1
|
Schwartzman JD, McCall M, Ghattas Y, Pugazhendhi AS, Wei F, Ngo C, Ruiz J, Seal S, Coathup MJ. Multifunctional scaffolds for bone repair following age-related biological decline: Promising prospects for smart biomaterial-driven technologies. Biomaterials 2024; 311:122683. [PMID: 38954959 DOI: 10.1016/j.biomaterials.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The repair of large bone defects due to trauma, disease, and infection can be exceptionally challenging in the elderly. Despite best clinical practice, bone regeneration within contemporary, surgically implanted synthetic scaffolds is often problematic, inconsistent, and insufficient where additional osteobiological support is required to restore bone. Emergent smart multifunctional biomaterials may drive important and dynamic cellular crosstalk that directly targets, signals, stimulates, and promotes an innate bone repair response following age-related biological decline and when in the presence of disease or infection. However, their role remains largely undetermined. By highlighting their mechanism/s and mode/s of action, this review spotlights smart technologies that favorably align in their conceivable ability to directly target and enhance bone repair and thus are highly promising for future discovery for use in the elderly. The four degrees of interactive scaffold smartness are presented, with a focus on bioactive, bioresponsive, and the yet-to-be-developed autonomous scaffold activity. Further, cell- and biomolecular-assisted approaches were excluded, allowing for contemporary examination of the capabilities, demands, vision, and future requisites of next-generation biomaterial-induced technologies only. Data strongly supports that smart scaffolds hold significant promise in the promotion of bone repair in patients with a reduced osteobiological response. Importantly, many techniques have yet to be tested in preclinical models of aging. Thus, greater clarity on their proficiency to counteract the many unresolved challenges within the scope of aging bone is highly warranted and is arguably the next frontier in the field. This review demonstrates that the use of multifunctional smart synthetic scaffolds with an engineered strategy to circumvent the biological insufficiencies associated with aging bone is a viable route for achieving next-generation therapeutic success in the elderly population.
Collapse
Affiliation(s)
| | - Max McCall
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yasmine Ghattas
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Fei Wei
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA; Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, USA, Orlando, FL
| | - Melanie J Coathup
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
2
|
Zhang S, Zhang H, Sun J, Javanmardi N, Li T, Jin F, He Y, Zhu G, Wang Y, Wang T, Feng ZQ. A review of recent advances of piezoelectric poly-L-lactic acid for biomedical applications. Int J Biol Macromol 2024; 276:133748. [PMID: 38986996 DOI: 10.1016/j.ijbiomac.2024.133748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Poly-L-lactic acid (PLLA), recognized as a piezoelectric material, not only demonstrates exceptional piezoelectric properties but also exhibits commendable biocompatibility and biodegradability. These properties render PLLA highly promising for diverse applications, including sensors, wearable devices, biomedical engineering, and related domains. This review offers a comprehensive overview of the distinctive piezoelectric effect of PLLA-based material and delves into the latest advancements in its preparation strategies as a piezoelectric material. It further presents recent research progress in PLLA-based piezoelectric materials, particularly in the realms of health monitoring, skin repair, nerve regeneration, and tissue repair. The discourse extends to providing insights into potential future trajectories for the development of PLLA-based piezoelectric materials.
