1
|
Van Herzele C, Coppens S, Vereecke N, Theuns S, de Graaf DC, Nauwynck H. New insights into honey bee viral and bacterial seasonal infection patterns using third-generation nanopore sequencing on honey bee haemolymph. Vet Res 2024; 55:118. [PMID: 39334245 PMCID: PMC11430211 DOI: 10.1186/s13567-024-01382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/21/2024] [Indexed: 09/30/2024] Open
Abstract
Honey bees are rapidly declining, which poses a significant threat to our environment and agriculture industry. These vital insects face a disease complex believed to be caused by a combination of parasites, viruses, pesticides, and nutritional deficiencies. However, the real aetiology is still enigmatic. Due to the conventional analysis methods, we still lack complete insights into the honey bee virome and the presence of pathogenic bacteria. To fill this knowledge gap, we employed third-generation nanopore metagenomic sequencing on honey bee haemolymph to monitor the presence of pathogens over almost a year. This study provides valuable insights into the changes in bacterial and viral loads within honey bee colonies. We identified different pathogens in the honey bee haemolymph, which are not included in honey bee screenings. These pathogens comprise the Apis mellifera filamentous virus, Apis rhabdoviruses, and various bacteria such as Frischella sp. and Arsenophonus sp. Furthermore, a sharp contrast was observed between young and old bees. Our research proposes that transgenerational immune priming may play a role in shaping infection patterns in honey bees. We observed a significant increase in pathogen loads in the spring, followed by a notable decrease in pathogen presence during the summer and autumn months. However, certain pathogens seem to be able to evade this priming effect, making them particularly intriguing as potential factors contributing to mortality. In the future, we aim to expand our research on honey bee transgenerational immune priming and investigate its potential in natural settings. This knowledge will ultimately enhance honey bee health and decrease colony mortality.
Collapse
Affiliation(s)
- Cato Van Herzele
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Ghent, Belgium.
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| | | | - Nick Vereecke
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Ghent, Belgium
- PathoSense BV, Pastoriestraat 10, 2500, Lier, Belgium
| | | | - Dirk C de Graaf
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Hans Nauwynck
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Domingues CEC, Šimenc L, Toplak I, de Graaf DC, De Smet L, Verbeke W, Peelman L, Ansaloni LS, Gregorc A. Eggs sampling as an effective tool for identifying the incidence of viruses in honey bees involved in artificial queen rearing. Sci Rep 2024; 14:9612. [PMID: 38671077 PMCID: PMC11053070 DOI: 10.1038/s41598-024-60135-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
The Carniolan honey bee (Apis mellifera carnica) plays an essential role in crop pollination, environment diversity, and the production of honey bee products. However, the health of individual honey bees and their colonies is under pressure due to multiple stressors, including viruses as a significant threat to bees. Monitoring various virus infections could be a crucial selection tool during queen rearing. In the present study, samples from all developmental stages (eggs, larvae, pupae, and queens) were screened for the incidence of seven viruses during queen rearing in Slovenia. The screening of a total of 108 samples from five queen breeders was performed by the RT-qPCR assays. The results showed that the highest incidence was observed for black queen cell virus (BQCV), Lake Sinai virus 3 (LSV3), deformed wing virus B (DWV-B), and sacbrood virus (SBV). The highest viral load was detected in queens (6.07 log10 copies/queen) and larvae (5.50 log10 copies/larva) for BQCV, followed by SBV in larvae (5.47 log10 copies/larva). When comparing all the honey bee developmental stages, the eggs exhibited general screening for virus incidence and load in queen mother colonies. The results suggest that analyzing eggs is a good indicator of resilience to virus infection during queen development.
Collapse
Affiliation(s)
- Caio E C Domingues
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311, Hoče, Slovenia.
