science, Michigan State University, East Lansing 48824; Department of Animal Science, The Ohio State University, Wooster, OH 44691 USA.
| | - J F Fehn
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - L K Mamedova
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - M P Bernard
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, Michigan, 48824 USA; Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, 48824 USA
| | - B J Bradford
- Department of Animal Science, Michigan State University, East Lansing 48824
| |
Collapse
|
6
|
Mamedova LK, Krogstad KC, McDonald PO, Pokhrel L, Hua DH, Titgemeyer EC, Bradford BJ. Investigation of HCAR2 antagonists as a potential strategy to modulate bovine leukocytes. J Anim Sci Biotechnol 2024; 15:38. [PMID: 38444010 PMCID: PMC10916251 DOI: 10.1186/s40104-024-00999-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/17/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Dairy cows experiencing ketosis after calving suffer greater disease incidence and are at greater risk of leaving the herd. In vitro administration of beta-hydroxybutyric acid (BHBA; the primary blood ketone) has inhibitory effects on the function of bovine leukocytes. BHBA is a ligand of HCAR2 and the activation of these receptors promotes an anti-inflammatory response which may be related with immunosuppression observed in transition dairy cattle. The objective of this study was to identify and test antagonists for HCAR2 in bovine immune cells cultured with BHBA. RESULTS We observed expression of HCAR2 at the protein level within lymphocytes, monocytes, and granulocytes. The proportion of cells expressing HCAR2 tended to be greater in mid-lactation compared to early lactation cows; the increase was a result of increased proportion of T and B cells expressing HCAR2. Stimulation of HCAR2 with niacin or BHBA promoted Ca2+ mobilization in neutrophils and mononuclear cells. Mononuclear cells treated with BHBA had diminished intracellular Ca2+ responses when HCAR2 was knocked down by siRNA silencing, indicating Ca2+ mobilization was mediated by HCAR2 signaling. Two candidate antagonists for HCAR2, synthesized from niacin (NA-1 and NA-5), were tested; monocytes and neutrophils pre-treated with NA-1 and NA-5 had reduced Ca2+ mobilization after incubation with BHBA. Furthermore, NA-5 but not NA-1 prevented BHBA-associated reductions in cyclic AMP. CONCLUSIONS We demonstrated that HCAR2 is present on bovine leukocytes and has greater expression later in lactation. We confirmed that BHBA and niacin derived HCAR2 antagonists alter bovine leukocyte activity. Our results demonstrate that both BHBA and niacin affect bovine leukocyte Ca2+ mobilization in a HCAR2-dependent manner.
Collapse
Affiliation(s)
- Laman K Mamedova
- Department of Animal Science, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, 66506, USA
| | - Kirby C Krogstad
- Department of Animal Science, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Paiton O McDonald
- Comparative Medicine and Integrative Biology, East Lansing, MI, 48824, USA
| | - Laxman Pokhrel
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| | - Duy H Hua
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| | - Evan C Titgemeyer
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, 66506, USA
| | - Barry J Bradford
- Department of Animal Science, Michigan State University, East Lansing, Michigan, 48824, USA.
