1
|
Dai W, Hu J, Tan BK, Lin S. Food additives as photosensitizers: A systematic review and narrative synthesis. Food Chem 2025; 464:141925. [PMID: 39532062 DOI: 10.1016/j.foodchem.2024.141925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Photosensitizers are the key molecules determining the efficacy of anti-microbial photodynamic inactivation. However, photosensitizers for clinical use frequently fail to satisfy safety standards required by the food industry. A variety of strategies could be employed to address these issues i.e. focusing on photosensitizers with high efficiency (>3-log decrease in CFU), on food additives with minimal effects on food qualities (taste, texture, appearance, or nutrients), and also approved photosensitizers by regulatory authorities. This review summarizes 48 relevant studies that reported on the photodynamic activities of approved food additives. We report food additives with favorable photosensitive properties, which are capable of producing reactive oxygen species upon exposure to light at appropriate wavelengths, thereby inactivating various foodborne pathogens with great promise for food sterilization. The information presented in this systematic review may provide practical insights for implementation of photodynamic inactivation in industrial settings and encourage future development of food-grade photosensitizers for food sterilization.
Collapse
Affiliation(s)
- Wanzhen Dai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Jiamiao Hu
- College of Life Sciences, University of Leicester, Leicester, Leicestershire LE1 7RH, UK.
| | - Bee K Tan
- College of Life Sciences, University of Leicester, Leicester, Leicestershire LE1 7RH, UK.
| | - Shaoling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; Center for Artificial Intelligence in Agriculture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
2
|
Kruszewska-Naczk B, Grinholc M, Rapacka-Zdonczyk A. Identification and validation of reference genes for quantitative gene expression analysis under 409 and 415 nm antimicrobial blue light treatment. Front Mol Biosci 2025; 11:1467726. [PMID: 39834786 PMCID: PMC11743365 DOI: 10.3389/fmolb.2024.1467726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Reverse transcription quantitative real-time polymerase chain reaction Q7 (RT‒qPCR) is a commonly used tool for gene expression quantification. Because the qPCR method depends on several variables that can influence the analysis process, stably expressed genes should be selected for relative gene expression studies. To date, there is insufficient information on the selection of appropriate reference genes for antimicrobial photodynamic inactivation (aPDI) and antimicrobial blue light (aBL) treatment. Therefore, the purpose of the present study was to determine the most stable reference gene under treatment with aBL under sublethal conditions and to evaluate differences in the expression of the selected gene after aBL treatment in comparison to the nontreated control. Methods Selection of stable reference genes was performed using 4 programs: BestKeeper, geNorm, NormFinder and RefFinder under 409 and 415 nm aBL treatment. Results The results revealed that the gene encoding the integration host factor β subunit (ihfB) in Escherichia coli was the most stably expressed gene after both 409 and 415 nm aBL treatment. Three programs, RefFinder, geNorm, and NormFinder, indicated that this gene had the most stable expression in comparison to the other reference gene candidates. The next best candidates were cysG, uidA, and gyrA. NormFinder revealed ihfB as the single gene and cysG - gyrA as the combination of reference genes with the best stability. Discussion Universal reference genes are characterized by stable expression that remains consistent across various stress conditions. Consequently, it is essential to evaluate reference genes for each specific stress factor under investigation. In the case of aBL at different wavelengths, we identified genes that maintain stable expression following irradiation.