Collapse
Affiliation(s)
- Siwei Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Husheng Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiangtao Sun
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Negar Javanmardi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuyuan He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Guanzhou Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ting Wang
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
3
|
Chen S, Tong X, Huo Y, Liu S, Yin Y, Tan ML, Cai K, Ji W. Piezoelectric Biomaterials Inspired by Nature for Applications in Biomedicine and Nanotechnology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406192. [PMID: 39003609 DOI: 10.1002/adma.202406192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Indexed: 07/15/2024]
Abstract
Bioelectricity provides electrostimulation to regulate cell/tissue behaviors and functions. In the human body, bioelectricity can be generated in electromechanically responsive tissues and organs, as well as biomolecular building blocks that exhibit piezoelectricity, with a phenomenon known as the piezoelectric effect. Inspired by natural bio-piezoelectric phenomenon, efforts have been devoted to exploiting high-performance synthetic piezoelectric biomaterials, including molecular materials, polymeric materials, ceramic materials, and composite materials. Notably, piezoelectric biomaterials polarize under mechanical strain and generate electrical potentials, which can be used to fabricate electronic devices. Herein, a review article is proposed to summarize the design and research progress of piezoelectric biomaterials and devices toward bionanotechnology. First, the functions of bioelectricity in regulating human electrophysiological activity from cellular to tissue level are introduced. Next, recent advances as well as structure-property relationship of various natural and synthetic piezoelectric biomaterials are provided in detail. In the following part, the applications of piezoelectric biomaterials in tissue engineering, drug delivery, biosensing, energy harvesting, and catalysis are systematically classified and discussed. Finally, the challenges and future prospects of piezoelectric biomaterials are presented. It is believed that this review will provide inspiration for the design and development of innovative piezoelectric biomaterials in the fields of biomedicine and nanotechnology.
Collapse
Affiliation(s)
- Siying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xiaoyu Tong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yehong Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shuaijie Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Mei-Ling Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
4
|
Chen L, Yang J, Cai Z, Huang Y, Xiao P, Wang J, Wang F, Huang W, Cui W, Hu N. Electroactive Biomaterials Regulate the Electrophysiological Microenvironment to Promote Bone and Cartilage Tissue Regeneration. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202314079] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 01/06/2025]
Abstract
AbstractThe incidence of large bone and articular cartilage defects caused by traumatic injury is increasing worldwide; the tissue regeneration process for these injuries is lengthy due to limited self‐healing ability. Endogenous bioelectrical phenomenon has been well recognized to play an important role in bone and cartilage homeostasis and regeneration. Studies have reported that electrical stimulation (ES) can effectively regulate various biological processes and holds promise as an external intervention to enhance the synthesis of the extracellular matrix, thereby accelerating the process of bone and cartilage regeneration. Hence, electroactive biomaterials have been considered a biomimetic approach to ensure functional recovery by integrating various physiological signals, including electrical, biochemical, and mechanical signals. This review will discuss the role of endogenous bioelectricity in bone and cartilage tissue, as well as the effects of ES on cellular behaviors. Then, recent advances in electroactive materials and their applications in bone and cartilage tissue regeneration are systematically overviewed, with a focus on their advantages and disadvantages as tissue repair materials and performances in the modulation of cell fate. Finally, the significance of mimicking the electrophysiological microenvironment of target tissue is emphasized and future development challenges of electroactive biomaterials for bone and cartilage repair strategies are proposed.
Collapse
Affiliation(s)
- Li Chen
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Jianye Yang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Zhengwei Cai
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yanran Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Pengcheng Xiao
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Juan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Fan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wei Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Ning Hu
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| |
Collapse
|
5
|
Hong SK, Lee JJ, Kim KJ, Choi SW. Electrospun Poly L-Lactic Acid Nanofiber Webs Presenting Enhanced Piezoelectric Properties. Polymers (Basel) 2024; 16:347. [PMID: 38337236 DOI: 10.3390/polym16030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
There has been extensive research on electrospun ferroelectric nanoparticle-doped poly L-lactic acid (PLA) nanofiber web piezoelectric devices. In this study, BaTiO3 nanoparticles (BTNPs) were incorporated into the PLA to enhance the piezoelectric properties. The composite nanofiber webs were characterized using field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The piezoelectric behavior was analyzed by measuring the peak-to-peak output voltage (Vp-p) of the samples. The sensors fabricated from the PLA/BTNP nanofiber webs exhibited higher Vp-p values than the conventional electrospun PLA sensors. Furthermore, the corona-poled PLA/BTNP nanofiber web sensors exhibited even higher Vp-p values than the non-corona-poled sensors. Lastly, the effect of stacking nanofiber webs in terms of enhancing the sensor performance was also evaluated.
