1
|
Yuan X, Meng K, Wang Y, Wang Y, Pan C, Sun H, Wang J, Li X. Unlocking the genetic secrets of Dorper sheep: insights into wool shedding and hair follicle development. Front Vet Sci 2024; 11:1489379. [PMID: 39726582 PMCID: PMC11670804 DOI: 10.3389/fvets.2024.1489379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024] Open
Abstract
Dorper sheep is popular among farming enterprises with strong adaptability, disease resistance, and roughage tolerance, and an unique characteristic of natural shedding of wool. In a large number of observations on experimental sheep farms, it was found that the wool of some sheep still had not shed after May, thus manual shearing was required. Therefore, understanding the molecular mechanisms of normal hair follicles (HFs) development is crucial to revealing the improvement of sheep wool-related traits and mammalian skin-related traits. In this study, transcriptome analysis was performed on skin tissues of adult Dorper ewes in the shedding (S) and non-shedding (N) groups in September 2019, January 2020, and March 2020, respectively. The results identified 3,278 differentially expressed transcripts (DETs) in the three comparison groups within the S group, 720 DETs in the three comparison groups within the N group, and 1,342 DETs in the three comparison groups between the S-vs-N groups. Time-series expression analysis revealed 2 unique expression patterns in HF development, namely, elevated expression in the anagen phase (A pattern) and the telogen phase (T pattern). DETs with stage-specific expression had a significant presence in processes related to the hair cycle and skin development, and several classic signaling pathways involved in sheep HF development, such as Rap1, estrogen, PI3K-Akt, and MAPK, were detected. Combined analysis of DETs, time-series expression data, and weighted gene co-expression network analysis identified core genes and their transcripts influencing HF development, such as DBI, FZD3, KRT17, ZDHHC21, TMEM79, and HOXC13. Additionally, alternative splicing analysis predicted that the isoforms XM_004004383.4 and XM_012125926.3 of ZDHHC21 might play a crucial role in sheep HF development. This study is a valuable resource for explaining the morphology of normal growth and development of sheep HFs and the genetic foundation of mammalian skin-related traits. It also offers potential insights into factors influencing human hair advancement.
Collapse
Affiliation(s)
- Xiaochun Yuan
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Ke Meng
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yayan Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yifan Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Cuili Pan
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Haoran Sun
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Jankui Wang
- Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Xinhai Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
2
|
Tian X, Chen L, Zhou J, Wang E, Wang M, Jakubovics N, Li J, Song K, Lau KT, Koepfli KP, Zhang S, Tan GYA, Yang Y, Choo SW. Pangolin scales as adaptations for innate immunity against pathogens. BMC Biol 2024; 22:234. [PMID: 39397000 PMCID: PMC11472485 DOI: 10.1186/s12915-024-02034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Pangolins are the only mammals that have overlapping scales covering most of their bodies, and they play a crucial role in the ecosystem, biological research, and human health and disease. Previous studies indicated pangolin scale might provide an important mechanical defense to themselves. The origin and exact functions of this unique trait remain a mystery. Using a multi-omics analysis approach, we report a novel functional explanation for how mammalian scales can provide host-pathogen defense. RESULTS Our data suggest that pangolin scales have a sophisticated structure that could potentially trap pathogens. We identified numerous proteins and metabolites exhibiting antimicrobial activity, which could suggest a role for scales in pathogen defense. Notably, we found evidence suggesting the presence of exosomes derived from diverse cellular origins, including mesenchymal stem cells, immune cells, and keratinocytes. This observation suggests a complex interplay where various cell types may contribute to the release of exosomes and antimicrobial compounds at the interface between scales and viable tissue. These findings indicate that pangolin scales may serve as a multifaceted defense system, potentially contributing to innate immunity. Comparisons with human nail and hair revealed pangolin-specific proteins that were enriched in functions relating to sensing, immune responses, neutrophil degranulation, and stress responses. We demonstrated the antimicrobial activity of key pangolin scale components on pathogenic bacteria by antimicrobial assays. CONCLUSIONS This study identifies a potential role of pangolin scales and implicates scales, as possible determinants of pathogen defense due to their structure and contents. We indicate for the first time the presence of exosomes in pangolin scales and propose the new functions of scales and their mechanisms. This new mechanism could have implications for multiple fields, including providing interesting new research directions and important insights that can be useful for synthesizing and implementing new biomimetic antimicrobial approaches.