Collapse
Affiliation(s)
| | | | - Aleksandra Rapacka-Zdonczyk
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
3
|
Li C, Zhou L, Ma X, Zhu L, Li J, Meng L, Han M, Wang D, Shen H, Liu C. Stability assessment of housekeeping genes for qRT-PCR in Yersinia enterocolitica cultured at 22°C and 37°C. Microbiol Spectr 2024; 12:e0114624. [PMID: 39365096 PMCID: PMC11536982 DOI: 10.1128/spectrum.01146-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
Yersinia enterocolitica, a species within the genus Yersinia, thrives optimally at 22-25°C but can also grow at the mammalian core body temperature of 37°C. This dual temperature adaptability necessitates establishing both temperature conditions in research to examine the effects on various biological processes. In quantitative real-time PCR (qRT-PCR) assays, the selection of appropriate housekeeping genes is vital for data accuracy. Nevertheless, the lack of alternatives and information often leads to the default use of the 16S rRNA gene despite potential limitations. This investigation sourced 16 potential reference genes through a comprehensive review of the literature and transcriptome sequencing data analysis. We validated the expression stability of these genes via qRT-PCR across 12 Y. enterocolitica strains, representing the four prevalent serotypes O:3, O:5,27, O:8, and O:9, isolated from diarrheal patient stool samples. This approach aimed to minimize the impact of serotype heterogeneity. After acquiring Cq values, gene stability was evaluated using four established algorithms-ΔCq, geNorm, NormFinder, and BestKeeper-and subsequently synthesized into a consolidated ranking through the Robust Rank Aggregation (RRA) method. Our study suggests that the genes glnS, nuoB, glmS, gyrB, dnaK, and thrS maintain consistent expression across varying culture temperatures, supporting their candidacy as robust housekeeping genes. We advise against the exclusive use of 16S rRNA for this purpose. Should tradition prevail in its utilization, it must be employed with discernment, preferably alongside one or two of the housekeeping genes identified in this study as internal controls.IMPORTANCEIn our study, we focused on identifying stable reference genes for quantitative real-time PCR (qRT-PCR) experiments on Y. enterocolitica cultured at different temperatures (22°C and 37°C). After thoroughly evaluating 16 candidate genes, we identified six genes-glnS, nuoB, glmS, gyrB, dnaK, and thrS-as exhibiting stable expression across these temperature conditions, making them ideal reference genes for Y. enterocolitica studies. This discovery is crucial for ensuring the accuracy and reliability of qRT-PCR data, as the choice of appropriate reference genes is key to normalizing expression data and minimizing experimental variability. Importantly, our research extended beyond bioinformatics analysis by incorporating validation with clinical strains, bridging the gap between theoretical predictions and practical application. This approach not only underscores the robustness and reliability of our findings but also directly addresses the critical need for experimental validation in the field. By providing a set of validated, stably expressed reference genes, our work offers valuable guidance for designing experiments involving Y. enterocolitica, enhancing the reliability of research outcomes, and advancing our understanding of this significant pathogen.
Collapse
Affiliation(s)
- Chuchu Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Lu Zhou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Xiaoxuan Ma
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Liguo Zhu
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Jia Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Lingning Meng
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Mei Han
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Danwei Wang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Chang Liu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Yu S, Lian Z, Yu L, Guo W, Zhang C, Zhang Y. Gamma-aminobutyric acid elicits H 2O 2 signalling and promotes wheat seed germination under combined salt and heat stress. PeerJ 2024; 12:e17907. [PMID: 39308802 PMCID: PMC11416083 DOI: 10.7717/peerj.17907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/22/2024] [Indexed: 09/25/2024] Open
Abstract
Background In the realm of wheat seed germination, abiotic stresses such as salinity and high temperature have been shown to hinder the process. These stresses can lead to the production of reactive oxygen species, which, within a certain concentration range, may actually facilitate seed germination. γ-aminobutyric acid (GABA), a non-protein amino acid, serves as a crucial signaling molecule in the promotion of seed germination. Nevertheless, the potential of GABA to regulate seed germination under the simultaneous stress of heat and salinity remains unexplored in current literature. Methods This study employed observational methods to assess seed germination rate (GR), physiological methods to measure H2O2 content, and the activities of glutamate decarboxylase (GAD), NADPH oxidase (NOX), superoxide dismutase (SOD), and catalase (CAT). The levels of ABA and GABA were quantified using high-performance liquid chromatography technology. Furthermore, quantitative real-time PCR technology was utilized to analyze the expression levels of two genes encoding antioxidant enzymes, MnSOD and CAT. Results The findings indicated that combined stress (30 °C + 50 mM NaCl) decreased the GR of wheat seeds to about 21%, while treatment with 2 mM GABA increased the GR to about 48%. However, the stimulatory effect of GABA was mitigated by the presence of ABA, dimethylthiourea, and NOX inhibitor, but was strengthened by H2O2, antioxidant enzyme inhibitor, fluridone, and gibberellin. In comparison to the control group (20 °C + 0 mM NaCl), this combined stress led to elevated levels of ABA, reduced GAD and NOX activity, and a decrease in H2O2 and GABA content. Further investigation revealed that this combined stress significantly suppressed the activity of superoxide dismutase (SOD) and catalase (CAT), as well as downregulated the gene expression levels of MnSOD and CAT. However, the study demonstrates that exogenous GABA effectively reversed the inhibitory effects of combined stress on wheat seed germination. These findings suggest that GABA-induced NOX-mediated H2O2 signalling plays a crucial role in mitigating the adverse impact of combined stress on wheat seed germination. This research holds significant theoretical and practical implications for the regulation of crop seed germination by GABA under conditions of combined stress.