Collapse
Affiliation(s)
- Seung Kwan Hong
- Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jae-Jin Lee
- Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Yongin 17104, Republic of Korea
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Kap Jin Kim
- Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Suk-Won Choi
- Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Yongin 17104, Republic of Korea
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
6
|
Vukomanović M, Gazvoda L, Kurtjak M, Maček-Kržmanc M, Spreitzer M, Tang Q, Wu J, Ye H, Chen X, Mattera M, Puigmartí-Luis J, Pane SV. Filler-Enhanced Piezoelectricity of Poly-L-Lactide and Its Use as a Functional Ultrasound-Activated Biomaterial. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301981. [PMID: 37186376 DOI: 10.1002/smll.202301981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Indexed: 05/17/2023]
Abstract
Poly-L-lactide (PLLA) offers a unique possibility for processing into biocompatible, biodegradable, and implantable piezoelectric structures. With such properties, PLLA has potential to be used as an advanced tool for mimicking biophysical processes that naturally occur during the self-repair of wounds and damaged tissues, including electrostimulated regeneration. The piezoelectricity of PLLA strongly depends on the possibility of controlling its crystallinity and molecular orientation. Here, it is shown that modifying PLLA with a small amount (1 wt%) of crystalline filler particles with a high aspect ratio, which act as nucleating agents during drawing-induced crystallization, promotes the formation of highly crystalline and oriented PLLA structures. This increases their piezoelectricity, and the filler-modified PLLA films provide a 20-fold larger voltage output than nonmodified PLLA during ultrasound (US)-assisted activation. With 99% PLLA content, the ability of the films to produce reactive oxygen species (ROS) and increase the local temperature during interactions with US is shown to be very low. US-assisted piezostimulation of adherent cells directly attach to their surface (such as skin keratinocytes), stimulate cytoskeleton formation, and as a result cells elongate and orient themselves in a specific direction that align with the direction of PLLA film drawing and PLLA dipole orientation.
Collapse
Affiliation(s)
- Marija Vukomanović
- Advanced Materials Department, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Lea Gazvoda
- Advanced Materials Department, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
- Jozef Stefan International Postgraduate School, Ljubljana, 1000, Slovenia
| | - Mario Kurtjak
- Advanced Materials Department, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Marjeta Maček-Kržmanc
- Advanced Materials Department, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Matjaž Spreitzer
- Advanced Materials Department, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Qiao Tang
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Jiang Wu
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Hao Ye
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Xiangzhong Chen
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Michele Mattera
- Department of Physical Chemistry, University of Barcelona, Martí i Franquès 1, Barcelona, 08028, Spain
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Salvador Vidal Pane
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| |
Collapse
|
7
|
Lian JJ, Guo WT, Sun QJ. Emerging Functional Polymer Composites for Tactile Sensing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4310. [PMID: 37374494 DOI: 10.3390/ma16124310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
In recent years, extensive research has been conducted on the development of high-performance flexible tactile sensors, pursuing the next generation of highly intelligent electronics with diverse potential applications in self-powered wearable sensors, human-machine interactions, electronic skin, and soft robotics. Among the most promising materials that have emerged in this context are functional polymer composites (FPCs), which exhibit exceptional mechanical and electrical properties, enabling them to be excellent candidates for tactile sensors. Herein, this review provides a comprehensive overview of recent advances in FPCs-based tactile sensors, including the fundamental principle, the necessary property parameter, the unique device structure, and the fabrication process of different types of tactile sensors. Examples of FPCs are elaborated with a focus on miniaturization, self-healing, self-cleaning, integration, biodegradation, and neural control. Furthermore, the applications of FPC-based tactile sensors in tactile perception, human-machine interaction, and healthcare are further described. Finally, the existing limitations and technical challenges for FPCs-based tactile sensors are briefly discussed, offering potential avenues for the development of electronic products.