Collapse
Affiliation(s)
- Xuechen Tian
- College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Zhejiang Province-Malaysia International Joint Laboratory for Modern Agriculture and Microbial Innovation, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province, 325060, China
| | - Li Chen
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Jinfeng Zhou
- China Biodiversity Conservation and Green Development Foundation, Empark International Apartment, No. 69, Banding Road, Haidian District, Beijing, China
| | - Enbo Wang
- College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
| | - Mu Wang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Nicholas Jakubovics
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4BW, UK
| | - Jing Li
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Kunping Song
- College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
| | - King Tong Lau
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, 22630, USA
- Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Washington, D.C, 20008, USA
| | - Siyuan Zhang
- China Biodiversity Conservation and Green Development Foundation, Empark International Apartment, No. 69, Banding Road, Haidian District, Beijing, China
| | - Geok Yuan Annie Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yixin Yang
- College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Zhejiang Province-Malaysia International Joint Laboratory for Modern Agriculture and Microbial Innovation, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Siew Woh Choo
- College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China.
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province, 325060, China.
- Zhejiang Province-Malaysia International Joint Laboratory for Modern Agriculture and Microbial Innovation, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province, 325060, China.
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA.
| |
Collapse
|
3
|
Gu T, Hu J, Yu L. Evolution and conservation genetics of pangolins. Integr Zool 2024; 19:426-441. [PMID: 38146613 DOI: 10.1111/1749-4877.12796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Pangolins (Pholidota, Manidae) are classified as an evolutionarily distinct and globally endangered mammal due to their unique morphology (nail-like scales and a myrmecophagous diet) and being the victim of heavy poaching and worldwide trafficking. As such, pangolins serve as a textbook example for studying the special phenotypic evolutionary adaptations and conservation genetics of an endangered species. Recent years have demonstrated significant advancements in the fields of molecular genetics and genomics, which have translated to a series of important research achievements and breakthroughs concerning the evolution and conservation genetics of pangolins. This review comprehensively presents the hitherto advances in phylogeny, adaptive evolution, conservation genetics, and conservation genomics that are related to pangolins, which will provide an ample understanding of their diversity, molecular adaptation mechanisms, and evolutionary potentials. In addition, we highlight the priority of investigating species/population diversity among pangolins and suggest several avenues of research that are highly relevant for future pangolin conservation.
Collapse
Affiliation(s)
- Tongtong Gu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Jingyang Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
4
|
Xu X, Fan S, Ji W, Qi S, Liu L, Cao Z, Bao Q, Zhang Y, Xu Q, Chen G. Transcriptome Profiling Unveils Key Genes Regulating the Growth and Development of Yangzhou Goose Knob. Int J Mol Sci 2024; 25:4166. [PMID: 38673752 PMCID: PMC11050116 DOI: 10.3390/ijms25084166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Goose is one of the most economically valuable poultry species and has a distinct appearance due to its possession of a knob. A knob is a hallmark of sexual maturity in goose (Anser cygnoides) and plays crucial roles in artificial selection, health status, social signaling, and body temperature regulation. However, the genetic mechanisms influencing the growth and development of goose knobs remain completely unclear. In this study, histomorphological and transcriptomic analyses of goose knobs in D70, D120, and D300 Yangzhou geese revealed differential changes in tissue morphology during the growth and development of goose knobs and the key core genes that regulate goose knob traits. Observation of tissue sections revealed that as age increased, the thickness of the knob epidermis, cuticle, and spinous cells gradually decreased. Additionally, fat cells in the dermis and subcutaneous connective tissue transitioned from loose to dense. Transcriptome sequencing results, analyzed through differential expression, Weighted Gene Co-expression Network Analysis (WGCNA), and pattern expression analysis methods, showed D70-vs.-D120 (up-regulated: 192; down-regulated: 423), D70-vs.-D300 (up-regulated: 1394; down-regulated: 1893), and D120-vs.-D300 (up-regulated: 1017; down-regulated: 1324). A total of 6243 differentially expressed genes (DEGs) were identified, indicating varied expression levels across the three groups in the knob tissues of D70, D120, and D300 Yangzhou geese. These DEGs are significantly enriched in biological processes (BP) such as skin morphogenesis, the regulation of keratinocyte proliferation, and epidermal cell differentiation. Furthermore, they demonstrate enrichment in pathways related to goose knob development, including ECM-receptor interaction, NF-kappa B, and PPAR signaling. Through pattern expression analysis, three gene expression clusters related to goose knob traits were identified. The joint analysis of candidate genes associated with goose knob development and WGCNA led to the identification of key core genes influencing goose knob development. These core genes comprise WNT4, WNT10A, TCF7L2, GATA3, ADRA2A, CASP3, SFN, KDF1, ERRFI1, SPRY1, and EVPL. In summary, this study provides a reference for understanding the molecular mechanisms of goose knob growth and development and provides effective ideas and methods for the genetic improvement of goose knob traits.