| | - Laura Šimenc
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Ivan Toplak
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Dirk C de Graaf
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, Krijgslaan 281 S2, 9000, Ghent, Belgium
| | - Lina De Smet
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, Krijgslaan 281 S2, 9000, Ghent, Belgium
| | - Wim Verbeke
- Department of Agricultural Economics, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Luc Peelman
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
| | - Leticia S Ansaloni
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311, Hoče, Slovenia
| | - Aleš Gregorc
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311, Hoče, Slovenia
| |
Collapse
|
3
|
Lu RX, Bhatia S, Simone-Finstrom M, Rueppell O. Quantitative trait loci mapping for survival of virus infection and virus levels in honey bees. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105534. [PMID: 38036199 DOI: 10.1016/j.meegid.2023.105534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Israeli acute paralysis virus (IAPV) is a highly virulent, Varroa-vectored virus that is of global concern for honey bee health. Little is known about the genetic basis of honey bees to withstand infection with IAPV or other viruses. We set up and analyzed a backcross between preselected honey bee colonies of low and high IAPV susceptibility to identify quantitative trait loci (QTL) associated with IAPV susceptibility. Experimentally inoculated adult worker bees were surveyed for survival and selectively sampled for QTL analysis based on SNPs identified by whole-genome resequencing and composite interval mapping. Additionally, natural titers of other viruses were quantified in the abdomen of these workers via qPCR and also used for QTL mapping. In addition to the full dataset, we analyzed distinct subpopulations of susceptible and non-susceptible workers separately. These subpopulations are distinguished by a single, suggestive QTL on chromosome 6, but we identified numerous other QTL for different abdominal virus titers, particularly in the subpopulation that was not susceptible to IAPV. The pronounced QTL differences between the susceptible and non-susceptible subpopulations indicate either an interaction between IAPV infection and the bees' interaction with other viruses or heterogeneity among workers of a single cohort that manifests itself as IAPV susceptibility and results in distinct subgroups that differ in their interaction with other viruses. Furthermore, our results indicate that low susceptibility of honey bees to viruses can be caused by both, virus tolerance and virus resistance. QTL were partially overlapping among different viruses, indicating a mixture of shared and specific processes that control viruses. Some functional candidate genes are located in the QTL intervals, but their genomic co-localization with numerous genes of unknown function delegates any definite characterization of the underlying molecular mechanisms to future studies.
Collapse
Affiliation(s)
- Robert X Lu
- Department of Biological Sciences, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta, T6G 2E9, Canada
| | - Shilpi Bhatia
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E Market Street, Greensboro, NC 27411, USA
| | - Michael Simone-Finstrom
- USDA-ARS Honey Bee Breeding, Genetics and Physiology Research Laboratory, 1157 Ben Hur Road, Baton Rouge, LA 70820, USA
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta, T6G 2E9, Canada; Department of Biology, University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27412, USA.
| |
Collapse
|
4
|
Beims H, Janke M, von der Ohe W, Steinert M. Influence of virus abundances in donor colonies and nurse hives on queens of Apis mellifera during the rearing process. Open Vet J 2023; 13:879-893. [PMID: 37614729 PMCID: PMC10443816 DOI: 10.5455/ovj.2023.v13.i7.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/21/2023] [Indexed: 08/25/2023] Open
Abstract
Background Honeybees are one of the three most important animals for mankind. In order to be safe and increase number of bee colonies for pollination, the breeding of queens is necessary. For several decades, bees were selected on economic and behavioral aspects. With the appearance of the neozootic mite Varroa destructor beekeepers were forced to adapt their methods. Varroa destructor can act as a vector for many different bee pathogenic viruses and by this potentiates its devastating impact. Aim Methods of rearing queens were not evaluated since the mites' appearance. Besides scientific approaches, viruses received too little attention in regard to the rearing process of honeybee queens. Herein, we present a detailed analysis of virus abundances [Aparavirus, acute bee paralysis virus (ABPV); Triatovirus, black queen cell virus (BQCV); Cripavirus, chronic bee paralysis virus (CBPV); and Iflaviruses, deformed wings virus (DWV), Sacbrood virus (SBV), VDV-1] in breeding hives, donating first instar larvae, hives that are nursing these larvae until the pupa stage, and on queens of Apis mellifera in a breeding apiary. Methods Nurse and donor colonies of the queen-rearing process were sampled in the year 2020 and analyzed by RT qPCR. Virus quantifications were correlated with queen mortalities and seasonal effects. Results Virus detections increased in reared queens, however, the elevated virus titers did not increase the mortality of the queens until their exclosure. Moreover, we observed a lower interrelation between virus abundance in queens and their original donor colonies, than between nurse hives and their nursed queens. Conclusion The bee pathogenic viruses ABPV, BQCV, CBPV, DWV, SBV, and VDV-1 do not influence the mortality of bee queens during the rearing process. Whether respective virus loads result in sublethal or long-term effects remains to be elucidated.
