1
|
Okada S, Kurahashi N, Tanida Y. Terahertz spectroscopy for analysis of vaterite-to-calcite crystal phase transition induced by distilled water. PLoS One 2025; 20:e0323421. [PMID: 40354370 PMCID: PMC12068627 DOI: 10.1371/journal.pone.0323421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
Vaterite is a crystalline polymorph of anhydrous calcium carbonate (CaCO3), which exhibits relatively low stability compared to other two polymorphs, calcite and aragonite. Vaterite particles have properties such as large specific surface area, high porosity, and high solubility; hence, research has been made in wide range of applications from material additive to drug delivery. X-ray diffractometry (XRD) is capable of identifying polymorphs of calcium carbonate. However, depending on the base material and the installed state, it may not always be suitable for non-destructive observation. This study reveals that vaterite-to-calcite crystal phase transition degree can be quantified by the absorption spectrum in terahertz range. The vaterite concentration and the terahertz absorption peak intensity near 3.3 THz showed linearity with correlation coefficient of R2 = 0.934 in our experiment. The findings allow us to quantitatively evaluate vaterite-to-calcite crystal phase transition in non-destructive and non-invasive way.
Collapse
Affiliation(s)
- Shuhei Okada
- Marketing Headquarters, Yokogawa Electric Corporation, Musashino City, Tokyo, Japan
| | - Naoya Kurahashi
- Department of Fundamental Technology, Kyoto Prefectural Technology Center for Small and Medium Enterprises, Kyoto City, Kyoto, Japan
| | - Yukihiro Tanida
- Department of Fundamental Technology, Kyoto Prefectural Technology Center for Small and Medium Enterprises, Kyoto City, Kyoto, Japan
| |
Collapse
|
2
|
Sujathan S, Gopakumar TG, Singh A. Impact of Manganese Carbonate Precipitation on Uranium(VI) Fate in Conditions Relevant to Carbonate-Buffered Aquifers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:140-151. [PMID: 39728854 DOI: 10.1021/acs.langmuir.4c03201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Widespread geogenic uranium (U) contamination of Indian groundwaters is of serious concern; yet little is known of the dominant forms and release mechanisms of U in these aquifers. Interestingly, manganese (Mn)-rich aquifers, highly buffered by dissolved inorganic carbon (DIC) and saturated with rhodochrosite [MnCO3(s)], have shown low U (
Collapse
Affiliation(s)
- Surya Sujathan
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | | | - Abhas Singh
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
3
|
Ma Y, Li C, Yan J, Yu H, Kan H, Yu W, Zhou X, Meng Q, Dong P. Application and mechanism of carbonate material in the treatment of heavy metal pollution: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36551-36576. [PMID: 38755474 DOI: 10.1007/s11356-024-33225-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/02/2024] [Indexed: 05/18/2024]
Abstract
Among the many heavy metal pollution treatment agents, carbonate materials show strong flexibility and versatility by virtue of their high adsorption capacity for heavy metals and the characteristics of multiple and simple modification methods. It shows good potential for development. This review summarizes the application of carbonate materials in the treatment of heavy metal pollution according to the research of other scholars. It mainly relates to the application of surface-modified, activated, and nano-sized carbonate materials in the treatment of heavy metal pollution in water. Natural carbonate minerals and composite carbonate minerals solidify and stabilize heavy metals in soil. Solidification of heavy metals in hazardous waste solids is by MICP. There are four aspects of calcium carbonate oligomers curing heavy metals in fly ash from waste incineration. The mechanism of treating heavy metals by carbonate in different media was discussed. However, in the complex environment where multiple types of pollutants coexist, questions on how to maintain the efficient processing capacity of carbonate materials and how to use MICP to integrate heavy metal fixation and seepage prevention in solid waste base under complex and changeable natural environment deserve our further consideration. In addition, the use of carbonate materials for the purification of trace radioactive wastewater and the safe treatment of trace radioactive solid waste are also worthy of further exploration.