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
7
|
Qi J, Yang Q, Xia Q, Huang F, Guo H, Cui H, Xie Y, Ren Z, Gou L, Cai D, Kumbhar MA, Fang J, Zuo Z. Low Glucose plus β-Hydroxybutyrate Induces an Enhanced Inflammatory Response in Yak Alveolar Macrophages via Activating the GPR109A/NF-κB Signaling Pathway. Int J Mol Sci 2023; 24:11331. [PMID: 37511091 PMCID: PMC10379377 DOI: 10.3390/ijms241411331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Yaks are often subject to long-term starvation and a high prevalence of respiratory diseases and mortality in the withered season, yet the mechanisms that cause this remain unclear. Research has demonstrated that β-hydroxybutyrate (BHB) plays a significant role in regulating the immune system. Hence, we hypothesize that the low glucose and high BHB condition induced by severe starvation might have an effect on the pro-inflammatory response of the alveolar macrophages (AMs) in yaks. To validate our hypothesis, we isolated and identified primary AMs from freshly slaughtered yaks and cultured them in a medium with 5.5 mM of glucose or 2.8 mM of glucose plus 1-4 mM of BHB. Utilizing a real-time quantitative polymerase chain reaction (RT-qPCR), immunoblot assay, and enzyme-linked immunosorbent assay (ELISA), we evaluated the gene and protein expression levels of GPR109A (G-protein-coupled receptor 109A), NF-κB p65, p38, and PPARγ and the concentrations of pro-inflammatory cytokines interleukin (IL)-1β and IL-6 and tumor necrosis factor (TNF)-α in the supernatant. The results demonstrated that AMs exposed to low glucose plus BHB had significantly higher levels of IL-1β, IL-6, and TNF-α (p < 0.05) and higher activity of the GPR109A/NF-κB signaling pathway. A pretreatment of either pertussis toxin (PTX, inhibitor of GPR109A) or pyrrolidinedithiocarbamic (PDTC, inhibitor of NF-κB p65) was effective in preventing the elevated secretion of pro-inflammatory cytokines induced by low glucose plus BHB (p < 0.05). These results indicated that the low glucose plus BHB condition would induce an enhanced pro-inflammatory response through the activation of the GPR109A/NF-κB signaling pathway in primary yak AMs, which is probably the reason why yaks experience a higher rate of respiratory diseases and mortality. This study will offer new insight into the prevention and treatment of bovine respiratory diseases.
Collapse
Affiliation(s)
- Jiancheng Qi
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiyuan Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Xia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Fangyuan Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongrui Guo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hengmin Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Xie
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Maqsood Ahmed Kumbhar
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Fang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Carretta MD, Creutzburg P, Borquez K, Quiroga J, Alarcón P, Rivera A, Burgos RA. Hydroxycarboxylic acid receptor 2 (HCA2) agonists induce NET formation and MMP-9 release from bovine polymorphonuclear leukocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104562. [PMID: 36183839 DOI: 10.1016/j.dci.2022.104562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/27/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Periparturient cows are commonly fed diets supplemented with Niacin (nicotinic acid, NA) because of its anti-lipolytic properties. NA confers its anti-lipolytic effects by activating the hydroxycarboxylic acid 2 receptor (HCA2). HCA2 is also activated by the ketone body beta-hydroxybutyrate (BHB) and circulating BHB levels are elevated in postpartum dairy cows. The HCA2 receptor is highly expressed in bovine polymorphonuclear leukocytes (PMN) and could link metabolic and innate immune responses in cattle. We investigated how HCA2 agonists affected bovine PMN function in vitro. We studied different PMN responses, such as granule release, surface expression of CD11b and CD47, generation of neutrophil extracellular traps (NETs), and apoptosis. NA, BHB, and 4,4aR,5,5aR-tetrahydro-1H-cyclopropa [4,5] cyclopenta [1,2-c] pyrazole-3-carboxylic acid (MK-1903) treatment triggered the release of matrix metalloproteinase 9 (MMP-9), a component of the tertiary granule, from neutrophils. Additionally, all HCA2 agonists induced NETs formation but did not affect surface expression of CD11b and CD47. Finally, none of the HCA2 agonists triggered apoptosis in bovine PMN. This information will give new insights into the potential role of the HCA2 receptor in the bovine innate immune response.
Collapse
Affiliation(s)
- Maria Daniella Carretta
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Science, Universidad Austral de, Chile.
