1
|
Sheidai M, Malekmohammadi L, Ghahremaninejad F, Danehkar A, Koohdar F. A new computational method to estimate adaptation time in Avicennia by using divergence time. Sci Rep 2024; 14:24158. [PMID: 39406761 PMCID: PMC11480320 DOI: 10.1038/s41598-024-74064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Evolutionary studies of plant groups which are distributed in vast geographical regions and face different ecological and environmental conditions are important as they through light on different mechanisms of local adaptation and species divergence through time. The genus Avicennia is one of these plant groups which inspire of few species show interesting geographical distribution with some degree of species-specific geographical isolations. In general, very limited molecular phylogenetic investigations have been carried out in the genus Avicennia, and therefore we conducted the present study with the following aims: 1. To estimate the species divergence time based on different nuclear and chloroplast DNA regions, separately. This will illustrate how different genetic regions evolved in this genus, 2. To identify the sequences with potential adaptive value against geographical variable by latent factor mixed models (LFMM) analysis, 3. To illustrate the phylogenetic signal of these DNA regions and their role in speciation within the genus and, 4. To introducing a new computational strategy for estimating adaptive time for the sequences. The results showed that different genetic regions may produce different species divergent time, both the nuclear ribosomal internal transcribed spacer (ITS) region and chloroplast DNA sequences, contained potentially adaptive single nucleotide polymorphisms (SNPs).We could present a suggestive time for these adaptive sequences for the first time. In conclusion both local adaptation and independent mutations seem to have played role in Avicennia speciation and evolution.
Collapse
Affiliation(s)
- Masoud Sheidai
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Laleh Malekmohammadi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Farrokh Ghahremaninejad
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Afshin Danehkar
- Department of Environmental Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Fahimeh Koohdar
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
2
|
Segovia NI, Coral-Santacruz D, Haye PA. Genetic homogeneity and weak signatures of local adaptation in the marine mussel Mytilus chilensis. Sci Rep 2024; 14:21081. [PMID: 39256462 PMCID: PMC11387636 DOI: 10.1038/s41598-024-71944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
The natural populations of the marine mussel Mytilus chilensis and the associated aquaculture industry forms a sensitive social-ecological system that relies on the released propagules for cultivation in the highly heterogeneous environment (temperature, productivity, and salinity) of northern Patagonia (42-44 °S). We assessed spatial genetic structure, signals of local adaptation, and population assignment of M. chilensis analyzing 5963 SNPs from 125 individuals across six natural populations sampled over two consecutive years along the southeast Pacific coast (39° 25' to 43° 07' S, ~ 430 km). Neutral and putatively adaptive loci revealed high genetic diversity and low genetic differentiation among populations. Of the whole dataset, less than 1% (50) of loci were identified as putatively adaptive through multiple approaches, with only 0.1% detected in by all of them, and only two loci of them were correlated with environmental variables. No evidence of Isolation by Environment (IBE) was found, albeit a slight differentiation in the southern sampling location (Yaldad). These results suggest that the genetic structure observed is primarily shaped by neutral processes with weak signals of local adaptation. Gene-flow appears to be the main evolutionary force influencing the species' population genetic structure. Because of the importance for the industry, the probability of correct assignment of individuals to their population of origin using allelic frequencies was evaluated. Analyses exhibited relatively low probabilities (< 50% for four out of six sites) of accurately assigning individuals to their geographic origin, with a limited success of SNP markers the for such purposes. Likely, species' high dispersal capacity, seed translocation, and the spill-over effect of mussel aquaculture prevents population genetic differentiation through high effective gene flow, hindering local genetic adaptation.
Collapse
Affiliation(s)
- Nicolás I Segovia
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Coquimbo, Chile
| | - Diana Coral-Santacruz
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Coquimbo, Chile
| | - Pilar A Haye
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile.
