1
|
Kaczmarek A, Boguś MI. The flavouring agent, 2-octenoic acid kills Galleria mellonella (Lepidoptera: Pyralidae) by affecting their immunocompetent cells and cuticular FFA profiles. JOURNAL OF INSECT PHYSIOLOGY 2025; 161:104779. [PMID: 39947514 DOI: 10.1016/j.jinsphys.2025.104779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/16/2025]
Abstract
This study investigates the effects of the naturally occurring flavouring agent, trans-2-octenoic acid, on the insect model Galleria mellonella by examining its impact on immunocompetent cells and free fatty acid (FFA) profiles in the cuticle. The value of LD50 for 2-octenoic acid has been calculated as 9.66 µg/mg of insect body mass, this value is outside the GHS scale, indicating that the compound is unlikely to cause acute toxicity after dermal application and is safe for humans and mammals. Thetreatment with 2-octenoic acid caused several changes in the insect defence mechanismes, viz. changes in cuticular FFA profiles and death of immunocompetent cells. In larvae, topical treatment of 2-octenoic acid increased the concentration of cuticular FFAs, particularly C6:0 (245 times higher), C15:0 (110 times higher), and C16:1 (1608 times higher), and 2-octenoic acid (C8:1) accumulated significantly on the surface of the cuticle. In adults, treatment resulted in lower cuticular C8:1concentrations than in larvae, which might indicate that 2-octenoic acid penetrates more effectively through the adult cuticle. The 2-octenoic acid application demonstrated considerable cytotoxicity against insect cell line Sf9 and G. mellonella hemocytes, with both in vivo and in vitro treatment. Our findings contribute to the broader understanding of how synthetic and naturally occurring chemicals may interact with the immune and physiological systems of insects, particularly focusing on G. mellonella as a model organism for toxicological studies. Given the increasing interest in the ecological and physiological impacts of food additives, our research provides novel insights into the biological interactions of 2-octenoic acid and its potential role as an insecticide.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Museum and Institute of Zoology PAS, Twarda 51/55 00-818, Warsaw, Poland.
| | - Mieczysława Irena Boguś
- Museum and Institute of Zoology PAS, Twarda 51/55 00-818, Warsaw, Poland; Biomibo, Strzygłowska 15 04-872, Warsaw, Poland
| |
Collapse
|
2
|
Boguś MI, Kazek M. Sex- and Metamorphosis-Related Changes in the Cuticular Lipid Profile of Galleria mellonella Pupae and Adults. INSECTS 2024; 15:965. [PMID: 39769567 PMCID: PMC11678884 DOI: 10.3390/insects15120965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
The majority of insects reproduce sexually. Among the many factors involved in controlling the reproductive process, cuticular lipids play an important role as unique chemical signatures of species, developmental stage, and sex, and participate in mate recognition. An understanding of the sex- and metamorphosis-related fluctuations in the cuticular lipid profiles of harmful insects is necessary to hamper their reproductive process. A GC/MS analysis of the cuticular lipids of the beehive pest Galleria mellonella Linnaeus (Lepidoptera: Pyralidae) revealed 11 FFAs in the male pupae (C8:0, C9:0, C14:0, C15:0, C16:1, C16:0, C17:0, C18:1, C18:0, C20:1, and C21:1) together with another two in the females (C10:0 and C17:1). As metamorphosis progressed, some FFAs disappeared from the pupal cuticle (C8:0 and C17:0 in both sexes, and C10:0, C17:1, and C20:1 only in female pupae) and the levels of the others changed. In adult virgin males and females, C8:0, C17:1, and C17:0 reappeared and two FFAs absent in pupae (C6:0 and C11:0) appeared. In virgin males, C13:0 also appeared (absent in pupae). Copulation resulted in the disappearance of C13:0 and C17:1, decreased the concentrations of C9:0, C11:0, C18:1, and C18:0, and elevated the amounts of C14:0, C16:1, and C16:0 in mated males. In mated females, the concentrations of C11:0, C14:0, C15:0, C16:0, C17:1, and C18:1 increased while C18:1 decreased. Copulation reduced cholesterol levels in mated females, and increased those in males.