Collapse
Affiliation(s)
- Hannes Beims
- Bezirk Oberbayern, Fachberatung für Imkerei, München, Germany
- Lower Saxony State Office for Consumer Protection and Food Safety, Institute for Apiculture, Celle, Germany
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Martina Janke
- Lower Saxony State Office for Consumer Protection and Food Safety, Institute for Apiculture, Celle, Germany
| | - Werner von der Ohe
- Lower Saxony State Office for Consumer Protection and Food Safety, Institute for Apiculture, Celle, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
5
|
Durand T, Bonjour-Dalmon A, Dubois E. Viral Co-Infections and Antiviral Immunity in Honey Bees. Viruses 2023; 15:1217. [PMID: 37243302 PMCID: PMC10220773 DOI: 10.3390/v15051217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past few decades, honey bees have been facing an increasing number of stressors. Beyond individual stress factors, the synergies between them have been identified as a key factor in the observed increase in colony mortality. However, these interactions are numerous and complex and call for further research. Here, in line with our need for a systemic understanding of the threats that they pose to bee health, we review the interactions between honey bee viruses. As viruses are obligate parasites, the interactions between them not only depend on the viruses themselves but also on the immune responses of honey bees. Thus, we first summarise our current knowledge of the antiviral immunity of honey bees. We then review the interactions between specific pathogenic viruses and their interactions with their host. Finally, we draw hypotheses from the current literature and suggest directions for future research.
Collapse
Affiliation(s)
- Tristan Durand
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| | - Anne Bonjour-Dalmon
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
| | - Eric Dubois
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| |
Collapse
|
6
|
Gebremedhn H, Claeys Bouuaert D, Asperges M, Amssalu B, De Smet L, de Graaf DC. Expression of Molecular Markers of Resilience against Varroa destructor and Bee Viruses in Ethiopian Honey Bees ( Apis mellifera simensis) Focussing on Olfactory Sensing and the RNA Interference Machinery. INSECTS 2023; 14:insects14050436. [PMID: 37233064 DOI: 10.3390/insects14050436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023]
Abstract
Varroa destructor mites and the viruses it vectors are two major factors leading to high losses of honey bees (Apis mellifera) colonies worldwide. However, honey bees in some African countries show resilience to varroa infestation and/or virus infections, although little is known about the mechanisms underlying this resilience. In this study, we investigated the expression profiles of some key molecular markers involved in olfactory sensing and RNA interference, as these processes may contribute to the bees' resilience to varroa infestation and virus infection, respectively. We found significantly higher gene expression of the odorant binding protein, OBP14, in the antennae of Ethiopian bees compared to Belgian bees. This result suggests the potential of OBP14 as a molecular marker of resilience to mite infestation. Scanning electron microscopy showed no significant differences in the antennal sensilla occurrence and distribution, suggesting that resilience arises from molecular processes rather than morphological adaptations. In addition, seven RNAi genes were upregulated in the Ethiopian honey bees and three of them-Dicer-Drosha, Argonaute 2, and TRBP2-were positively correlated with the viral load. We can conclude that the antiviral immune response was triggered when bees were experiencing severe viral infection and that this might contribute to the bees' resilience to viruses.
Collapse
Affiliation(s)
- Haftom Gebremedhn
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, 9000 Ghent, Belgium
- Tigray Agricultural Research Institute, Mekelle P.O. Box 492, Ethiopia
| | - David Claeys Bouuaert
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, 9000 Ghent, Belgium
| | - Michel Asperges
- Centrum Voor Milieukunde, University of Hasselt, 3590 Diepenbeek, Belgium
| | | | - Lina De Smet
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, 9000 Ghent, Belgium
| | - Dirk C de Graaf
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Virus Prevalence in Egg Samples Collected from Naturally Selected and Traditionally Managed Honey Bee Colonies across Europe. Viruses 2022; 14:v14112442. [PMID: 36366540 PMCID: PMC9692946 DOI: 10.3390/v14112442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Monitoring virus infections can be an important selection tool in honey bee breeding. A recent study pointed towards an association between the virus-free status of eggs and an increased virus resistance to deformed wing virus (DWV) at the colony level. In this study, eggs from both naturally surviving and traditionally managed colonies from across Europe were screened for the prevalence of different viruses. Screenings were performed using the phenotyping protocol of the 'suppressed in ovo virus infection' trait but with qPCR instead of end-point PCR and a primer set that covers all DWV genotypes. Of the 213 screened samples, 109 were infected with DWV, 54 were infected with black queen cell virus (BQCV), 3 were infected with the sacbrood virus, and 2 were infected with the acute bee paralyses virus. It was demonstrated that incidences of the vertical transmission of DWV were more frequent in naturally surviving than in traditionally managed colonies, although the virus loads in the eggs remained the same. When comparing virus infections with queen age, older queens showed significantly lower infection loads of DWV in both traditionally managed and naturally surviving colonies, as well as reduced DWV infection frequencies in traditionally managed colonies. We determined that the detection frequencies of DWV and BQCV in honey bee eggs were lower in samples obtained in the spring than in those collected in the summer, indicating that vertical transmission may be lower in spring. Together, these patterns in vertical transmission show that honey bee queens have the potential to reduce the degree of vertical transmission over time.