- Instituto Milenio en Socio-Ecología Costera (SECOS), Coquimbo, Chile.
| |
Collapse
|
3
|
Cortez T, Sonoda GG, Santos CA, Andrade SCDS. Assessing Mechanisms of Potential Local Adaptation Through a Seascape Genomic Approach in a Marine Gastropod, Littoraria flava. Genome Biol Evol 2024; 16:evae194. [PMID: 39235041 DOI: 10.1093/gbe/evae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 09/06/2024] Open
Abstract
Understanding the combined effects of environmental heterogeneity and evolutionary processes on marine populations is a primary goal of seascape genomic approaches. Here, we utilized genomic approaches to identify local adaptation signatures in Littoraria flava, a widely distributed marine gastropod in the tropical West Atlantic population. We also performed molecular evolution analyses to investigate potential selective signals across the genome. After obtaining 6,298 and 16,137 single nucleotide polymorphisms derived from genotyping-by-sequencing and RNA sequencing, respectively, 69 from genotyping-by-sequencing (85 specimens) and four from RNA sequencing (40 specimens) candidate single nucleotide polymorphisms were selected and further evaluated. The correlation analyses support different evolutionary pressures over transcribed and non-transcribed regions. Thus, single nucleotide polymorphisms within transcribed regions could account for the genotypic and possibly phenotypic divergences in periwinkles. Our molecular evolution tests based on synonymous and non-synonymous ratio (kN/kS) showed that genotype divergences containing putative adaptive single nucleotide polymorphisms arose mainly from synonymous and/or UTR substitutions rather than polymorphic proteins. The distribution of genotypes across different localities seems to be influenced by marine currents, pH, and temperature variations, suggesting that these factors may impact the species dispersion. The combination of RNA sequencing and genotyping-by-sequencing derived datasets provides a deeper understanding of the molecular mechanisms underlying selective forces responses on distinct genomic regions and could guide further investigations on seascape genomics for non-model species.
Collapse
Affiliation(s)
- Thainá Cortez
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Gabriel G Sonoda
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo, Brazil
| | - Camilla A Santos
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | | |
Collapse
|
4
|
Mares-Mayagoitia JA, Lafarga-De la Cruz F, Micheli F, Cruz-Hernández P, de-Anda-Montañez JA, Hyde J, Hernández-Saavedra NY, Mejía-Ruíz P, De Jesús-Bonilla VS, Vargas-Peralta CE, Valenzuela-Quiñonez F. Seascape genomics of the pink abalone (Haliotis corrugata): An insight into a cross-border species in the northeast Pacific coast. J Hered 2024; 115:188-202. [PMID: 38158823 DOI: 10.1093/jhered/esad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024] Open
Abstract
Seascape genomics gives insight into the geographic and environmental factors shaping local adaptations. It improves the understanding of the potential effects of climate change, which is relevant to provide the basis for the international management of fishery resources. The pink abalone (Haliotis corrugata) is distributed from California, United States to Baja California Sur, Mexico, exposed to a latitudinal environmental gradient in the California Current System. Management of the pink abalone contrasts between Mexico and the United States; Mexico has an active fishery organized in four administrative areas, while the United States has kept the fishery in permanent closure since 1996. However, the impact of environmental factors on genetic variation along the species distribution remains unknown, and understanding this relationship is crucial for effective spatial management strategies. This study aims to investigate the neutral and adaptive genomic structure of H. corrugata. A total of 203 samples from 13 locations were processed using ddRADseq, and covering the species' distribution. Overall, 2,231 neutral, nine potentially adaptive and three genomic-environmental association loci were detected. The neutral structure identified two groups: 1) California, United States and 2) Baja California Peninsula, México. In addition, the adaptive structure analysis also detected two groups with genetic divergence observed at Punta Eugenia. Notably, the seawater temperature significantly correlated with the northern group (temperate) and the southern (warmer) group. This study is a valuable foundation for future research and conservation initiatives, emphasizing the importance of considering neutral and adaptive genetic factors when developing management strategies for marine species.