Collapse
Affiliation(s)
- Song Yu
- Department of Agronomy and Crop Sciences, College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang Province, China
| | - Zhihan Lian
- Department of Agronomy and Crop Sciences, College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang Province, China
| | - Lihe Yu
- Department of Agronomy and Crop Sciences, College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang Province, China
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang Province, China
| | - Wei Guo
- Department of Agronomy and Crop Sciences, College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang Province, China
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang Province, China
| | - Chunyu Zhang
- Department of Agronomy and Crop Sciences, College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang Province, China
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang Province, China
| | - Yifei Zhang
- Department of Agronomy and Crop Sciences, College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang Province, China
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang Province, China
| |
Collapse
|
5
|
Surur AK, de Oliveira AB, De Annunzio SR, Ferrisse TM, Fontana CR. Bacterial resistance to antimicrobial photodynamic therapy: A critical update. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112905. [PMID: 38703452 DOI: 10.1016/j.jphotobiol.2024.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
Bacterial antibiotic resistance is one of the most significant challenges for public health. The increase in bacterial resistance, mainly due to microorganisms harmful to health, and the need to search for alternative treatments to contain infections that cannot be treated by conventional antibiotic therapy has been aroused. An alternative widely studied in recent decades is antimicrobial photodynamic therapy (aPDT), a treatment that can eliminate microorganisms through oxidative stress. Although this therapy has shown satisfactory results in infection control, it is still controversial in the scientific community whether bacteria manage to develop resistance after successive applications of aPDT. Thus, this work provides an overview of the articles that performed successive aPDT applications in models using bacteria published since 2010, focusing on sublethal dose cycles, highlighting the main PSs tested, and addressing the possible mechanisms for developing tolerance or resistance to aPDT, such as efflux pumps, biofilm formation, OxyR and SoxRS systems, catalase and superoxide dismutase enzymes and quorum sensing.
Collapse
Affiliation(s)
- Amanda Koberstain Surur
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Analú Barros de Oliveira
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Sarah Raquel De Annunzio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Túlio Morandin Ferrisse
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Carla Raquel Fontana
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| |
Collapse
|
6
|
de Oliveira PAA, Baboghlian J, Ramos COA, Mançano ASF, Porcari ADM, Girardello R, Ferraz LFC. Selection and validation of reference genes suitable for gene expression analysis by Reverse Transcription Quantitative real-time PCR in Acinetobacter baumannii. Sci Rep 2024; 14:3830. [PMID: 38360762 PMCID: PMC10869792 DOI: 10.1038/s41598-024-51499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024] Open
Abstract
Acinetobacter baumannii is a Gram-negative bacterium considered an emerging multi-drug-resistant pathogen. Furthermore, this bacterium can survive in extreme environmental conditions, which makes it a frequent cause of nosocomial infection outbreaks. Gene expression analyses by Reverse Transcription Quantitative real-time PCR (RT-qPCR) depend on a reference gene, also called an endogenous gene, which is used to normalize the generated data and thus ensure an accurate analysis with minimal errors. Currently, gene expression analyses in A. baumannii are compromised, as there are no reports in the literature describing the identification of validated reference genes for use in RT-qPCR analyses. For this reason, we selected twelve candidate reference genes of A. baumannii and assessed their expression profile under different experimental and culture conditions. The expression stability of the candidate genes was evaluated by using statistical algorithms such as BestKeeper, geNorm, NormFinder, Delta CT, and RefFinder, in order to identify the most suitable candidate reference genes for RT-qPCR analyses. The statistical analyses indicated rpoB, rpoD, and fabD genes as the most adequate to ensure accurate normalization of RT-qPCR data in A. baumannii. The accuracy of the proposed reference genes was validated by using them to normalize the expression of the ompA gene, encoding the outer membrane protein A, in A. baumannii sensible and resistant to the antibiotic polymyxin. The present work provides suitable reference genes for precise RT-qPCR data normalization on future gene expression studies with A. baumannii.