Collapse
Affiliation(s)
- Jia-Jin Lian
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wen-Tao Guo
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qi-Jun Sun
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
Li M, Jiang B, Cao S, Song X, Zhang Y, Huang L, Yuan Q. Flexible cellulose-based piezoelectric composite membrane involving PVDF and BaTiO 3 synthesized with the assistance of TEMPO-oxidized cellulose nanofibrils. RSC Adv 2023; 13:10204-10214. [PMID: 37006353 PMCID: PMC10065142 DOI: 10.1039/d3ra00604b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
High-performance flexible barium titanate (BaTiO3)-based piezoelectric devices have gained much attention. However, it is still a challenge to prepare flexible polymer/BaTiO3-based composite materials with uniform distribution and high performance due to the high viscosity of polymers. In this study, novel hybrid BaTiO3 particles were synthesized with assistance of TEMPO-oxidized cellulose nanofibrils (CNFs) via a low-temperature hydrothermal method and explored for their application in piezoelectric composites. Specifically, Ba2+ was adsorbed on uniformly dispersed CNFs with a large amount of negative charge on their surface, which nucleated, resulting in the synthesis of evenly dispersed CNF-BaTiO3. The obtained CNF-BaTiO3 possessed a uniform particle size, few impurities, high crystallinity and dispersity, high compatibility with the polymer substrate and surface activity due to the existence of CNFs. Subsequently, both polyvinylidene fluoride (PVDF) and TEMPO-oxidized CNFs were employed as piezoelectric substrates for the fabrication of a CNF/PVDF/CNF-BaTiO3 composite membrane with a compact structure, displaying the tensile strength of 18.61 ± 3.75 MPa and elongation at break of 3.06 ± 1.33%. Finally, a thin piezoelectric generator (PEG) was assembled, which output a considerable open-circuit voltage (4.4 V) and short-circuit current (200 nA), and could also power a light-emitting diode and charge a 1 μF capacitor to 3.66 V in 500 s. Its longitudinal piezoelectric constant (d 33) was 5.25 ± 1.04 pC N-1 even with a small thickness. It also exhibited high sensitivity to human movement, outputting a voltage of about 9 V and current of 739 nA for only a footstep. Thus, it exhibited good sensing property and energy harvesting property, presenting practical application prospects. This work provides a new idea for the preparation of hybrid BaTiO3 and cellulose-based piezoelectric composite materials.
Collapse
Affiliation(s)
- Meilin Li
- School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi University Nanning 530004 China
| | - Bei Jiang
- School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi University Nanning 530004 China
| | - Shuoang Cao
- School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi University Nanning 530004 China
| | - Xinyi Song
- School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi University Nanning 530004 China
| | - Yuanqiao Zhang
- School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi University Nanning 530004 China
| | - Lijun Huang
- School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi University Nanning 530004 China
| | - Quanping Yuan
- School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi University Nanning 530004 China
| |
Collapse
|
9
|
Hanani Z, Izanzar I, Merselmiz S, Amjoud M, Mezzane D, Ghanbaja J, Saadoune I, Lahcini M, Spreitzer M, Vengust D, El Marssi M, Kutnjak Z, Luk'yanchuk IA, Gouné M. The benefits of combining 1D and 3D nanofillers in a piezocomposite nanogenerator for biomechanical energy harvesting. NANOSCALE ADVANCES 2022; 4:4658-4668. [PMID: 36341296 PMCID: PMC9595181 DOI: 10.1039/d2na00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Mechanical energy harvesting using piezoelectric nanogenerators (PNGs) offers an attractive solution for driving low-power portable devices and self-powered electronic systems. Here, we designed an eco-friendly and flexible piezocomposite nanogenerator (c-PNG) based on H2(Zr0.1Ti0.9)3O7 nanowires (HZTO-nw) and Ba0.85Ca0.15Zr0.10Ti0.90O3 multipods (BCZT-mp) as fillers and polylactic acid (PLA) as a biodegradable polymer matrix. The effects of the applied stress amplitude, frequency and pressing duration on the electric outputs in the piezocomposite nanogenerator (c-PNG) device were investigated by simultaneous recording of the mechanical input and the electrical outputs. The fabricated c-PNG shows a maximum output voltage, current and volumetric power density of 11.5 V, 0.6 μA and 9.2 mW cm-3, respectively, under cyclic finger imparting. A high-pressure sensitivity of 0.86 V kPa-1 (equivalent to 3.6 V N-1) and fast response time of 45 ms were obtained in the dynamic pressure sensing. Besides this, the c-PNG demonstrates high-stability and durability of the electrical outputs for around three months, and can drive commercial electronics (charging capacitor, glowing light-emitting diodes and powering a calculator). Multi-physics simulations indicate that the presence of BCZT-mp is crucial in enhancing the piezoelectric response of the c-PNG. Accordingly, this work reveals that combining 1D and 3D fillers in a polymer composite-based PNG could be beneficial in improving the mechanical energy harvesting performances in flexible piezoelectric nanogenerators for application in electronic skin and wearable devices.