| | - Paz Creutzburg
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Science, Universidad Austral de, Chile
| | - Katherine Borquez
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Science, Universidad Austral de, Chile
| | - John Quiroga
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Science, Universidad Austral de, Chile
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Science, Universidad Austral de, Chile
| | - Andrés Rivera
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Science, Universidad Austral de, Chile
| | - Rafael Agustin Burgos
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Science, Universidad Austral de, Chile
| |
Collapse
|
9
|
Huang J, Wu Y, Chai X, Wang S, Zhao Y, Hou Y, Ma Y, Chen S, Zhao S, Zhu X. β-Hydroxybutyric acid improves cognitive function in a model of heat stress by promoting adult hippocampal neurogenesis. STRESS BIOLOGY 2022; 2:57. [PMID: 37676574 PMCID: PMC10441921 DOI: 10.1007/s44154-022-00079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/15/2022] [Indexed: 09/08/2023]
Abstract
Heat stress has multiple potential effects on the brain, such as neuroinflammation, neurogenesis defects, and cognitive impairment. β-hydroxybutyric acid (BHBA) has been demonstrated to play neuroprotective roles in various models of neurological diseases. In the present study, we investigated the efficacy of BHBA in alleviating heat stress-induced impairments of adult hippocampal neurogenesis and cognitive function, as well as the underlying mechanisms. Mice were exposed to 43 ℃ for 15 min for 14 days after administration with saline, BHBA, or minocycline. Here, we showed for the first time that BHBA normalized memory ability in the heat stress-treated mice and attenuated heat stress-impaired hippocampal neurogenesis. Consistently, BHBA noticeably improved the synaptic plasticity in the heat stress-treated hippocampal neurons by inhibiting the decrease of synapse-associated proteins and the density of dendritic spines. Moreover, BHBA inhibited the expression of cleaved caspase-3 by suppressing endoplasmic reticulum (ER) stress, and increased the expression of brain-derived neurotrophic factor (BDNF) in the heat stress-treated hippocampus by activating the protein kinase B (Akt)/cAMP response element binding protein (CREB) and methyl-CpG binding protein 2 (MeCP2) pathways. These findings indicate that BHBA is a potential agent for improving cognitive functions in heat stress-treated mice. The action may be mediated by ER stress, and Akt-CREB-BDNF and MeCP2 pathways to improve adult hippocampal neurogenesis and synaptic plasticity.
Collapse
Affiliation(s)
- Jian Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yongji Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xuejun Chai
- Department of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Shuai Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yongkang Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yan Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yue Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
10
|
Systemic Beta-Hydroxybutyrate Affects BDNF and Autophagy into the Retina of Diabetic Mice. Int J Mol Sci 2022; 23:ijms231710184. [PMID: 36077579 PMCID: PMC9455989 DOI: 10.3390/ijms231710184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Diabetic retinopathy (DR) is a neurovascular disease, characterized by a deficiency of brain-derived neurotrophic factor (BDNF), a regulator of autophagy. Beta-hydroxybutyrate (BHB), previously reported as a protective agent in DR, has been associated with BDNF promotion. Here, we investigated whether systemic BHB affects the retinal levels of BDNF and local autophagy in diabetic mice with retinopathy; Methods: C57BL/6J mice were administered with intraperitoneal (i.p.) streptozotocin (STZ) (75 mg/kg) injection to develop diabetes. After 2 weeks, they received i.p. injections of BHB (25−50−100 mg/kg) twice a week for 10 weeks. Retinal samples were collected in order to perform immunofluorescence, Western blotting, and ELISA analysis; Results: BHB 50 mg/kg and 100 mg/kg significantly improved retinal BDNF levels (p < 0.01) in diabetic mice. This improvement was negatively associated with autophagosome−lysosome formations (marked by LC3B and ATG14) and to higher levels of connexin 43 (p < 0.01), a marker of cell integrity. Moreover, BHB administration significantly reduced M1 microglial activation and autophagy (p < 0.01); Conclusions: The systemic administration of BHB in mice with DR improves the retinal levels of BDNF, with the consequent reduction of the abnormal microglial autophagy. This leads to retinal cell safety through connexin 43 restoration.
Collapse
|
11
|
Feng R, Lu M, Yang Y, Luo P, Liu L, Xu K, Xu P. Genome- and transcriptome-wide association studies show that pulmonary embolism is associated with bone-forming proteins. Expert Rev Hematol 2022; 15:951-958. [PMID: 35848930 DOI: 10.1080/17474086.2022.2103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Pulmonary embolism (PE) is a leading cause of death in stroke patients and a severe health burden worldwide. There is a pressing need to understand the mechanisms by which it occurs and to identify at-risk patients efficiently and accurately. OBJECTIVES The aim of this paper was to analyze the genetic correlation between PE and human plasma proteins through genome-wide association study (GWAS) with transcriptome-wide association study (TWAS), in combination with mRNA expression profiling at three levels: DNA, RNA, and protein. METHODS First, based on data from GWAS in European populations, we performed a linkage disequilibrium score regression (LDSC) analysis of plasma proteins and PE in 3,283 individuals and additionally analyzed the genetic association between PE and fracture. Then, we performed a TWAS on PE GWAS data using skeletal muscle and blood for gene expression references. Finally, we validated the genetic correlation between PE and human plasma proteins by co-matching the genes encoding the identified proteins and those identified using TWAS with the differentially expressed genes obtained from mRNA expression profiling of PE (Figure1). RESULTS We identified five plasma proteins associated with PE, including hydroxycarboxylic acid receptor 2, defensin 118, and bone morphogenetic protein (BMP) 7, as well as a relationship between PE and fracture. Comparison of genes encoding these proteins with genes obtained from TWAS and then with differentially expressed genes obtained from PE mRNA expression profiling revealed that PE was highly correlated with the BMP family of genes.