Collapse
Affiliation(s)
- Mieczysława I. Boguś
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
- Biomibo, 15 Strzygłowska St., 04-872 Warsaw, Poland
| | - Michalina Kazek
- Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, 19 Poleczki St., 02-822 Warsaw, Poland;
| |
Collapse
|
3
|
Visser B, Scheifler M. Insect Lipid Metabolism in the Presence of Symbiotic and Pathogenic Viruses and Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39548000 DOI: 10.1007/5584_2024_833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Insects, like most animals, have intimate interactions with microorganisms that can influence the insect host's lipid metabolism. In this chapter, we describe what is known so far about the role prokaryotic microorganisms play in insect lipid metabolism. We start exploring microbe-insect lipid interactions focusing on endosymbionts, and more specifically the gut microbiota that has been predominantly studied in Drosophila melanogaster. We then move on to an overview of the work done on the common and well-studied endosymbiont Wolbachia pipientis, also in interaction with other microbes. Taking a slightly different angle, we then look at the effect of human pathogens, including dengue and other viruses, on the lipids of mosquito vectors. We extend the work on human pathogens and include interactions with the endosymbiont Wolbachia that was identified as a natural tool to reduce the spread of mosquito-borne diseases. Research on lipid metabolism of plant disease vectors is up and coming and we end this chapter by highlighting current knowledge in that field.
Collapse
Affiliation(s)
- Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium.
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
4
|
Kazek M, Kaczmarek A, Wrońska AK, Boguś MI. Effect of Benzyl Alcohol on Main Defense System Components of Galleria mellonella (Lepidoptera). Int J Mol Sci 2024; 25:11209. [PMID: 39456990 PMCID: PMC11508370 DOI: 10.3390/ijms252011209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Benzyl alcohol (E1519) is an aromatic alcohol used in the pharmaceutical and food industry. It is used to protect food products against microorganisms during storage, as a flavoring in the production of chocolate and confectionery products, as an important ingredient in fragrance, and as a preservative in medical products. However, little is known of its effect on insects. The main aim of this study was to determine the influence of benzyl alcohol on the defense systems of the wax moth Galleria mellonella, i.e., its cuticular lipid composition and critical elements of its immune system. A gas chromatography/mass spectrometry (GC/MS) analysis found benzyl alcohol treatment to elicit significant quantitative and qualitative differences in cuticular free fatty acid (FFA) profiles. Our findings indicate that benzyl alcohol treatment increased the levels of HSP70 and HSP90 and decreased those of HSF1, histamine, and cysteinyl leukotriene. Benzyl alcohol application also increased dismutase level in the hemolymph and lowered those of catalase and 8-OHdG. The treatment also had negative effects on G. mellonella hemocytes and a Sf9 cell line in vitro: 48-h treatment resulted in morphological changes, with the remaining cells being clearly spindle-shaped with numerous granules. The high insecticidal activity of compound and its lack of toxicity towards vertebrates suggest it could be an effective insecticide.
Collapse
Affiliation(s)
- Michalina Kazek
- Department of Microbiology, Molecular Genetics and Genomics, Centre of Advanced Materials and Technology CEZAMAT, Warsaw University of Technology, ul. Poleczki 19, 02-822 Warszawa, Poland;
| | - Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland; (A.K.); (A.K.W.)
| | - Anna K. Wrońska
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland; (A.K.); (A.K.W.)
| | - Mieczysława I. Boguś
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland; (A.K.); (A.K.W.)