Collapse
Affiliation(s)
- Zouhair Hanani
- IMED-Lab, Cadi Ayyad University Marrakesh 40000 Morocco
- ICMCB, University of Bordeaux Pessac 33600 France
- Jozef Stefan Institute Ljubljana 1000 Slovenia
| | | | | | | | - Daoud Mezzane
- IMED-Lab, Cadi Ayyad University Marrakesh 40000 Morocco
- LPMC, University of Picardy Jules Verne Amiens 80039 France
| | | | - Ismael Saadoune
- IMED-Lab, Cadi Ayyad University Marrakesh 40000 Morocco
- Mohammed VI Polytechnic University Ben Guerir 43150 Morocco
| | - Mohammed Lahcini
- IMED-Lab, Cadi Ayyad University Marrakesh 40000 Morocco
- Mohammed VI Polytechnic University Ben Guerir 43150 Morocco
| | | | | | | | | | - Igor A Luk'yanchuk
- LPMC, University of Picardy Jules Verne Amiens 80039 France
- Department of Building Materials, Kyiv National University of Construction and Architecture Kyiv Ukraine
| | | |
Collapse
|
10
|
Babichuk IS, Lin C, Qiu Y, Zhu H, Ye TT, Gao Z, Yang J. Raman mapping of piezoelectric poly(l-lactic acid) films for force sensors. RSC Adv 2022; 12:27687-27697. [PMID: 36320245 PMCID: PMC9516697 DOI: 10.1039/d2ra04241j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022] Open
Abstract
Poly-l-lactic acid (PLLA) is a synthetic, biocompatible, biodegradable polymer with good piezoelectric properties. The prepared PLLA films were annealed in the oven at 140 °C for 0 h, 3 h, 12 h, and 24 h, respectively. The influences of temperature treatment time on the optoelectronic properties of the PLLA films and piezoelectric sensors based on them were investigated. The morphology and crystal structure of the PLLA films obtained under various post-processing conditions were examined by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and ATR-FTIR spectroscopy. The micromechanical equipment for tension-compression measurements was built in the laboratory for the tested piezoelectric sensors. The analysis of the structure shows that the increase in the crystallite size of the PLLA film influences the growth of the piezoelectric signal of the sensors based on them. The vibrational analysis of the PLLA films confirmed their crystal structure. The improvement in the structure and the stretching of the dipole C[double bond, length as m-dash]O for the film obtained after 3 h treatment increased the piezoelectric properties of the PLLA films. The analysis of Raman mapping added information that the area of the ordered phase of the PLLA films depends on the time of temperature treatment. The maximum value of the piezoelectric signal was 0.98 mV for sensors prepared on films annealed for 3 h at a load of 20 N. For films without temperature annealing at the same load, the maximum value was 0.45 mV. Thus, efficient converters of mechanical energy into electrical energy were obtained, which opens new innovative perspectives for the creation of flexible pressure sensors based on PLLA.