Collapse
Affiliation(s)
- Ruoyang Feng
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, 710054, China
| | - Mengnan Lu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yanni Yang
- Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Pan Luo
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, 710054, China
| | - Lin Liu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, 710054, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, 710054, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, 710054, China
| |
Collapse
|
12
|
Moutinho M, Puntambekar SS, Tsai AP, Coronel I, Lin PB, Casali BT, Martinez P, Oblak AL, Lasagna-Reeves CA, Lamb BT, Landreth GE. The niacin receptor HCAR2 modulates microglial response and limits disease progression in a mouse model of Alzheimer's disease. Sci Transl Med 2022; 14:eabl7634. [PMID: 35320002 PMCID: PMC10161396 DOI: 10.1126/scitranslmed.abl7634] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Increased dietary intake of niacin has been correlated with reduced risk of Alzheimer's disease (AD). Niacin serves as a high-affinity ligand for the receptor HCAR2 (GPR109A). In the brain, HCAR2 is expressed selectively by microglia and is robustly induced by amyloid pathology in AD. The genetic inactivation of Hcar2 in 5xFAD mice, a model of AD, results in impairment of the microglial response to amyloid deposition, including deficits in gene expression, proliferation, envelopment of amyloid plaques, and uptake of amyloid-β (Aβ), ultimately leading to exacerbation of amyloid burden, neuronal loss, and cognitive deficits. In contrast, activation of HCAR2 with an FDA-approved formulation of niacin (Niaspan) in 5xFAD mice leads to reduced plaque burden and neuronal dystrophy, attenuation of neuronal loss, and rescue of working memory deficits. These data provide direct evidence that HCAR2 is required for an efficient and neuroprotective response of microglia to amyloid pathology. Administration of Niaspan potentiates the HCAR2-mediated microglial protective response and consequently attenuates amyloid-induced pathology, suggesting that its use may be a promising therapeutic approach to AD that specifically targets the neuroimmune response.
Collapse
Affiliation(s)
- Miguel Moutinho
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shweta S Puntambekar
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andy P Tsai
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Israel Coronel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Peter B Lin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brad T Casali
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Pablo Martinez
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Adrian L Oblak
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cristian A Lasagna-Reeves
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gary E Landreth
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
13
|
Song Y, Wang K, Loor JJ, Jiang Q, Yang Y, Jiang S, Liu S, He J, Feng X, Du X, Lei L, Gao W, Liu G, Li X. β-Hydroxybutyrate inhibits apoptosis in bovine neutrophils through activating ERK1/2 and AKT signaling pathways. J Dairy Sci 2022; 105:3477-3489. [DOI: 10.3168/jds.2021-21259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022]
|
14
|
Song Y, Yang Y, Zeng W, Loor JJ, Jiang Q, Peng Z, Li Y, Jiang S, Feng X, Du X, Li X, Liu G. β-Hydroxybutyrate impairs neutrophil migration distance through activation of a protein kinase C and myosin light chain 2 signaling pathway in ketotic cows. J Dairy Sci 2021; 105:761-771. [PMID: 34635355 DOI: 10.3168/jds.2021-20875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022]
Abstract
Ketosis in dairy cows often occurs in the peripartal period and is accompanied by immune dysfunction. High concentrations of β-hydroxybutyrate (BHB) in peripheral blood during ketosis are closely related to the impairment of polymorphonuclear neutrophil (PMN) chemotaxis and contribute to immune dysfunction. The specific effect of BHB on PMN chemotaxis in dairy cows and the underlying molecular mechanisms are unclear. Here, 30 multiparous cows (within 3 wk postpartum) classified based on serum BHB as control (n = 15, BHB <0.6 mM) or clinically ketotic (n = 15, BHB >3.0 mM) were used. Blood samples were collected before feeding, and the isolated PMN were treated with platelet-activating factor for 0.5 h to activate their migration. Scanning electron microscopy revealed a longer tail in PMN of ketotic cows. In addition, the phosphorylation and transcription levels of myosin light chain 2 (MLC2) increased in PMN of ketotic cows. Polymorphonuclear