- BIOMIBO, ul. Strzygłowska 15, 04-872 Warszawa, Poland
| |
Collapse
|
5
|
Kaczmarek A, Katarzyna Wrońska A, Irena Boguś M. Octanoic acid kills Lucilia sericata (Diptera: Calliphoridae) by affecting two major defence systems: cuticular free fatty acids and immunocompetent cells. J Invertebr Pathol 2024; 206:108165. [PMID: 38986766 DOI: 10.1016/j.jip.2024.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/10/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
This work examines the insecticidal activity of octanoic acid (C8:0), a short-chain fatty acid detected in entomopathogenic fungus - Conidiobolus coronatus medium, against Lucilia sericata larvae and adults. The LD50 value was calculated as 3.04±0.26 µg/mg (3040 mg/kg) of insect body mass, which places the compound in category 5 of acute toxicity (slightly hazardous). The presented research also describes its probable mechanism, with a particular focus on changes in two main insect defense mechanisms: (1) the composition of the cuticle (GC-MS analysis) and (2) immunocompetent cells (microscopic analysis of cultured hemocytes). More precisely, octanoic acid application resulted in changes in cuticular free fatty acid (FFA) profiles in both adults and larvae; generally, treatment increased short-chain FFAs, and a decrease of middle- and long-chain FFAs. Both in vivo and in vitro applications of octanoic acid resulted in vacuolisation, disintegration, and destruction of nets formed by plasmatocytes. As the compound has also previously been found to be toxic against Galleria mellonella, it appears to have lethal potential against insects in both the Orders Diptera and Lepidoptera, indicating it may have strong entomopathogenic potential. It is worth noting that octanoic acid is approved as a food additive with well-documented insecticidal activity, and hence may be a valuable component in the design of new insecticides that are safe for both humans and the environment.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Science, Twarda 51/55, 00-818 Warszawa, Poland.
| | - Anna Katarzyna Wrońska
- Museum and Institute of Zoology, Polish Academy of Science, Twarda 51/55, 00-818 Warszawa, Poland
| | - Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Science, Twarda 51/55, 00-818 Warszawa, Poland; Biomibo, Strzygłowska 15, 04-872 Warsaw, Poland
| |
Collapse
|
6
|
Boguś MI, Kazek M, Drozdowski M, Kaczmarek A, Wrońska AK. The Entomopathogenic Fungus Conidiobolus coronatus Has Similar Effects on the Cuticular Free Fatty Acid Profile of Sensitive and Resistant Insects. INSECTS 2023; 14:895. [PMID: 37999094 PMCID: PMC10671882 DOI: 10.3390/insects14110895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
The mechanisms underlying the recognition of a susceptible host by a fungus and the role of cuticular compounds (CCs) in this process remain unclear; however, accumulated data suggest that this is influenced to a great degree by cuticular lipids. Two insect species differing in their sensitivity to fungal infection, viz. the highly sensitive Galleria mellonella Linnaeus (Lepidoptera: Pyralidae) and the resistant Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae), exhibited significant qualitative and quantitative changes in cuticular free fatty acid (FFA) profiles after exposure to Conidiobolus coronatus (Constantin) Batko (Entomopthorales). Despite being systematically distant, leading different lifestyles in different habitats, both insect species demonstrated similar changes in the same FFAs following exposure to the fungus (C12:0, C13:0, C14:0, C15:0, C16:1, C16:0, C18:1, C18:0), suggesting that these are involved in a contact-induced defense response. As it was not possible to distinguish the share of FFAs present in the conidia that were attached to the cuticle from the FFAs of the cuticle itself in the total number of extracted FFAs, further research is necessary.