Collapse
Affiliation(s)
| | - Juliana Baboghlian
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, SP, CEP 12916-900, Brazil
| | | | | | - Andréia de Melo Porcari
- Laboratório Multidisciplinar de Pesquisa, Universidade São Francisco, Bragança Paulista, SP, CEP 12916-900, Brazil
| | - Raquel Girardello
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, SP, CEP 12916-900, Brazil
| | - Lúcio Fábio Caldas Ferraz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, SP, CEP 12916-900, Brazil.
| |
Collapse
|
7
|
Long Y, Wang B, Xie T, Luo R, Tang J, Deng J, Wang C. Overexpression of efflux pump genes is one of the mechanisms causing drug resistance in Mycobacterium tuberculosis. Microbiol Spectr 2024; 12:e0251023. [PMID: 38047702 PMCID: PMC10783012 DOI: 10.1128/spectrum.02510-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Gene mutations cannot explain all drug resistance of Mycobacterium tuberculosis, and the overexpression of efflux pump genes is considered another important cause of drug resistance. A total of 46 clinical isolates were included in this study to analyze the overexpression of efflux pump genes in different resistant types of strains. The results showed that overexpression of efflux pump genes did not occur in sensitive strains. There was no significant trend in the overexpression of efflux pump genes before and after one-half of MIC drug induction. By adding the efflux pump inhibitor verapamil, we can observe the decrease of MIC of some drug-resistant strains. At the same time, this study ensured the reliability of calculating the relative expression level of efflux pump genes by screening reference genes and using two reference genes for the normalization of quantitative PCR. Therefore, this study confirms that the overexpression of efflux pump genes plays an important role in the drug resistance of clinical isolates of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Ying Long
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Bin Wang
- Zigong Center for Disease Control and Prevention, Zigong, China
| | - Tiancheng Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ruixin Luo
- Zigong Center for Disease Control and Prevention, Zigong, China
| | - Jing Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jianping Deng
- Zigong Center for Disease Control and Prevention, Zigong, China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Martín-Pérez T, Köhsler M, Walochnik J. Evaluation and validation of reference genes for RT-qPCR gene expression in Naegleria gruberi. Sci Rep 2023; 13:16748. [PMID: 37798308 PMCID: PMC10555999 DOI: 10.1038/s41598-023-43892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023] Open
Abstract
Naegleria gruberi is a free-living amoeboflagellate commonly found in freshwater and in soils around the world. It is a non-pathogenic relative of Naegleria fowleri, which is the etiologic agent of Primary Amoebic Meningoencephalitis (PAM). PAM occurs world-wide and it is considered a rare disease, but its fatality rate is high (96%) mainly because of delay in initiation of treatment due to misdiagnosis and lack of a specific treatment. The analysis of gene expression by quantitative real-time PCR in N. gruberi could be a highly efficient means to understand the pathogenicity of N. fowleri and also to find drug targets. Accurate RT-qPCR analysis requires correct normalization of gene expression data using reference genes (RG), whose expression should be constant under different experimental conditions. In this study, six genes, representing the most frequently used housekeeping genes, were selected for evaluation as reference genes in N. gruberi. The expression and stability of these genes was evaluated employing four algorithms (geNorm, NormFinder, BestKeeper and RefFinder). This work shows significant variations of the stability of RGs depending on the algorithms employed and on the experimental conditions (i.e. logarithmic, stationary, heat-shock and oxidative stress). The geNorm, NormFinder and RefFinder analysis of all the experimental conditions in combination revealed that ACT and G6PD were the most stable RGs. While BestKeeper analysis showed that 18S and TBP were the most stable RGs. Moreover, normalization of HSP90 gene expression with the most stable RGs resulted in an upregulation whereas when the normalization was done with the unstable RGs, the gene expression was not reliable. Hence, the implications of this study are relevant to gene expression studies in N. gruberi.