Collapse
|
8
|
Du M, Bernstein R, Hoppe A, Bienefeld K. Consequences of incorrect genetic parameter estimates for single-trait and multi-trait genetic evaluations in honeybees. J Anim Breed Genet 2022; 139:666-678. [PMID: 35775281 DOI: 10.1111/jbg.12728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/10/2022] [Indexed: 12/01/2022]
Abstract
Genetic and residual variances of traits are important input parameters for best linear unbiased prediction (BLUP) breeding value estimation. In honeybees, estimates of these variances are often associated with large standard errors, entailing a risk to perform genetic evaluations under wrong premises. The consequences hereof have not been sufficiently studied. In particular, there are no adequate investigations on this topic accounting for multi-trait selection or genetic peculiarities of the honeybee. We performed simulation studies and explored the consequences of selection for honeybee populations with a broad range of true and assumed genetic parameters. We found that in single-trait evaluations, the response to selection was barely compromised by assuming erroneous parameters, so that reductions in genetic progress after 20 years never exceeded 21%. Phenotypic selection appeared inferior to BLUP selection, particularly under low heritabilities. Parameter choices for genetic evaluation had great effects on inbreeding development. By wrongly assuming high heritabilities, inbreeding rates were reduced by up to 74%. When parallel selection was performed for two traits, the right choice of genetic parameters appeared considerably more crucial as several incorrect premises yielded inadvertent negative selection for one of the traits. This phenomenon occurred in multiple constellations in which the selection traits expressed a negative genetic correlation. It was not reflected in the estimated breeding values. Our results indicate that breeding efforts heavily rely on detailed knowledge on genetic parameters, particularly when multi-trait selection is performed. Thus, considerable effort should be invested into precise parameter estimations.
Collapse
Affiliation(s)
- Manuel Du
- Institute for Bee Research Hohen Neuendorf, Hohen Neuendorf, Germany
| | - Richard Bernstein
- Institute for Bee Research Hohen Neuendorf, Hohen Neuendorf, Germany
| | - Andreas Hoppe
- Institute for Bee Research Hohen Neuendorf, Hohen Neuendorf, Germany
| | - Kaspar Bienefeld
- Institute for Bee Research Hohen Neuendorf, Hohen Neuendorf, Germany
| |
Collapse
|
9
|
Du M, Bernstein R, Hoppe A, Bienefeld K. Influence of model selection and data structure on the estimation of genetic parameters in honeybee populations. G3 (BETHESDA, MD.) 2022; 12:6500294. [PMID: 35100384 PMCID: PMC8824827 DOI: 10.1093/g3journal/jkab450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/22/2021] [Indexed: 11/12/2022]
Abstract
Estimating genetic parameters of quantitative traits is a prerequisite for animal breeding. In honeybees, the genetic variance separates into queen and worker effects. However, under data paucity, parameter estimations that account for this peculiarity often yield implausible results. Consequently, simplified models that attribute all genetic contributions to either the queen (queen model) or the workers (worker model) are often used to estimate variance components in honeybees. However, the causes for estimations with the complete model (colony model) to fail and the consequences of simplified models for variance estimates are little understood. We newly developed the necessary theory to compare parameter estimates that were achieved by the colony model with those of the queen and worker models. Furthermore, we performed computer simulations to quantify the influence of model choice, estimation algorithm, true genetic parameters, rates of controlled mating, apiary sizes, and phenotype data completeness on the success of genetic parameter estimations. We found that successful estimations with the colony model were only possible if at least some of the queens mated controlled on mating stations. In that case, estimates were largely unbiased if more than 20% of the colonies had phenotype records. The simplified queen and worker models proved more stable and yielded plausible parameter estimates for almost all settings. Results obtained from these models were unbiased when mating was uncontrolled, but with controlled mating, the simplified models consistently overestimated heritabilities. This study elucidates the requirements for variance component estimation in honeybees and provides the theoretical groundwork for simplified honeybee models.