Collapse
Affiliation(s)
| | - Fabiola Lafarga-De la Cruz
- Centro de Investigaciones Científicas y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Fiorenza Micheli
- Hopkins Marine Station, Oceans Department, Stanford University, Pacific Grove, CA, United States
| | - Pedro Cruz-Hernández
- Centro de Investigaciones Biológicas del Noroeste S.C., La Paz, Baja California Sur, Mexico
| | | | - John Hyde
- NOAA Fisheries, Southwest Fisheries Science Center, La Jolla, CA, United States
| | | | - Paulina Mejía-Ruíz
- Centro de Investigaciones Científicas y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | | | - Carmen E Vargas-Peralta
- Centro de Investigaciones Científicas y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | | |
Collapse
|
5
|
Malekmohammadi L, Sheidai M, Ghahremaninejad F, Danehkar A, Koohdar F. Putative Local Adaptive SNPs in the Genus Avicennia. Biochem Genet 2023; 61:2260-2275. [PMID: 37010715 DOI: 10.1007/s10528-023-10362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/03/2023] [Indexed: 04/04/2023]
Abstract
The genus Avicennia with eight species grow in intertidal zones of tropical and temperate regions, ranging in distribution from West Asia, to Australia, and Latin America. These mangroves have several medicinal applications for mankind. Many genetic and phylogenetic studies have been carried out on mangroves, but none is concerned with geographical adaptation of SNPs. We therefore, used ITS sequences of about 120 Avicennia taxa growing in different parts of the world and undertook computational analyses to identify discriminating SNPs among these species and to study their association with geographical variables. A combination of multivariate and Bayesian approaches such as CCA, RDA, and LFMM were conducted to identify the SNPs with potential adaptation to geographical and ecological variables. Manhattan plot revealed that many of these SNPs are significantly associated with these variables. The genetic changes accompanied by local and geographical adaptation were illustrated by skyline plot. These genetic changes occurred not under a molecular clock model of evolution and probably under a positive selection pressure imposed in different geographical regions in which these plants grow.
Collapse
Affiliation(s)
- Laleh Malekmohammadi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Masoud Sheidai
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Farrokh Ghahremaninejad
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Afshin Danehkar
- Department of Environmental Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Fahimeh Koohdar
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
6
|
Malekmohammadi L, Sheidai M, Ghahremaninejad F, Danehkar A, Koohdar F. Studies on genetic diversity, gene flow and landscape genetic in Avicennia marina: Spatial PCA, Random Forest, and phylogeography approaches. BMC PLANT BIOLOGY 2023; 23:459. [PMID: 37789283 PMCID: PMC10546741 DOI: 10.1186/s12870-023-04475-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
Mangrove forests grow in coastal areas, lagoons, estuaries, and deltas and form the main vegetation in tidal and saline wetlands. Due to the mankind activities and also changes in climate, these forests face degradations and probably extinction in some areas. Avicennia marina is one of the most distributed mangrove species throughout the world. The populations of A. marina occur in a limited region in southern parts of Iran. Very few genetic and spatial analyses are available on these plants from our country. Therefore, the present study was planned to provide detailed information on Avicennia marina populations with regard to genetic diversity, gene flow versus genetic isolation, effects of spatial variables on connectivity and structuring the genetic content of trees populations and also identifying adaptive genetic regions in respond too spatial variables. We used SCoT molecular markers for genetic analyses and utilized different computational approaches for population genetics and landscapes analyses. The results of present study showed a low to moderate genetic diversity in the studied populations and presence of significant Fst values among them. Genetic fragmentation was also observed within each province studied. A limited gene flow was noticed among neighboring populations within a particular province. One population was almost completely isolated from the gene flow with other populations and had peculiar genetic content.Spatial PCA analysis revealed both significant global and local genetic structuring in the studied populations. Spatial variables like humidity, longitude and altitude were the most important spatial features affecting genetic structure in these populations.