Collapse
Affiliation(s)
- Ivan S Babichuk
- Faculty of Intelligent Manufacturing, Wuyi University 529020 Jiangmen P.R. China
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine 03680 Kyiv Ukraine
| | - Chubin Lin
- Faculty of Intelligent Manufacturing, Wuyi University 529020 Jiangmen P.R. China
| | - Yuhui Qiu
- Faculty of Intelligent Manufacturing, Wuyi University 529020 Jiangmen P.R. China
| | - Huiyu Zhu
- Faculty of Intelligent Manufacturing, Wuyi University 529020 Jiangmen P.R. China
| | - Terry Tao Ye
- Department of Electrical and Electronic Engineering and University Key Laboratory of Advanced Wireless Communications of Guangdong Province, Southern University of Science and Technology 518055 Shenzhen P.R. China
| | - Zhaoli Gao
- Biomedical Engineering Department, The Chinese University of Hong Kong Shatin, New Territories Hong Kong P.R. China
- CUHK Shenzhen Research Institute Nanshan 518060 Shenzhen P.R. China
| | - Jian Yang
- Faculty of Intelligent Manufacturing, Wuyi University 529020 Jiangmen P.R. China
| |
Collapse
|
11
|
Liu YF, Jiang ZQ, Huang Y, Ni PW, Xie T. [Feasibility study on the preparation of novel negative pressure materials for constructing new matrix of full-thickness skin defect wounds in rats]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2022; 38:650-660. [PMID: 35899332 DOI: 10.3760/cma.j.cn501120-20210401-00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Objective: To explore the feasibility on the preparation of novel negative pressure materials for constructing new matrix of full-thickness skin defect wounds in rats. Methods: The experimental research method was applied. The microstructure of polyurethane foam dressing which was commonly used in negative pressure treatment was observed under scanning electron microscope, and its pore diameter was detected (n=5). Polycaprolactone (PCL) and polybutylene succinate (PBS) were used respectively as raw materials for the preparation of PCL and PBS negative pressure materials by melt spinning technology, with the measured pore diameter of polyurethane foam dressing as the spinning spacing at the spinning rates of 15, 25, and 35 mm/s, respectively. The microstructures of the prepared negative pressure materials were observed under scanning electron microscope, and their fiber diameters were measured. The tensile strength and tensile modulus of the prepared negative pressure materials and polyurethane foam dressing were measured by tensile testing machine and composite testing machine, respectively (n=5), to screen the spinning rate for subsequent preparation of negative pressure materials. Human skin fibroblasts (Fbs) in logarithmic growth phase were co-cultured with PCL negative pressure material and PBS negative pressure material prepared at the selected spinning rate, respectively. After 1, 4, and 7 day (s) of co-culture, the cell activity and adhesion in the materials was detected by living/dead cells detection kit, and the cell proliferation level in the materials was detected by cell counting kit 8 method (n=5). A full-thickness skin defect wound was prepared on the back of 18 5-6 weeks old Sprague-Dawley rats (gender unlimited). Immediately after injury, the injured rats were divided into PCL+polyurethane group, PBS+polyurethane group, and polyurethane alone group according to the random number table (with 6 rats in each group). The wounds were covered with materials containing corresponding component and performed with continuous negative pressure suction at the negative pressure of -16.7 kPa. The wound tissue along with materials directly contacted to the wound (hereinafter referred to as wound specimens) were collected from 3 rats in each group after 7 and 14 days of negative pressure treatment (NPT), respectively. The growth of granulation tissue and the attachment of material to wound surface were observed after hematoxylin-eosin staining, the collagen fiber deposition was observed after Masson staining, and CD34 and interleukin-6 (IL-6) positive cells were detected and counted by immunohistochemical staining. Data were statistically analyzed with one-way analysis of variance, analysis of variance for factorial design, least significant