Collapse
Affiliation(s)
- Tania Martín-Pérez
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria.
| | - Martina Köhsler
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
9
|
Szymczak K, Szewczyk G, Rychłowski M, Sarna T, Zhang L, Grinholc M, Nakonieczna J. Photoactivated Gallium Porphyrin Reduces Staphylococcus aureus Colonization on the Skin and Suppresses Its Ability to Produce Enterotoxin C and TSST-1. Mol Pharm 2023; 20:5108-5124. [PMID: 37653709 PMCID: PMC10553792 DOI: 10.1021/acs.molpharmaceut.3c00399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Staphylococcus aureus is a key pathogen in atopic dermatitis (AD) pathogenicity. Over half of AD patients are carriers of S. aureus. Clinical isolates derived from AD patients produce various staphylococcal enterotoxins, such as staphylococcal enterotoxin C or toxic shock syndrome toxin. The production of these virulence factors is correlated with more severe AD. In this study, we propose cationic heme-mimetic gallium porphyrin (Ga3+CHP), a novel gallium metalloporphyrin, as an anti-staphylococcal agent that functions through dual mechanisms: a light-dependent mechanism (antimicrobial photodynamic inactivation, aPDI) and a light-independent mechanism (suppressing iron metabolism). Ga3+CHP has two additive quaternary ammonium groups that increase its water solubility. Furthermore, Ga3+CHP is an efficient generator of singlet oxygen and can be recognized by heme-target systems such as Isd, which improves the intracellular accumulation of this compound. Ga3+CHP activated with green light effectively reduced the survival of clinical S. aureus isolates derived from AD patients (>5 log10 CFU/mL) and affected their enterotoxin gene expression. Additionally, there was a decrease in the biological functionality of studied toxins regarding their superantigenicity. In aPDI conditions, there was no pronounced toxicity in HaCaT keratinocytes with both normal and suppressed filaggrin gene expression, which occurs in ∼50% of AD patients. Additionally, no mutagenic activity was observed. Green light-activated gallium metalloporphyrins may be a promising chemotherapeutic to reduce S. aureus colonization on the skin of AD patients.
Collapse
Affiliation(s)
- Klaudia Szymczak
- Laboratory
of Photobiology and Molecular Diagnostics, Intercollegiate Faculty
of Biotechnology, University of Gdansk and
Medical University of Gdansk, Gdansk 80-307, Poland
| | - Grzegorz Szewczyk
- Department
of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Michał Rychłowski
- Laboratory
of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk 80-307, Poland
| | - Tadeusz Sarna
- Department
of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Lei Zhang
- Department
of Biochemical Engineering, School of Chemical Engineering and Technology,
Frontier Science Center for Synthetic Biology and Key Laboratory of
Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Mariusz Grinholc
- Laboratory
of Photobiology and Molecular Diagnostics, Intercollegiate Faculty
of Biotechnology, University of Gdansk and
Medical University of Gdansk, Gdansk 80-307, Poland
| | - Joanna Nakonieczna
- Laboratory
of Photobiology and Molecular Diagnostics, Intercollegiate Faculty
of Biotechnology, University of Gdansk and
Medical University of Gdansk, Gdansk 80-307, Poland
| |
Collapse
|
10
|
Maurer M, Klassert TE, Löffler B, Slevogt H, Tuchscherr L. Extraction of High-Quality RNA from S. aureus Internalized by Endothelial Cells. Microorganisms 2023; 11:microorganisms11041020. [PMID: 37110443 PMCID: PMC10143013 DOI: 10.3390/microorganisms11041020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Staphylococcus aureus evades antibiotic therapy and antimicrobial defenses by entering human host cells. Bacterial transcriptomic analysis represents an invaluable tool to unravel the complex interplay between host and pathogen. Therefore, the extraction of high-quality RNA from intracellular S. aureus lays the foundation to acquire meaningful gene expression data. In this study, we present a novel and straightforward strategy to isolate RNA from internalized S. aureus after 90 min, 24 h, and 48 h postinfection. Real-time PCR data were obtained for the target genes agrA and fnba, which play major roles during infection. The commonly used reference genes gyrB, aroE, tmRNA, gmk, and hu were analyzed under different conditions: bacteria from culture (condition I), intracellular bacteria (condition II), and across both conditions I and II. The most stable reference genes were used for the normalization of agrA and fnbA. Delta Cq (quantification cycle) values had a relatively low variability and thus demonstrated the high quality of the extracted RNA from intracellular S. aureus during the early phase of infection. The established protocol allows the extraction and purification of intracellular staphylococcal RNA while minimizing the amount of host RNA in the sample. This approach can leverage reproducible gene expression data to study host-pathogen interactions.