Collapse
Affiliation(s)
- Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Wilcza 64, 00-679 Warszawa, Poland; (M.D.); (A.K.)
| | - Michalina Kazek
- Department of Microbiology, Molecular Genetics and Genomics, Centre of Advanced Materials and Technology CEZAMAT, Warsaw University of Technology, ul. Poleczki 19, 02-822 Warsaw, Poland;
| | - Mikołaj Drozdowski
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Wilcza 64, 00-679 Warszawa, Poland; (M.D.); (A.K.)
| | - Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Wilcza 64, 00-679 Warszawa, Poland; (M.D.); (A.K.)
| | - Anna Katarzyna Wrońska
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Wilcza 64, 00-679 Warszawa, Poland; (M.D.); (A.K.)
| |
Collapse
|
7
|
Wrońska AK, Kaczmarek A, Boguś MI, Kuna A. Lipids as a key element of insect defense systems. Front Genet 2023; 14:1183659. [PMID: 37359377 PMCID: PMC10289264 DOI: 10.3389/fgene.2023.1183659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
The relationship between insect pathogenic fungi and their insect hosts is a classic example of a co-evolutionary arms race between pathogen and target host: parasites evolve towards mechanisms that increase their advantage over the host, and the host increasingly strengthens its defenses. The present review summarizes the literature data describing the direct and indirect role of lipids as an important defense mechanism during fungal infection. Insect defense mechanisms comprise anatomical and physiological barriers, and cellular and humoral response mechanisms. The entomopathogenic fungi have the unique ability to digest the insect cuticle by producing hydrolytic enzymes with chitin-, lipo- and proteolytic activity; besides the oral tract, cuticle pays the way for fungal entry within the host. The key factor in insect resistance to fungal infection is the presence of certain types of lipids (free fatty acids, waxes or hydrocarbons) which can promote or inhibit fungal attachment to cuticle, and might also have antifungal activity. Lipids are considered as an important source of energy, and as triglycerides are stored in the fat body, a structure analogous to the liver and adipose tissue in vertebrates. In addition, the fat body plays a key role in innate humoral immunity by producing a range of bactericidal proteins and polypeptides, one of which is lysozyme. Energy derived from lipid metabolism is used by hemocytes to migrate to the site of fungal infection, and for phagocytosis, nodulation and encapsulation. One polyunsaturated fatty acid, arachidonic acid, is used in the synthesis of eicosanoids, which play several crucial roles in insect physiology and immunology. Apolipoprotein III is important compound with antifungal activity, which can modulate insect cellular response and is considered as important signal molecule.
Collapse
Affiliation(s)
- Anna Katarzyna Wrońska
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Kuna
- Independent Researcher, Warsaw, Poland
| |
Collapse
|
8
|
Metabolite Changes in Orange Dead Leaf Butterfly Kallima inachus during Ontogeny and Diapause. Metabolites 2022; 12:metabo12090804. [PMID: 36144209 PMCID: PMC9501346 DOI: 10.3390/metabo12090804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
Holometabolism is a form of insect development which includes four life stages: egg, larva, pupa, and imago (or adult). The developmental change of whole body in metabolite levels of holometabolous insects are usually ignored and lack study. Diapause is an alternative life-history strategy that can occur during the egg, larval, pupal, and adult stages in holometabolous insects. Kallima inachus (Lepidoptera: Nymphalidae) is a holometabolous and adult diapausing butterfly. This study was intended to analyze metabolic changes in K. inachus during ontogeny and diapause through a non-targeted UPLC-MS/MS (ultra-performance liquid chromatograph coupled with tandem mass spectrometry) based metabolomics analysis. A variety of glycerophospholipids (11), amino acid and its derivatives (16), and fatty acyls (nine) are crucial to the stage development of K. inachus. 2-Keto-6-acetamidocaproate, N-phenylacetylglycine, Cinnabarinic acid, 2-(Formylamino) benzoic acid, L-histidine, L-glutamate, and L-glutamine play a potentially important role in transition of successive stages (larva to pupa and pupa to adult). We observed adjustments associated with active metabolism, including an accumulation of glycerophospholipids and carbohydrates and a degradation of lipids, as well as amino acid and its derivatives shifts, suggesting significantly changed in energy utilization and management when entering into adult diapause. Alpha-linolenic acid metabolism and ferroptosis were first found to be associated with diapause in adults through pathway analyses. Our study lays the foundation for a systematic study of the developmental mechanism of holometabolous insects and metabolic basis of adult diapause in butterflies.