Collapse
Affiliation(s)
- Xinlei Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Suyu Fan
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Wangyang Ji
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Shangzong Qi
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Linyu Liu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Zhi Cao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Qiang Bao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Yang Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Qi Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Guohong Chen
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Pinto B, Valente R, Caramelo F, Ruivo R, Castro LFC. Decay of Skin-Specific Gene Modules in Pangolins. J Mol Evol 2023:10.1007/s00239-023-10118-z. [PMID: 37249590 DOI: 10.1007/s00239-023-10118-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
The mammalian skin exhibits a rich spectrum of evolutionary adaptations. The pilosebaceous unit, composed of the hair shaft, follicle, and the sebaceous gland, is the most striking synapomorphy. The evolutionary diversification of mammals across different ecological niches was paralleled by the appearance of an ample variety of skin modifications. Pangolins, order Pholidota, exhibit keratin-derived scales, one of the most iconic skin appendages. This formidable armor is intended to serve as a deterrent against predators. Surprisingly, while pangolins have hair on their abdomens, the occurrence of sebaceous and sweat glands is contentious. Here, we explore various molecular modules of skin physiology in four pangolin genomes, including that of sebum production. We show that genes driving wax monoester formation, Awat1/2, show patterns of inactivation in the stem pangolin branch, while the triacylglycerol synthesis gene Dgat2l6 seems independently eroded in the African and Asian clades. In contrast, Elovl3 implicated in the formation of specific neutral lipids required for skin barrier function is intact and expressed in the pangolin skin. An extended comparative analysis shows that genes involved in skin pathogen defense and structural integrity of keratinocyte layers also show inactivating mutations: associated with both ancestral and independent pseudogenization events. Finally, we deduce that the suggested absence of sweat glands is not paralleled by the inactivation of the ATP-binding cassette transporter Abcc11, as previously described in Cetacea. Our findings reveal the sophisticated and complex history of gene retention and loss as key mechanisms in the evolution of the highly modified mammalian skin phenotypes.
Collapse
Affiliation(s)
- Bernardo Pinto
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Raul Valente
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Filipe Caramelo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - L Filipe C Castro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal.
| |
Collapse
|
6
|
Salova M, Sipos W, Tschachler E, Eckhart L. NOD2 and reproduction-associated NOD-like receptors have been lost during the evolution of pangolins. Immunogenetics 2022; 74:261-268. [PMID: 34725731 PMCID: PMC8560141 DOI: 10.1007/s00251-021-01230-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
NOD-like receptors (NLRs) are sensors of pathogen-associated molecular patterns with critical roles in the control of immune responses and programmed cell death. Recent studies have revealed inter-species differences in mammalian innate immune genes and a particular degeneration of nucleic acid sensing pathways in pangolins, which are currently investigated as potential hosts for zoonotic pathogens. Here, we used comparative genomics to determine which NLR genes are conserved or lost in pangolins and related mammals. We show that NOD2, which is implicated in sensing bacterial muramyl dipeptide and viral RNA, is a pseudogene in pangolins, but not in any other mammalian species investigated. NLRC4 and NAIP are absent in pangolins and canine carnivorans, suggesting convergent loss of cytoplasmic sensing of bacterial flagellin in these taxa. Among NLR family pyrin domain containing proteins (NLRPs), skin barrier-related NLRP10 has been lost in pangolins after the evolutionary divergence from Carnivora. Strikingly, pangolins lack all NLRPs associated with reproduction (germ cells and embryonic development) in other mammals, i.e., NLRP2, 4, 5, 7, 8, 9, 11, 13, and 14. Taken together, our study shows a massive degeneration of NLR genes in pangolins and suggests that these endangered mammals may have unique adaptations of innate immunity and reproductive cell biology.
Collapse
Affiliation(s)
- Margarita Salova
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Sipos
- Clinical Department for Farm Animals and Herd Management, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|