Collapse
Affiliation(s)
- Michelle Maurer
- Institute for Medical Microbiology, Jena University Hospital, 07747 Jena, Germany
| | - Tilman E Klassert
- Department of Respiratory Medicine, Medizinische Hochschule Hannover, 30625 Hannover, Germany
- Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Bettina Löffler
- Institute for Medical Microbiology, Jena University Hospital, 07747 Jena, Germany
| | - Hortense Slevogt
- Department of Respiratory Medicine, Medizinische Hochschule Hannover, 30625 Hannover, Germany
- Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Lorena Tuchscherr
- Institute for Medical Microbiology, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
11
|
Pant N, Rush C, Warner J, Eisen DP. Effect of Savirin or Ticagrelor Treatment on the Expression of Commonly Used Reference Genes in Staphylococcus aureus. Microorganisms 2023; 11:microorganisms11020336. [PMID: 36838300 PMCID: PMC9964243 DOI: 10.3390/microorganisms11020336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Reference genes are frequently used for the normalization of quantitative reverse transcriptase PCR (qRTPCR) data in gene expression studies. Staphylococcus aureus is one of the most common causes of biofilm-related infections. Savirin and ticagrelor show in vitro as well as in vivo antibiofilm activity against S. aureus. The main aim of this study was to identify the most stably expressed reference genes to study the effect of these molecules on genes in a strong biofilm producing S. aureus isolate isolated from biofilm-related infection. Quantitative real-time PCR was performed by using relative quantification method. Four different algorithms, delta Ct, normfinder, bestkeeper, and genorm, followed by a comprehensive analysis was used to identify the most stable reference genes from a list of sixteen different candidate reference genes. All four algorithms reported different results, with some comparable findings among some methods. In the comprehensive analysis of the results of all the algorithms used, the most stable reference genes found were spa, rpoD, and pyk for savirin treatment experiment and gapdH, gyrA, and gmk for ticagrelor treatment experiment. The optimal number of reference genes required was two for both the experimental conditions. Despite having some drawbacks, each algorithm can reliably determine an appropriate reference gene independently. However, based on consensus ranking and the required optimal number of reference genes reported, spa and rpoD were the most appropriate reference genes for savirin treatment experiment, and gapdH and gyrA were most appropriate for ticagrelor treatment experiment. This study provides baseline data on reference genes to study the effect of savirin or ticagrelor treatment on the expression of potential reference genes in S. aureus. We recommend prior re-validation of reference genes on a case-by-case basis before they can be used.
Collapse
Affiliation(s)
- Narayan Pant
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Tropical Health and Medicine, Townsville, QLD 4811, Australia
- Correspondence:
| | - Catherine Rush
- Australian Institute of Tropical Health and Medicine, Townsville, QLD 4811, Australia
| | - Jeffrey Warner
- Australian Institute of Tropical Health and Medicine, Townsville, QLD 4811, Australia
| | - Damon P. Eisen
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
12
|
Haddadian A, Robattorki FF, Dibah H, Soheili A, Ghanbarzadeh E, Sartipnia N, Hajrasouliha S, Pasban K, Andalibi R, Ch MH, Azari A, Chitgarzadeh A, Kashtali AB, Mastali F, Noorbazargan H, Mirzaie A. Niosomes-loaded selenium nanoparticles as a new approach for enhanced antibacterial, anti-biofilm, and anticancer activities. Sci Rep 2022; 12:21938. [PMID: 36536030 PMCID: PMC9763330 DOI: 10.1038/s41598-022-26400-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Targeted drug delivery and increasing the biological activity of drugs is one of the recent challenges of pharmaceutical researchers. Niosomes are one of the new targeted drug delivery systems that enhances the biological properties of drugs. In this study, for the first time, the green synthesis of selenium nanoparticles (SeNPs), and its loading into niosome was carried out to increase the anti-bacterial and anti-cancer activity of SeNPs. Different formulations of noisome-loaded SeNPs were prepared, and the physical and chemical characteristics of the prepared niosomes were investigated. The antibacterial and anti-biofilm effects of synthesized niosomes loaded SeNPs and free SeNPs against standard pathogenic bacterial strains were studied, and also its anticancer activity was investigated against breast cancer cell lines. The expression level of apoptotic genes in breast cancer cell lines treated with niosome-loaded SeNPs and free SeNPs was measured. Also, to evaluate the biocompatibility of the synthesized niosomes, their cytotoxicity effects against the human foreskin fibroblasts normal cell line (HFF) were studied using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The results illustrated that the optimal formulation had an average size of 177.9 nm, a spherical shape, and an encapsulation efficiency of 37.58%. Also, the results revealed that the release rate of SeNPs from niosome-loaded SeNPs and free SeNPs was 61.26% and 100%, respectively, in 72 h. Also, our findings demonstrated that the niosome-loaded SeNPs have significant antibacterial, anti-biofilm, and anticancer effects compared to the free SeNPs. In addition, niosome-loaded SeNPs can upregulate the expression level of Bax, cas3, and cas9 apoptosis genes while the expression of the Bcl2 gene is down-regulated in all studied cell lines, significantly. Also, the results of the MTT test indicated that the free niosome has no significant cytotoxic effects against the HFF cell line which represents the biocompatibility of the synthesized niosomes. In general, based on the results of this study, it can be concluded that niosomes-loaded SeNPs have significant anti-microbial, anti-biofilm, and anti-cancer effects, which can be used as a suitable drug delivery system.