Collapse
Affiliation(s)
- Manuel Du
- Breeding and Behavior, Institute for Bee Research Hohen Neuendorf, 16540 Hohen Neuendorf, Germany
| | - Richard Bernstein
- Breeding and Behavior, Institute for Bee Research Hohen Neuendorf, 16540 Hohen Neuendorf, Germany
| | - Andreas Hoppe
- Breeding and Behavior, Institute for Bee Research Hohen Neuendorf, 16540 Hohen Neuendorf, Germany
| | - Kaspar Bienefeld
- Breeding and Behavior, Institute for Bee Research Hohen Neuendorf, 16540 Hohen Neuendorf, Germany
| |
Collapse
|
10
|
Ulgezen ZN, van Dooremalen C, van Langevelde F. Understanding social resilience in honeybee colonies. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:100021. [PMID: 36003609 PMCID: PMC9387495 DOI: 10.1016/j.cris.2021.100021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 06/15/2023]
Abstract
Honeybee colonies experience high losses, induced by several stressors that can result in the collapse of colonies. Experiments show what effects stressors, such as parasites, pathogens and pesticides, can have on individual honeybees as well as colonies. Although individuals may die, colonies do not always collapse from such disturbances. As a superorganism, the colony can maintain or return back to homeostasis through colony mechanisms. This capacity is defined as social resilience. When the colony faces a high stress load, this may lead to breakdown in mechanisms, loss in resilience and eventually colony collapse. Before social resilience can be measured in honeybees, we need to examine the mechanisms in colonies that allow recovery and maintenance after stressor exposure. Here, we discuss some of these mechanisms and how they affect the social resilience of honeybee colonies. Understanding social resilience in honeybees is essential to managing colony health and loss prevention.
Collapse
Affiliation(s)
- Zeynep N. Ulgezen
- Bees@wur, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
- Wildlife Ecology and Conservation Group, Wageningen University and Research Centre, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands
| | - Coby van Dooremalen
- Bees@wur, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Frank van Langevelde
- Wildlife Ecology and Conservation Group, Wageningen University and Research Centre, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands
- School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
11
|
Evans JD, Banmeke O, Palmer-Young EC, Chen Y, Ryabov EV. Beeporter: Tools for high-throughput analyses of pollinator-virus infections. Mol Ecol Resour 2021; 22:978-987. [PMID: 34612590 DOI: 10.1111/1755-0998.13526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/08/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022]
Abstract
Pollinators are in decline thanks to the combined stresses of disease, pesticides, habitat loss, and climate. Honey bees face numerous pests and pathogens but arguably none are as devastating as Deformed wing virus (DWV). Understanding host-pathogen interactions and virulence of DWV in honey bees is slowed by the lack of cost-effective high-throughput screening methods for viral infection. Currently, analysis of virus infection in bees and their colonies is tedious, requiring a well-equipped molecular biology laboratory and the use of hazardous chemicals. Here we describe virus clones tagged with green fluorescent protein (GFP) or nanoluciferase (nLuc) that provide high-throughput detection and quantification of virus infections. GFP fluorescence is measured noninvasively in living bees via commonly available long-wave UV light sources and a smartphone camera, or a standard ultraviolet transilluminator gel imaging system. Nonlethal monitoring with GFP allows continuous screening of virus growth and serves as a direct breeding tool for identifying honey bee parents with increased antiviral resistance. Expression using the nLuc reporter strongly correlates with virus infection levels and is especially sensitive. Using multiple reporters, it is also possible to visualize competition, differential virulence, and host tissue targeting by co-occuring pathogens. Finally, it is possible to directly assess the risk of cross-species "spillover" from honey bees to other pollinators and vice versa.