neutrophils from control dairy cows were incubated with 3.0 mM BHB for different times in vitro, and 6 h was selected as the proper duration of BHB stimulation according to its inhibition effect on PMN migration using an under-agarose PMN chemotaxis model. Similarly, BHB stimulation in vitro resulted in inhibition of migration distance and deviation of migration direction of PMN, as well as a longer tail in morphology in the scanning electron microscope data, suggesting that BHB-induced PMN migration inhibition may be mediated by impairing the trailing edge contraction. To confirm this hypothesis, sotrastaurin (Sotra)-a specific inhibitor of protein kinase C (PKC), which is the core regulator of cell contraction-was used with or without BHB treatment in vitro. Sotra was pretreated 0.5 h before BHB treatment. Accordingly, BHB treatment increased the phosphorylation level of PKC and MLC2, the protein abundance of RhoA and rho-kinase 1 (ROCK1), and the mRNA abundance of PRKCA, MYL2, RHOA, and ROCK1 in PMN. In contrast, these effects of BHB on PMN were dampened by Sotra. As demonstrated by immunofluorescence experiments in vitro, the BHB-induced inhibition of trailing edge contraction of PMN was relieved by Sotra. In addition, Sotra also dampened the effects of BHB on PMN migration in vitro. Furthermore, as verified by in vivo experiments, compared with the control cows, both abundance and activation of PKC signaling were enhanced in PMN of ketotic cows. Overall, the present study revealed that high concentrations of blood BHB impaired PMN migration distance through inhibition of the trailing edge contraction, mediated by enhancing the activation of PKC-MLC2 signaling. These findings help explain the dysfunctional immune state in ketotic cows and provide information on the pathogenesis of infectious diseases secondary to ketosis.
Collapse
Affiliation(s)
- Yuxiang Song
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Yuchen Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Wen Zeng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Zhicheng Peng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Yunfei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Shang Jiang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Xiancheng Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Xiliang Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China.
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China.
| |
Collapse
|
15
|
Transcriptomic Changes in Mouse Bone Marrow-Derived Macrophages Exposed to Neuropeptide FF. Genes (Basel) 2021; 12:genes12050705. [PMID: 34065092 PMCID: PMC8151073 DOI: 10.3390/genes12050705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/27/2022] Open
Abstract
Neuropeptide FF (NPFF) is a neuropeptide that regulates various biological activities. Currently, the regulation of NPFF on the immune system is an emerging field. However, the influence of NPFF on the transcriptome of primary macrophages has not been fully elucidated. In this study, the effect of NPFF on the transcriptome of mouse bone marrow-derived macrophages (BMDMs) was explored by RNA sequencing, bioinformatics, and molecular simulation. BMDMs were treated with 1 nM NPFF for 18 h, followed by RNA sequencing. Differentially expressed genes (DEGs) were obtained, followed by GO, KEGG, and PPI analysis. A total of eight qPCR-validated DEGs were selected as hub genes. Subsequently, the three-dimensional (3-D) structures of the eight hub proteins were constructed by Modeller and Rosetta. Next, the molecular dynamics (MD)-optimized 3-D structure of hub protein was acquired with Gromacs. Finally, the binding modes between NPFF and hub proteins were studied by Rosetta. A total of 2655 DEGs were obtained (up-regulated 1442 vs. down-regulated 1213), and enrichment analysis showed that NPFF extensively regulates multiple functional pathways mediated by BMDMs. Moreover, the 3-D structure of the hub protein was obtained after MD-optimization. Finally, the docking modes of NPFF-hub proteins were predicted. Besides, NPFFR2 was expressed on the cell membrane of BMDMs, and NPFF 1 nM significantly activated NPFFR2 protein expression. In summary, instead of significantly inhibiting the expression of the immune-related gene transcriptome of RAW 264.7 cells, NPFF simultaneously up-regulated and down-regulated the gene expression profile of a large number of BMDMs, hinting that NPFF may profoundly affect a variety of cellular processes dominated by BMDMs. Our work provides transcriptomics clues for exploring the influence of NPFF on the physiological functions of BMDMs.