Collapse
Affiliation(s)
- Laleh Malekmohammadi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Masoud Sheidai
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Farrokh Ghahremaninejad
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Afshin Danehkar
- Department of Environmental Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Fahimeh Koohdar
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
7
|
Segovia NI, González-Wevar CA, Naretto J, Rosenfeld S, Brickle P, Hüne M, Bernal V, Haye PA, Poulin E. The right tool for the right question: contrasting biogeographic patterns in the notothenioid fish Harpagifer spp. along the Magellan Province. Proc Biol Sci 2022; 289:20212738. [PMID: 35382596 PMCID: PMC8984805 DOI: 10.1098/rspb.2021.2738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Molecular-based analysis has become a fundamental tool to understand the role of Quaternary glacial episodes. In the Magellan Province in southern South America, ice covering during the last glacial maximum (20 ka) radically altered the landscape/seascape, speciation rates and distribution of species. For the notothenioid fishes of the genus Harpagifer, in the area are described two nominal species. Nevertheless, this genus recently colonized South America from Antarctica, providing a short time for speciation processes. Combining DNA sequences and genotyping-by-sequencing SNPs, we evaluated the role of Quaternary glaciations over the patterns of genetic structure in Harpagifer across its distribution in the Magellan Province. DNA sequences showed low phylogeographic structure, with shared and dominant haplotypes between nominal species, suggesting a single evolutionary unit. SNPs identified contrastingly two groups in Patagonia and a third well-differentiated group in the Falkland/Malvinas Islands with limited and asymmetric gene flow. Linking the information of different markers allowed us to infer the relevance of postglacial colonization mediated by the general oceanographic circulation patterns. Contrasting rough- and fine-scale genetic patterns highlights the relevance of combined methodologies for species delimitation, which, depending on the question to be addressed, allows discrimination among phylogeographic structure, discarding incipient speciation, and contemporary spatial differentiation processes.
Collapse
Affiliation(s)
- N I Segovia
- Departamento de Ciencias Ecológicas, Instituto Milenio de Ecología y Biodiversidad (IEB), Universidad de Chile. Las Palmeras 3425, Ñuñoa, Santiago, Chile.,Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile.,Instituto Milenio en Socio-ecología Costera (SECOS), Coquimbo, Chile.,Instituto Milenio Biodiversidad de Ecosistemas Antárticos y subAntárticos (MI-BASE), Valdivia, Chile
| | - C A González-Wevar
- Departamento de Ciencias Ecológicas, Instituto Milenio de Ecología y Biodiversidad (IEB), Universidad de Chile. Las Palmeras 3425, Ñuñoa, Santiago, Chile.,Instituto Milenio Biodiversidad de Ecosistemas Antárticos y subAntárticos (MI-BASE), Valdivia, Chile.,Instituto de Ciencias Marinas y Limnológicas (ICML), Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile.,Centro de Investigación en Dinámicas de Ecosistemas de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile
| | - J Naretto
- Costa Humboldt, Puerto Varas, Los Lagos, Chile
| | - S Rosenfeld
- Departamento de Ciencias Ecológicas, Instituto Milenio de Ecología y Biodiversidad (IEB), Universidad de Chile. Las Palmeras 3425, Ñuñoa, Santiago, Chile.,Laboratorio de Ecosistemas Antárticos y sub-Antárticos, Universidad de Magallanes, Chile
| | - P Brickle
- South Atlantic Environmental Research Institute (SAERI), PO Box 609, Stanley Cottage, Port Stanley, Falkland Islands, UK
| | - M Hüne
- Departamento de Ciencias Ecológicas, Instituto Milenio de Ecología y Biodiversidad (IEB), Universidad de Chile. Las Palmeras 3425, Ñuñoa, Santiago, Chile.,Centro de Investigación para la Conservación de los Ecosistemas Australes (ICEA), Punta Arenas, Chile
| | - V Bernal
- Departamento de Ciencias Ecológicas, Instituto Milenio de Ecología y Biodiversidad (IEB), Universidad de Chile. Las Palmeras 3425, Ñuñoa, Santiago, Chile.,Instituto Milenio Biodiversidad de Ecosistemas Antárticos y subAntárticos (MI-BASE), Valdivia, Chile
| | - P A Haye
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile.,Instituto Milenio en Socio-ecología Costera (SECOS), Coquimbo, Chile
| | - E Poulin
- Departamento de Ciencias Ecológicas, Instituto Milenio de Ecología y Biodiversidad (IEB), Universidad de Chile. Las Palmeras 3425, Ñuñoa, Santiago, Chile.,Instituto Milenio Biodiversidad de Ecosistemas Antárticos y subAntárticos (MI-BASE), Valdivia, Chile
| |
Collapse
|
8
|
Bascur M, Morley SA, Meredith MP, Muñoz-Ramírez CP, Barnes DKA, Schloss IR, Sands CJ, Schofield O, Román-Gonzaléz A, Cárdenas L, Venables H, Brante A, Urzúa Á. Interpopulational differences in the nutritional condition of Aequiyoldia eightsii (Protobranchia: Nuculanidae) from the Western Antarctic Peninsula during austral summer. PeerJ 2022; 9:e12679. [PMID: 35036155 PMCID: PMC8706337 DOI: 10.7717/peerj.12679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