Collapse
Affiliation(s)
- Yaoqiang Ma
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - ChenChen Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jin Yan
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Hanjing Yu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Huiying Kan
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Wanquan Yu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Xinyu Zhou
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Qi Meng
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Peng Dong
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| |
Collapse
|
4
|
Kim J, Lee SS, Fenter P, Myneni SCB, Nikitin V, Peters CA. Carbonate Coprecipitation for Cd and Zn Treatment and Evaluation of Heavy Metal Stability Under Acidic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3104-3113. [PMID: 36781166 PMCID: PMC9979612 DOI: 10.1021/acs.est.2c07678] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Mining wastes or combustion ash are materials of high carbon sequestration potential but are also known for their toxicity in terms of heavy metal content. To utilize such waste materials for engineered carbon mineralization purposes, there is a need to investigate the fate and mobility of toxic metals. This is a study of the coprecipitation of metals with calcium carbonate for environmental heavy metal mitigation. The study also examines the stability of precipitated phases under environmentally relevant acid conditions. For a wide range of cadmium (Cd) and zinc (Zn) concentrations (10 to 5000 mg/L), induced coprecipitation led to greater than 99% uptake from water. The calcium carbonate phases were found to contain amounts as high as 9.9 wt % (Cd) and 17 wt % (Zn), as determined by novel synchrotron techniques, including X-ray fluorescence element mapping and three-dimensional (3D) nanotransmission X-ray microscopy (TXM). TXM imaging revealed first-of-a-kind observations of chemical gradients and internal nanoporosity within particles. These observations provided new insights into the mechanisms leading to the retention of coprecipitated heavy metals during the dissolution of calcite in acidic (pH 4) solutions. These observations highlight the feasibility of utilizing carbonate coprecipitation as an engineered approach to the durable sequestration of toxic metals.
Collapse
Affiliation(s)
- Julie
J. Kim
- Department
of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Sang Soo Lee
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Paul Fenter
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Satish C. B. Myneni
- Department
of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Viktor Nikitin
- Advanced
Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Catherine A. Peters
- Department
of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
5
|
Liao Z, Wu S, Xie H, Chen F, Yang Y, Zhu R. Effect of phosphate on cadmium immobilized by microbial-induced carbonate precipitation: Mobilization or immobilization? JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130242. [PMID: 36327838 DOI: 10.1016/j.jhazmat.2022.130242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Microbial-induced carbonate precipitation (MICP) is a promising technology to immobilize/remediate heavy metals (HMs) like cadmium (Cd). However, the long-term stability of MICP-immobilized HMs is unclear, especially in farmland where chemical fertilization is necessary. Therefore, we performed MICP treatment on soils contaminated with various Cd compounds (CdCO3, CdS, and CdCl2) and added diammonium phosphate (DAP) to explore the impact of phosphate on the MICP-immobilized Cd. The results showed that MICP treatment was practical to immobilize the exchangeable Cd but to mobilize the carbonate and Fe/Mn oxide-bound Cd. After applying DAP, soil pH declined due to ammonium nitrification. At high P/Ca molar ratios (1/2 and 1), partial previously immobilized Cd was released due to the carbonate dissolution. Contrarily, exchangeable Cd transformed to less mobilizable Fe/Mn oxide-bound at low P/Ca molar ratios (1/4 and 1/8). Meanwhile, other treatments were also helpful in avoiding the release of immobilized Cd, such as applying non-ammonium phosphate and adding lime material after soil acidification. Our investigation suggested that the long-term stability of HMs in remediated sites should be carefully evaluated, especially in agricultural areas with phosphate and nitrogen fertilizer input.