Collapse
|
9
|
Temporal Expression Profiles Reveal Potential Targets during Postembryonic Development of Forensically Important Sarcophaga peregrina (Diptera: Sarcophagidae). INSECTS 2022; 13:insects13050453. [PMID: 35621788 PMCID: PMC9143129 DOI: 10.3390/insects13050453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023]
Abstract
Sarcophaga peregrina (Robineau-Desvoidy, 1830) is a species of medical and forensic importance. In order to investigate the molecular mechanism during postembryonic development and identify specific genes that may serve as potential targets, transcriptome analysis was used to investigate its gene expression dynamics from the larval to pupal stages, based on our previous de novo-assembled genome of S. peregrina. Totals of 2457, 3656, 3764, and 2554 differentially expressed genes were identified. The specific genes encoding the structural constituent of cuticle were significantly differentially expressed, suggesting that degradation and synthesis of cuticle-related proteins might actively occur during metamorphosis. Molting (20-hydroxyecdysone, 20E) and juvenile (JH) hormone pathways were significantly enriched, and gene expression levels changed in a dynamic pattern during the developmental stages. In addition, the genes in the oxidative phosphorylation pathway were significantly expressed at a high level during the larval stage, and down-regulated from the wandering to pupal stages. Weighted gene co-expression correlation network analysis (WGCNA) further demonstrated the potential regulation mechanism of tyrosine metabolism in the process of puparium tanning. Moreover, 10 consistently up-regulated genes were further validated by qRT-PCR. The utility of the models was then examined in a blind study, indicating the ability to predict larval development. The developmental, stage-specific gene profiles suggest novel molecular markers for age prediction of forensically important flies.
Collapse
|
10
|
Kaczmarek A, Wrońska AK, Kazek M, Boguś MI. Octanoic Acid-An Insecticidal Metabolite of Conidiobolus coronatus (Entomopthorales) That Affects Two Majors Antifungal Protection Systems in Galleria mellonella (Lepidoptera): Cuticular Lipids and Hemocytes. Int J Mol Sci 2022; 23:5204. [PMID: 35563592 PMCID: PMC9101785 DOI: 10.3390/ijms23095204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
The food flavour additive octanoic acid (C8:0) is also a metabolite of the entomopathogenic fungus Conidiobolus coronatus, which efficiently infects and rapidly kills Galleria mellonella. GC-MS analysis confirmed the presence of C8:0 in insecticidal fraction FR3 extracted from C. coronatus filtrate. Topical administration of C8:0 had a dose-dependent effect on survival rates of larvae but not on pupation or adult eclosion times of the survivors. Topically applied C8:0 was more toxic to adults than larvae (LD100 for adults 18.33 ± 2.49 vs. 33.56 ± 2.57 µg/mg of body mass for larvae). The administration of C8:0 on the cuticle of larvae and adults, in amounts corresponding to their LD50 and LD100 doses, had a considerable impact on the two main defense systems engaged in protecting against pathogens, causing serious changes in the developmental-stage-specific profiles of free fatty acids (FFAs) covering the cuticle of larvae and adults and damaging larval hemocytes. In vitro cultures of G. mellonella hemocytes, either directly treated with C8:0 or taken from C8:0 treated larvae, revealed deformation of hemocytes, disordered networking, late apoptosis, and necrosis, as well as caspase 1-9 activation and elevation of 8-OHdG level. C8:0 was also confirmed to have a cytotoxic effect on the SF-9 insect cell line, as determined by WST-1 and LDH tests.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-875 Warsaw, Poland; (A.K.W.); (M.K.); (M.I.B.)
| | - Anna Katarzyna Wrońska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-875 Warsaw, Poland; (A.K.W.); (M.K.); (M.I.B.)
| | - Michalina Kazek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-875 Warsaw, Poland; (A.K.W.); (M.K.); (M.I.B.)
| | - Mieczysława Irena Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-875 Warsaw, Poland; (A.K.W.); (M.K.); (M.I.B.)