difference-t test, Kruskal-Wallis H test, Mann-Whitney U test, and Bonferroni correction. Results: The microstructure of polyurethane foam dressing was loose and porous, with the pore diameter of (815±182) μm. The spinning spacing for the subsequent negative pressure material was set as 800 μm. The microstructures of PBS negative pressure material and PCL negative pressure material were regular, with vertically interconnected layers and continuous fibers in even thickness, but the fibers of PBS negative pressure material were straighter than those of PCL negative pressure material. There was no obvious difference in the microstructure of negative pressure materials prepared from the same raw material at different spinning rates. The fiber diameters of PCL negative pressure materials prepared at three spinning rates were similar (P>0.05). The fiber diameters of PBS negative pressure materials prepared at spinning rates of 25 mm/s and 35 mm/s were significantly smaller than the fiber diameter of PBS negative pressure material prepared at the spinning rate of 15 mm/s (with t values of 4.99 and 6.40, respectively, P<0.01). Both the tensile strength and tensile modulus of PCL negative pressure materials prepared at three spinning rates were similar (P>0.05). The tensile strength of PBS negative pressure materials prepared at spinning rates of 15 mm/s and 25 mm/s was significantly lower than that of PBS negative pressure materials prepared at the spinning rate of 35 mm/s (with t values of 9.20 and 8.92, respectively, P<0.01), and the tensile modulus was significantly lower than that of PBS negative pressure materials prepared at the spinning rate of 35 mm/s (with t values of 2.58 and 2.47, respectively, P<0.05). Subsequently, PCL negative pressure material was prepared at the spinning rate of 35 mm/s, and PBS negative pressure material was prepared at the spinning rate of 15 mm/s. After 1, 4, and 7 day (s) of co-culture, the number of human skin Fbs that adhered to PCL negative pressure material and PBS negative pressure material increased with time, and there was no significant difference between the two materials. After 1 and 7 day (s) of co-culture, the proliferation levels of human skin Fbs between the two negative pressure materials were similar (P>0.05). After being co-cultured for 4 days, the proliferation level of human skin Fbs in PBS negative pressure material was significantly higher than that in PCL negative pressure material (t=6.37, P<0.01). After 7 days of NPT, the materials were clearly identifiable and a small amount of collagen fibers were also observed in the wound specimens of rats in the three groups; a small amount of granulation tissue was observed in the wound specimens of rats in polyurethane alone group. After 14 days of NPT, a large number of granulation tissue and collagen fibers were observed in the wound specimens of rats in the three groups; the materials and wound tissue in the wound specimens of rats in PCL+polyurethane group could not be clearly distinguished. After 7 and 14 days of NPT, the collagen fibers in the wound specimens of rats in polyurethane alone group were denser than those in the other two groups. After 7 days of NPT, the number of CD34 positive cells in the wound specimens of rats in PBS+polyurethane group was 14.8±3.6 per 400 times visual field, which was significantly less than 27.8±9.1 in polyurethane alone group (t=3.06, P<0.05); the number of IL-6 positive cells was 60 (49, 72), which was significantly more than 44 (38, 50) in polyurethane alone group (Z=2.41, P<0.05). After 14 days of NPT, the number of IL-6 positive cells in the wound specimens of rats in PBS+polyurethane group was 19 (12, 28) per 400 times visual field, which was significantly more than 3 (1, 10) in PCL+polyurethane group and 9 (2, 13) in polyurethane alone group (with Z values of 2.61 and 2.40, respectively, P<0.05). Conclusions: The prepared PCL negative pressure material and PBS negative pressure material have good biocompatibility, and can successfully construct the new matrix of full-thickness skin defect wounds in rats. PCL negative pressure material is better than PBS negative pressure material in general.