The Western Antarctic Peninsula (WAP) is a hotspot for environmental change and has a strong environmental gradient from North to South. Here, for the first time we used adult individuals of the bivalve Aequiyoldia eightsii to evaluate large-scale spatial variation in the biochemical composition (measured as lipid, protein and fatty acids) and energy content, as a proxy for nutritional condition, of three populations along the WAP: O’Higgins Research Station in the north (63.3°S), Yelcho Research Station in mid-WAP (64.9°S) and Rothera Research Station further south (67.6°S). The results reveal significantly higher quantities of lipids (L), proteins (P), energy (E) and total fatty acids (FA) in the northern population (O’Higgins) (L: 8.33 ± 1.32%; P: 22.34 ± 3.16%; E: 171.53 ± 17.70 Joules; FA: 16.33 ± 0.98 mg g) than in the mid-WAP population (Yelcho) (L: 6.23 ± 0.84%; P: 18.63 ± 1.17%; E: 136.67 ± 7.08 Joules; FA: 10.93 ± 0.63 mg g) and southern population (Rothera) (L: 4.60 ± 0.51%; P: 13.11 ± 0.98%; E: 98.37 ± 5.67 Joules; FA: 7.58 ± 0.48 mg g). We hypothesize these differences in the nutritional condition could be related to a number of biological and environmental characteristics. Our results can be interpreted as a consequence of differences in phenology at each location; differences in somatic and gametogenic growth rhythms. Contrasting environmental conditions throughout the WAP such as seawater temperature, quantity and quality of food from both planktonic and sediment sources, likely have an effect on the metabolism and nutritional intake of this species.
Collapse
Affiliation(s)
- Miguel Bascur
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile.,Programa de Magister en Ecología Marina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Simon A Morley
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Michael P Meredith
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Carlos P Muñoz-Ramírez
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - David K A Barnes
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Irene R Schloss
- Instituto Antártico Argentino, Buenos Aires, Argentina.,Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Argentina.,Universidad Nacional de Tierra del Fuego, Ushuaia, Argentina
| | - Chester J Sands
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Oscar Schofield
- Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, United States
| | | | - Leyla Cárdenas
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile.,Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Hugh Venables
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Antonio Brante
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile.,Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Ángel Urzúa
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile.,Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
9
|
Leclerc JC, Brante A, Viard F. Rapid recovery of native habitat-builders following physical disturbance on pier pilings offsets colonization of cryptogenic and non-indigenous species in a Chilean port. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105231. [PMID: 33302154 DOI: 10.1016/j.marenvres.2020.105231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/09/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Examining the effects of disturbances within marine urban communities can shed light on their assembly rules and invasion processes. The effects of physical disturbance, through the removal of dominant native habitat-builders, were investigated in the recolonization of disturbed patches and colonization of plates on pier pilings, in a Chilean port. On pilings, disturbance substantially affected community structure after 3 months, although it slowly converged across treatments after 10 months. On plates, cryptogenic and non-indigenous species richness increased with removal severity, which was not observed in natives. Opportunistic taxa took advantage of colonizing at an early successional stage, illustrating a competition-colonization trade-off, although indirect effects might be at play (e.g. trophic competition or selective predation). Recovery of the habitat-builders then occurred at the expense of cryptogenic and non-indigenous taxa. Whether natives could continue winning against increasing propagule and colonization pressures in marine urban habitats deserves further attention. The interactions between disturbance and biological invasions herein experimentally shown in situ contribute to our understanding of multiple changes imposed by marine urbanization in a growing propagule transport network.
Collapse
Affiliation(s)
- Jean-Charles Leclerc
- Universidad Católica de la Santísima Concepción, Departamento de Ecología, Facultad de Ciencias, Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Casilla 297, Concepción, Chile; Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France.
| | - Antonio Brante
- Universidad Católica de la Santísima Concepción, Departamento de Ecología, Facultad de Ciencias, Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Casilla 297, Concepción, Chile
| | - Frédérique Viard
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France; ISEM, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|