Collapse
Affiliation(s)
- Zisheng Liao
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Science, 19 Yuquan Road, 100049 Beijing, China
| | - Shijun Wu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China.
| | - Hong Xie
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Science, 19 Yuquan Road, 100049 Beijing, China
| | - Fanrong Chen
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| | - Yongqiang Yang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| |
Collapse
|
6
|
Disi ZA, Attia E, Ahmad MI, Zouari N. Immobilization of heavy metals by microbially induced carbonate precipitation using hydrocarbon-degrading ureolytic bacteria. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 35:e00747. [PMID: 35755319 PMCID: PMC9218142 DOI: 10.1016/j.btre.2022.e00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022]
Abstract
Crude oil contamination introduces multiple threats to human health and the environment, most of which are from toxic heavy metals. Heavy metals cause significant threats because of their persistence, toxicity, and bio-accumulation. Biomineralization, performed through many microbial processes, can lead to the immobilization of heavy metals in formed minerals. The potential of the microbially carbonate-induced precipitation (MICP) in removal by biomineralization of several heavy metals was investigated. A collection of diverse 11 bacterial strains exhibited ureolytic activity and tolerance to heavy metals when growing in Luria-Bertani (LB) and urea medium. Determination of the minimum inhibitory concentrations (MIC) revealed that heavy metal toxicity was arranged as Cd > Ni > Cr > Cu > Zn. Three hydrocarbon-degrading bacterial strains (two of Pseudomonas aeruginosa and one of Providencia rettgeri) exhibited the highest tolerance (MIC > 5 mM) to Cu, Cr, Zn, and Ni, whereas Cd exerted significantly higher toxicity with MIC <1 mM. At all MICP conditions, different proportions of calcium carbonate (calcite) and calcium phosphate (brushite) were formed. Pseudomonas aeruginosa strains (QZ5 and QZ9) exhibited the highest removal efficiency of Cr (100%), whereas Providencia rettgeri strain (QZ2) showed 100% removal of Zn. Heavy metal complexes were found as well. Cd removal was evidenced by the formation of cadmium phosphate induced by Providencia rettgeri bacterial activity. Our study confirmed that hydrocarbon-degrading ureolytic bacteria not only can tolerate heavy metal toxicity but also have the capability to co-precipitate heavy metals. These findings indicate an effective and novel biological approach to bioremediate petroleum hydrocarbons and immobilize multiple heavy metals with mineral formation. This is of high importance for ecological restoration via stabilization of soil and alleviation of heavy metal toxicity.
Collapse
Affiliation(s)
- Zulfa Al Disi
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO. Box 2713, Doha, Qatar
| | - Essam Attia
- Central Laboratory Unit, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Mohammad I. Ahmad
- Central Laboratory Unit, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Nabil Zouari
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO. Box 2713, Doha, Qatar
| |
Collapse
|
7
|
First Steps towards Understanding the Non-Linear Impact of Mg on Calcite Solubility: A Molecular Dynamics Study. MINERALS 2021. [DOI: 10.3390/min11040407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnesium (Mg2+) is one of the most common impurities in calcite and is known to have a non-linear impact on the solubility of magnesian calcites. Using molecular dynamics (MD), we observed that Mg2+ impacts overall surface energies, local free energy profiles, interfacial water density, structure and dynamics and, at higher concentrations, it also causes crystal surface deformation. Low Mg concentrations did not alter the overall crystal structure, but stabilised Ca2+ locally and tended to increase the etch pit nucleation energy. As a result, Ca-extraction energies over a wide range of 39 kJ/mol were observed. Calcite surfaces with an island were less stable compared to flat surfaces, and the incorporation of Mg2+ destabilised the island surface further, increasing the surface energy and the calcium extraction energies. In general, Ca2+ is less stable in islands of high Mg2+ concentrations. The local variation in free energies depends on the amount and distance to nearest Mg in addition to local disruption of interfacial water and the flexibility of surface carbonate ions to rotate. The result is a complex interplay of these characteristics that cause variability in local dissolution energies. Taken together, these results illustrate molecular scale processes behind the non-linear impact of Mg2+ concentration on the solubility of magnesium-bearing calcites.
Collapse
|