Collapse
Affiliation(s)
- Y F Liu
- Wound Healing Centre, Emergency Department, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Z Q Jiang
- Wound Healing Centre, Emergency Department, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Y Huang
- Wound Healing Centre, Emergency Department, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - P W Ni
- Wound Healing Centre, Emergency Department, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - T Xie
- Wound Healing Centre, Emergency Department, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
12
|
Scheffler S, Poulin P. Piezoelectric Fibers: Processing and Challenges. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16961-16982. [PMID: 35404561 DOI: 10.1021/acsami.1c24611] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Integration of piezoelectric materials in composite and textile structures is promising for creating smart textiles with sensing or energy harvesting functionalities. The most direct integration that combines wearability, comfort, and piezoelectric efficiency consists of using fibers made of piezoelectric materials. The latter include inorganic ceramics or organic polymers. Ceramics have outstanding piezoelectric properties but can not be easily melted or solubilized in a solvent to be processed in the form of fibers. They have to be spun from precursor materials and thermally treated afterward for densification and sintering. These delicate processes have to be carefully controlled to optimize the piezoelectric properties of the fibers. On the other hand, organic piezoelectric polymers, such as polyvinylidene fluoride (PVDF), can be spun by more conventional textile fibers technologies. In addition to enjoy an easier manufacturing, organic piezoelectric fibers display flexibility that facilitates their integration and use in smart textiles. However, organic fibers suffer from a low piezoelectric efficiency. This reviews looks at the processing techniques and their specific limitations and advantages to realize single-component or coaxial piezofibers. Fundamental challenges related to the use of composite fibers are discussed. The latter include challenges for poling and electrically wiring the fibers to collect charges under operation or to apply electrical fields. The electromechanical properties of these fibers processed by different manufacturing techniques are compared. Recent studies of structures used to integrate such fibers in textiles and composites with conventional techniques and their potential applications are discussed.
Collapse
|
13
|
Capuana E, Lopresti F, Ceraulo M, La Carrubba V. Poly-l-Lactic Acid (PLLA)-Based Biomaterials for Regenerative Medicine: A Review on Processing and Applications. Polymers (Basel) 2022; 14:1153. [PMID: 35335484 PMCID: PMC8955974 DOI: 10.3390/polym14061153] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Synthetic biopolymers are effective cues to replace damaged tissue in the tissue engineering (TE) field, both for in vitro and in vivo application. Among them, poly-l-lactic acid (PLLA) has been highlighted as a biomaterial with tunable mechanical properties and biodegradability that allows for the fabrication of porous scaffolds with different micro/nanostructures via various approaches. In this review, we discuss the structure of PLLA, its main properties, and the most recent advances in overcoming its hydrophobic, synthetic nature, which limits biological signaling and protein absorption. With this aim, PLLA-based scaffolds can be exposed to surface modification or combined with other biomaterials, such as natural or synthetic polymers and bioceramics. Further, various fabrication technologies, such as phase separation, electrospinning, and 3D printing, of PLLA-based scaffolds are scrutinized along with the in vitro and in vivo applications employed in various tissue repair strategies. Overall, this review focuses on the properties and applications of PLLA in the TE field, finally affording an insight into future directions and challenges to address an effective improvement of scaffold properties.
Collapse
Affiliation(s)
- Elisa Capuana
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (M.C.); (V.L.C.)
| | - Francesco Lopresti
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (M.C.); (V.L.C.)
| | - Manuela Ceraulo
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (M.C.); (V.L.C.)
| | - Vincenzo La Carrubba
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (M.C.); (V.L.C.)
- ATeN Center, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
14
|
Gu Y, Bai Y, Xie X. Bite Force Transducers and Measurement Devices. Front Bioeng Biotechnol 2021; 9:665081. [PMID: 33898409 PMCID: PMC8062967 DOI: 10.3389/fbioe.2021.665081] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022] Open
Abstract
In dental research, bite force has become an important curative effect evaluation index for tooth restoration, periodontal treatment, and orthodontic treatment. Bite force is an important parameter to evaluate the efficacy of the masticatory system. Physicians obtain the therapeutic basis for occlusal adjustment by measuring the bite force and the dynamic changes in occlusal contact at different stages of treatment and objectively evaluate the therapeutic effect. At present, many devices are used to record the bite force. Most of these devices use force transducers to detect bite force, such as strain gauge transducers, piezoresistive transducers, piezoelectric transducers, optical fiber transducers, and pressure-sensitive films. This article summarizes the various equipment used to record bite force, related materials and the characteristics of this equipment. It provides a reference for physicians to make choices during the clinical process and at the same time provides a basis for the development of new occlusal force measurement materials.
Collapse
Affiliation(s)
- Yingzhi Gu
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xianju Xie
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|