Collapse
Affiliation(s)
- Abbas Haddadian
- grid.411463.50000 0001 0706 2472Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Farnoush Falahi Robattorki
- grid.412266.50000 0001 1781 3962Biomedical Engineering Group, Chemical Engineering Department, Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Hedieh Dibah
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Ali Soheili
- grid.412112.50000 0001 2012 5829Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Erfan Ghanbarzadeh
- grid.411874.f0000 0004 0571 1549Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nasrin Sartipnia
- grid.411463.50000 0001 0706 2472Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Shadi Hajrasouliha
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Kamal Pasban
- grid.449262.fDepartment of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Romina Andalibi
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Mojtaba Hedayati Ch
- grid.411874.f0000 0004 0571 1549Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arezou Azari
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Arman Chitgarzadeh
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Aliasghar Bagheri Kashtali
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Fatemeh Mastali
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Hassan Noorbazargan
- grid.411600.2Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mirzaie
- grid.460834.d0000 0004 0417 6855Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| |
Collapse
|
13
|
Sheng L, Li X, Wang L. Photodynamic inactivation in food systems: A review of its application, mechanisms, and future perspective. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Michalska K, Rychłowski M, Krupińska M, Szewczyk G, Sarna T, Nakonieczna J. Gallium Mesoporphyrin IX-Mediated Photodestruction: A Pharmacological Trojan Horse Strategy To Eliminate Multidrug-Resistant Staphylococcus aureus. Mol Pharm 2022; 19:1434-1448. [PMID: 35416046 PMCID: PMC9066410 DOI: 10.1021/acs.molpharmaceut.1c00993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
One of the factors
determining efficient antimicrobial photodynamic
inactivation (aPDI) is the accumulation of a light-activated compound,
namely, a photosensitizer (PS). Targeted PS recognition is the approach
based on the interaction between the membrane receptor on the bacterial
surface and the PS, whereas the compound is efficiently accumulated
by the same mechanism as the natural ligand. In this study, we showed
that gallium mesoporphyrin IX (Ga3+MPIX) provided dual
functionality—iron metabolism disruption and PS properties
in aPDI. Ga3+MPIX induced efficient (>5log10 reduction in CFU/mL) bacterial photodestruction with excitation
in the area of Q band absorption with relatively low eukaryotic cytotoxicity
and phototoxicity. The Ga3+MPIX is recognized by the same
systems as haem by the iron-regulated surface determinant (Isd). However,
the impairment in the ATPase of the haem detoxification efflux pump
was the most sensitive to the Ga3+MPIX-mediated aPDI phenotype.
This indicates that changes within the metalloporphyrin structure
(vinyl vs ethyl groups) did not significantly alter the properties
of recognition of the compound but influenced its biophysical properties.