Collapse
Affiliation(s)
- Jay D Evans
- Bee Research Laboratory, USDA-ARS Agricultural Research Service, Beltsville, Maryland, USA
| | - Olubukola Banmeke
- Bee Research Laboratory, USDA-ARS Agricultural Research Service, Beltsville, Maryland, USA
| | - Evan C Palmer-Young
- Bee Research Laboratory, USDA-ARS Agricultural Research Service, Beltsville, Maryland, USA
| | - Yanping Chen
- Bee Research Laboratory, USDA-ARS Agricultural Research Service, Beltsville, Maryland, USA
| | - Eugene V Ryabov
- Bee Research Laboratory, USDA-ARS Agricultural Research Service, Beltsville, Maryland, USA
| |
Collapse
|
12
|
Developmental environment shapes honeybee worker response to virus infection. Sci Rep 2021; 11:13961. [PMID: 34234217 PMCID: PMC8263599 DOI: 10.1038/s41598-021-93199-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/18/2021] [Indexed: 11/08/2022] Open
Abstract
The consequences of early-life experiences are far reaching. In particular, the social and nutritional environments that developing animals experience can shape their adult phenotypes. In honeybees, larval nutrition determines the eventual social roles of adults as reproductive queens or sterile workers. However, little is known about the effects of developmental nutrition on important adult worker phenotypes such as disease resilience. In this study, we manipulated worker developmental nutrition in two distinct ways under semi-natural field conditions. In the first experiment, we restricted access to nutrition via social isolation by temporarily preventing alloparental care. In the second experiment, we altered the diet quality experienced by the entire colony, leading to adult bees that had developed entirely in a nutritionally restricted environment. When bees from these two experiments reached the adult stage, we challenged them with a common bee virus, Israeli acute paralysis virus (IAPV) and compared mortality, body condition, and the expression of immune genes across diet and viral inoculation treatments. Our findings show that both forms of early life nutritional stress, whether induced by lack of alloparental care or diet quality restriction, significantly reduced bees' resilience to virus infection and affected the expression of several key genes related to immune function. These results extend our understanding of how early life nutritional environment can affect phenotypes relevant to health and highlight the importance of considering how nutritional stress can be profound even when filtered through a social group. These results also provide important insights into how nutritional stress can affect honeybee health on a longer time scale and its potential to interact with other forms of stress (i.e. disease).
Collapse
|
13
|
Bouuaert DC, De Smet L, de Graaf DC. Breeding for Virus Resistance and Its Effects on Deformed Wing Virus Infection Patterns in Honey Bee Queens. Viruses 2021; 13:v13061074. [PMID: 34199957 PMCID: PMC8228329 DOI: 10.3390/v13061074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/21/2023] Open
Abstract
Viruses, and in particular the deformed wing virus (DWV), are considered as one of the main antagonists of honey bee health. The 'suppressed in ovo virus infection' trait (SOV) described for the first time that control of a virus infection can be achieved from genetically inherited traits and that the virus state of the eggs is indicative for this. This research aims to explore the effect of the SOV trait on DWV infections in queens descending from both SOV-positive (QDS+) and SOV-negative (QDS-) queens. Twenty QDS+ and QDS- were reared from each time four queens in the same starter-finisher colony. From each queen the head, thorax, ovaries, spermatheca, guts and eviscerated abdomen were dissected and screened for the presence of the DWV-A and DWV-B genotype using qRT-PCR. Queens descending from SOV-positive queens showed significant lower infection loads for DWV-A and DWV-B as well as a lower number of infected tissues for DWV-A. Surprisingly, differences were less expressed in the reproductive tissues, the ovaries and spermatheca. These results confirm that selection on the SOV trait is associated with increased virus resistance across viral genotypes and that this selection drives DWV towards an increased tissue specificity for the reproductive tissues. Further research is needed to explore the mechanisms underlying the interaction between the antiviral response and DWV.