- Biomibo, 04-872 Warsaw, Poland
| |
Collapse
|
11
|
Kaczmarek A, Boguś M. The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ 2021; 9:e12563. [PMID: 35036124 PMCID: PMC8710053 DOI: 10.7717/peerj.12563] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Insects are the most widespread group of organisms and more than one million species have been described. These animals have significant ecological functions, for example they are pollinators of many types of plants. However, they also have direct influence on human life in different manners. They have high medical and veterinary significance, stemming from their role as vectors of disease and infection of wounds and necrotic tissue; they are also plant pests, parasitoids and predators whose activities can influence agriculture. In addition, their use in medical treatments, such as maggot therapy of gangrene and wounds, has grown considerably. They also have many uses in forensic science to determine the minimum post-mortem interval and provide valuable information about the movement of the body, cause of the death, drug use, or poisoning. It has also been proposed that they may be used as model organisms to replace mammal systems in research. The present review describes the role of free fatty acids (FFAs) in key physiological processes in insects. By focusing on insects of medical, veterinary significance, we have limited our description of the physiological processes to those most important from the point of view of insect control; the study examines their effects on insect reproduction and resistance to the adverse effects of abiotic (low temperature) and biotic (pathogens) factors.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Biomibo, Warsaw, Poland
| |
Collapse
|
12
|
Kaczmarek A, Boguś MI. The Impact of the Entomopathogenic Fungus Conidiobolus coronatus on the Free Fatty Acid Profile of the Flesh Fly Sarcophaga argyrostoma. INSECTS 2021; 12:insects12110970. [PMID: 34821771 PMCID: PMC8623223 DOI: 10.3390/insects12110970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The interaction between insect and fungus is characterised on the one hand by the parasite developing more effective strategies of host exploitation, and on the other, by the host mounting increasingly robust defences though Red Queen dynamics or coevolutionary arms races. Furthermore, depending on gene flow and differences in selection pressure between sites, both host and parasite may demonstrate local adaptation to their counterpart or develop more general resistance or offensive traits. As the cuticle is considered the first line of defence of the insect, changes in the FFA profile may well influence susceptibility or resistance to fungal invasion. Our findings indicate that Sarcophaga argyrostoma demonstrates stage-specific resistance to Conidiobolus coronatus infection and suggests that FFAs play a role in resistance to fungal infection in flesh flies. These findings not only increase our knowledge of the entomopatogenic potential of fungi, but also of the growing level of infection by C. coronatus in humans and other mammals. Also, the presented research suggests that FFAs demonstrate antifungal activity which may be helpful in designing new antifungal treatments. Abstract The chemical composition of the insect cuticle varies remarkably between species and their life stages. It can affect host resistance and substrate utilization by invading entomopathogen fungi, such as the soil fungus Conidiobolus coronatus. In this study, Sarcophaga argyrostoma flies were exposed to sporulating C. coronatus colonies for 24 h; the pupae were resistant, but the adults demonstrated 60% mortality. Although the pupae demonstrated no sign of infection nor any abnormal development, our findings indicate that after 24 h of contact with the fungus, the pupae demonstrated a 25.2-fold increase in total cuticular free fatty acids (FFAs) and a 1.9-fold decrease in total internal FFAs. Also, the cuticular FFA increased from 26 to 30, while the internal FFA class increased from 13 to 23. In exposed adults, the total mass of cuticular FFAs increased 1.7-fold, while the number of FFAs stayed the same (32 FFAs). Also, the internal FFA class increased from 26 to 35 and the total FFA mass increased 1.1-fold. These considerable differences between adults and pupae associated with C. coronatus exposure indicate developmental changes in the mechanisms governing lipid metabolism and spatial distribution in the organism, and suggest that cuticular lipids play a vital role in the defence against pathogenic fungi.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland;