Collapse
Affiliation(s)
- Klaudia Michalska
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| | - Michał Rychłowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| | - Martyna Krupińska
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| | - Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Joanna Nakonieczna
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| |
Collapse
|
15
|
Gambino E, Maione A, Guida M, Albarano L, Carraturo F, Galdiero E, Di Onofrio V. Evaluation of the Pathogenic-Mixed Biofilm Formation of Pseudomonas aeruginosa/ Staphylococcus aureus and Treatment with Limonene on Three Different Materials by a Dynamic Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063741. [PMID: 35329426 PMCID: PMC8955688 DOI: 10.3390/ijerph19063741] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/02/2023]
Abstract
Background: Biofilms have been found growing on implantable medical devices. This can lead to persistent clinical infections. The highly antibiotic-resistant property of biofilms necessitates the search for both potent antimicrobial agents and novel antibiofilm strategies. Natural product-based anti-biofilm agents were found to be as efficient as chemically synthesized counterparts with fewer side effects. In the present study, the effects of limonene as an antibiofilm agent were evaluated on Pseudomonas aeruginosa and Staphylococcus aureus biofilm formed on different surfaces using the CDC model system in continuous flow. The flgK gene and the pilA gene expression in P. aeruginosa, and the icaA gene and eno gene in S. aureus, which could be considered as efficient resistance markers, were studied. Methods: Mono- and dual-species biofilms were grown on polycarbonate, polypropylene, and stainless-steel coupons in a CDC biofilm reactor (Biosurface Technologies, Bozeman, MT, USA). To evaluate the ability of limonene to inhibit and eradicate biofilm, a sub-MIC concentration (10 mL/L) was tested. The gene expression of P. aeruginosa and S. aureus was detected by SYBR Green quantitative Real-Time PCR assay (Meridiana Bioline, Brisbane, Australia). Results: The limonene added during the formation of biofilms at sub-MIC concentrations works very well in inhibiting biofilms on all three materials, reducing their growth by about 2 logs. Of the same order of magnitude is the ability of limonene to eradicate both mono- and polymicrobial mature biofilms on all three materials. Greater efficacy was observed in the polymicrobial biofilm on steel coupons. The expression of some genes related to the virulence of the two microorganisms was differently detected in mono- and polymicrobial biofilm. Conclusions: These data showed that the limonene treatment expressed different levels of biofilm-forming genes, especially when both types of strains alone and together grew on different surfaces. Our findings showed that limonene treatment is also very efficient when biofilm has been grown under shear stress causing significant and irreversible damage to the biofilm structure. The effectiveness of the sanitation procedures can be optimized by applying antimicrobial combinations with natural compounds (e.g., limonene).
Collapse
Affiliation(s)
- Edvige Gambino
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
| | - Angela Maione
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
| | - Marco Guida
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
| | - Luisa Albarano
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
| | - Federica Carraturo
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
| | - Emilia Galdiero
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
- Correspondence: ; Tel.: +39-081-679182
| | - Valeria Di Onofrio
- Department of Sciences and Technologies, University of Naples “Parthenope”, 80143 Naples, Italy;
| |
Collapse
|
16
|
Matuszewska M, Maciąg T, Rajewska M, Wierzbicka A, Jafra S. The carbon source-dependent pattern of antimicrobial activity and gene expression in Pseudomonas donghuensis P482. Sci Rep 2021; 11:10994. [PMID: 34040089 PMCID: PMC8154892 DOI: 10.1038/s41598-021-90488-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/12/2021] [Indexed: 02/04/2023] Open
Abstract
Pseudomonas donghuensis P482 is a tomato rhizosphere isolate with the ability to inhibit growth of bacterial and fungal plant pathogens. Herein, we analysed the impact of the carbon source on the antibacterial activity of P482 and expression of the selected genes of three genomic regions in the P482 genome. These regions are involved in the synthesis of pyoverdine, 7-hydroxytropolone (7-HT) and an unknown compound ("cluster 17") and are responsible for the antimicrobial activity of P482. We showed that the P482 mutants, defective in these regions, show variations and contrasting patterns of growth inhibition of the target pathogen under given nutritional conditions (with glucose or glycerol as a carbon source). We also selected and validated the reference genes for gene expression studies in P. donghuensis P482. Amongst ten candidate genes, we found gyrB, rpoD and mrdA the most stably expressed. Using selected reference genes in RT-qPCR, we assessed the expression of the genes of interest under minimal medium conditions with glucose or glycerol as carbon sources. Glycerol was shown to negatively affect the expression of genes necessary for 7-HT synthesis. The significance of this finding in the light of the role of nutrient (carbon) availability in biological plant protection is discussed.
Collapse
Affiliation(s)
- Marta Matuszewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Tomasz Maciąg
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Magdalena Rajewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Aldona Wierzbicka
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland.
| |
Collapse
|