Collapse
|
16
|
Swartz T, Bradford B, Mamedova L. Diverging in vitro inflammatory responses toward Streptococcus uberis in mouse macrophages either preconditioned or continuously treated with β-hydroxybutyrate. JDS COMMUNICATIONS 2021; 2:142-147. [PMID: 36339507 PMCID: PMC9623636 DOI: 10.3168/jdsc.2020-0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/10/2021] [Indexed: 11/24/2022]
Abstract
β-Hydroxybutyrate preconditioning reduced Tlr2 and tended to reduce Il10 expression. Continuous β-hydroxybutyrate treatment increased Tlr2 and Il10 expression. Diverging responses due to the timing of BHB treatment suggest opposing mechanisms.
Hyperketonemia is a common condition in early-lactation dairy cows that has been associated with an increase in the risk of infectious disease. Recent mouse studies have elucidated an anti-inflammatory effect of the ketone body β-hydroxybutyrate (BHB). Therefore, the objective of this study was to determine whether BHB altered inflammatory responses in macrophages challenged with the common mastitis pathogen Streptococcus uberis. A secondary objective was to determine whether the inflammatory response to the S. uberis challenge was dependent on whether BHB was present in the medium during the challenge (i.e., preconditioned vs. continuous treatment). Two cell culture experiments were conducted. In the first experiment, mouse macrophages (RAW 264.7 line) were preconditioned with BHB (0, 0.6, 1.2, and 1.8 mM) for 24 h; the medium was then replaced with a standard cell culture medium, and the cells were challenged or not with S. uberis for an additional 6 h. In the second experiment, a similar protocol was used; however, cells were preconditioned with BHB (0, 0.6, 1.2, and 1.8 mM) for 24 h, the medium was replaced with fresh medium containing the same concentration of BHB, and cells were either challenged or not with S. uberis for 6 h. In both experiments, relative transcript abundance of cell membrane receptors (Tlr2 and Gpr109a), cytokines (Il1b, Il10, Tnf, and Tgfb1), and chemokines (Cxcl2 and Ccl5) were determined using quantitative real-time PCR and normalized against the geometric mean of Hprt and B2m. Data were analyzed using a linear mixed model, and orthogonal contrasts were conducted to examine the effect of S. uberis challenge and BHB treatment. Streptococcus uberis activated the macrophages, noted by greater transcript abundance of analyzed genes. Intriguingly, in both experiments, the S. uberis challenge increased expression of Gpr109a, which encodes a receptor that is ligated by BHB. Paradoxically, preconditioning macrophages with BHB increased transcript abundance of the immunosuppressive cytokine Tgfb1 and increased that of the neutrophil chemoattractant Cxcl2. Preconditioning decreased Tlr2 and tended to decrease Il10 transcript abundance. In opposition to the preconditioning experiment, continuous treatment of BHB during the S. uberis challenge linearly increased abundance of Tlr2 and Il10 transcripts. Continuous BHB treatment also increased expression of Il1b. In conclusion, BHB treatment altered macrophage inflammatory responses during an S. uberis challenge; however, the direction of this response was dependent on whether BHB was added to the medium during the S. uberis challenge. Future studies should be conducted using bovine macrophages and in vivo approaches to examine BHB effects during an S. uberis challenge.
Collapse
Affiliation(s)
- T.H. Swartz
- Department of Animal Science, Michigan State University, East Lansing 48824
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
- Corresponding author
| | - B.J. Bradford
- Department of Animal Science, Michigan State University, East Lansing 48824
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - L.K. Mamedova
- Department of Animal Science, Michigan State University, East Lansing 48824
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| |
Collapse
|