Collapse
|
14
|
Castelli L, Genchi García ML, Dalmon A, Arredondo D, Antúnez K, Invernizzi C, Reynaldi FJ, Le Conte Y, Beaurepaire A. Intra-Colonial Viral Infections in Western Honey Bees ( Apis Mellifera). Microorganisms 2021; 9:1087. [PMID: 34070128 PMCID: PMC8158351 DOI: 10.3390/microorganisms9051087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/01/2021] [Accepted: 05/11/2021] [Indexed: 01/11/2023] Open
Abstract
RNA viruses play a significant role in the current high losses of pollinators. Although many studies have focused on the epidemiology of western honey bee (Apis mellifera) viruses at the colony level, the dynamics of virus infection within colonies remains poorly explored. In this study, the two main variants of the ubiquitous honey bee virus DWV as well as three major honey bee viruses (SBV, ABPV and BQCV) were analyzed from Varroa-destructor-parasitized pupae. More precisely, RT-qPCR was used to quantify and compare virus genome copies across honey bee pupae at the individual and subfamily levels (i.e., patrilines, sharing the same mother queen but with different drones as fathers). Additionally, virus genome copies were compared in cells parasitized by reproducing and non-reproducing mite foundresses to assess the role of this vector. Only DWV was detected in the samples, and the two variants of this virus significantly differed when comparing the sampling period, colonies and patrilines. Moreover, DWV-A and DWV-B exhibited different infection patterns, reflecting contrasting dynamics. Altogether, these results provide new insight into honey bee diseases and stress the need for more studies about the mechanisms of intra-colonial disease variation in social insects.
Collapse
Affiliation(s)
- Loreley Castelli
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (L.C.); (D.A.); (K.A.)
| | - María Laura Genchi García
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Buenos Aires, Argentina; (M.L.G.G.); (F.J.R.)
- Instituto Multidisciplinario de Biología Celular (IMBICE), La Plata 1900, Buenos Aires, Argentina
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (LAVIR-FCV-UNLP), La Plata 1900, Buenos Aires, Argentina
| | - Anne Dalmon
- Abeilles et Environnement, INRAE, 84000 Avignon, France; (A.D.); (Y.L.C.)
| | - Daniela Arredondo
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (L.C.); (D.A.); (K.A.)
| | - Karina Antúnez
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (L.C.); (D.A.); (K.A.)
| | - Ciro Invernizzi
- Sección Etología, Facultad de Ciencias, Montevideo 11400, Uruguay;
| | - Francisco José Reynaldi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Buenos Aires, Argentina; (M.L.G.G.); (F.J.R.)
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (LAVIR-FCV-UNLP), La Plata 1900, Buenos Aires, Argentina
| | - Yves Le Conte
- Abeilles et Environnement, INRAE, 84000 Avignon, France; (A.D.); (Y.L.C.)
| | - Alexis Beaurepaire
- Abeilles et Environnement, INRAE, 84000 Avignon, France; (A.D.); (Y.L.C.)
- Institute of Bee Health, University of Bern, 3003 Bern, Switzerland
| |
Collapse
|
15
|
Bhatia S, Baral SS, Vega Melendez C, Amiri E, Rueppell O. Comparing Survival of Israeli Acute Paralysis Virus Infection among Stocks of U.S. Honey Bees. INSECTS 2021; 12:60. [PMID: 33445412 PMCID: PMC7827508 DOI: 10.3390/insects12010060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
Abstract
Among numerous viruses that infect honey bees (Apis mellifera), Israeli acute paralysis virus (IAPV) can be linked to severe honey bee health problems. Breeding for virus resistance may improve honey bee health. To evaluate the potential for this approach, we compared the survival of IAPV infection among stocks from the U.S. We complemented the survival analysis with a survey of existing viruses in these stocks and assessing constitutive and induced expression of immune genes. Worker offspring from selected queens in a common apiary were inoculated with IAPV by topical applications after emergence to assess subsequent survival. Differences among stocks were small compared to variation within stocks, indicating the potential for improving honey bee survival of virus infections in all stocks. A positive relation between worker survival and virus load among stocks further suggested that honey bees may be able to adapt to better cope with viruses, while our molecular studies indicate that toll-6 may be related to survival differences among virus-infected worker bees. Together, these findings highlight the importance of viruses in queen breeding operations and provide a promising starting point for the quest to improve honey bee health by selectively breeding stock to be better able to survive virus infections.
Collapse
Affiliation(s)
- Shilpi Bhatia
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
- Department of Applied Science & Technology, North Carolina Agricultural & Technical University, 1601 E Market Street, Greensboro, NC 27411, USA
| | - Saman S. Baral
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
| | - Carlos Vega Melendez
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
- US Dairy Forage Research Center, USDA-ARS, 1925 Linden Drive, Madison, WI 53706, USA
| | - Esmaeil Amiri
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
| | - Olav Rueppell
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|