- Correspondence:
| | - Mieczysława Irena Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland;
- BIOMIBO, Strzygłowska 15, 04-872 Warsaw, Poland
| |
Collapse
|
13
|
Papantoniou D, Vergara F, Weinhold A, Quijano T, Khakimov B, Pattison DI, Bak S, van Dam NM, Martínez-Medina A. Cascading Effects of Root Microbial Symbiosis on the Development and Metabolome of the Insect Herbivore Manduca sexta L. Metabolites 2021; 11:731. [PMID: 34822389 PMCID: PMC8622251 DOI: 10.3390/metabo11110731] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
Root mutualistic microbes can modulate the production of plant secondary metabolites affecting plant-herbivore interactions. Still, the main mechanisms underlying the impact of root mutualists on herbivore performance remain ambiguous. In particular, little is known about how changes in the plant metabolome induced by root mutualists affect the insect metabolome and post-larval development. By using bioassays with tomato plants (Solanum lycopersicum), we analyzed the impact of the arbuscular mycorrhizal fungus Rhizophagus irregularis and the growth-promoting fungus Trichoderma harzianum on the plant interaction with the specialist insect herbivore Manduca sexta. We found that root colonization by the mutualistic microbes impaired insect development, including metamorphosis. By using untargeted metabolomics, we found that root colonization by the mutualistic microbes altered the secondary metabolism of tomato shoots, leading to enhanced levels of steroidal glycoalkaloids. Untargeted metabolomics further revealed that root colonization by the mutualists affected the metabolome of the herbivore, leading to an enhanced accumulation of steroidal glycoalkaloids and altered patterns of fatty acid amides and carnitine-derived metabolites. Our results indicate that the changes in the shoot metabolome triggered by root mutualistic microbes can cascade up altering the metabolome of the insects feeding on the colonized plants, thus affecting the insect development.
Collapse
Affiliation(s)
- Dimitra Papantoniou
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; (D.P.); (F.V.); (A.W.)
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Fredd Vergara
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; (D.P.); (F.V.); (A.W.)
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; (D.P.); (F.V.); (A.W.)
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Teresa Quijano
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná 97000, Mexico;
| | - Bekzod Khakimov
- Department of Food Science, University of Copenhagen Rolighedsvej 26, 1958 Frederiksberg C, Denmark;
| | - David I. Pattison
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; (D.I.P.); (S.B.)
| | - Søren Bak
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; (D.I.P.); (S.B.)
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; (D.P.); (F.V.); (A.W.)
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Ainhoa Martínez-Medina
- Plant-Microorganism Interaction, Institute of Natural Resources and Agrobiology of Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
14
|
Dodecanol, metabolite of entomopathogenic fungus Conidiobolus coronatus, affects fatty acid composition and cellular immunity of Galleria mellonella and Calliphora vicina. Sci Rep 2021; 11:15963. [PMID: 34354188 PMCID: PMC8342708 DOI: 10.1038/s41598-021-95440-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/23/2021] [Indexed: 01/25/2023] Open
Abstract
One group of promising pest control agents are the entomopathogenic fungi; one such example is Conidiobolus coronatus, which produces a range of metabolites. Our present findings reveal for the first time that C. coronatus also produces dodecanol, a compound widely used to make surfactants and pharmaceuticals, and enhance flavors in food. The main aim of the study was to determine the influence of dodecanol on insect defense systems, i.e. cuticular lipid composition and the condition of insect immunocompetent cells; hence, its effect was examined in detail on two species differing in susceptibility to fungal infection: Galleria mellonella and Calliphora vicina. Dodecanol treatment elicited significant quantitative and qualitative differences in cuticular free fatty acid (FFA) profiles between the species, based on gas chromatography analysis with mass spectrometry (GC/MS), and had a negative effect on G. mellonella and C. vicina hemocytes and a Sf9 cell line in vitro: after 48 h, almost all the cells were completely disintegrated. The metabolite had a negative effect on the insect defense system, suggesting that it could play an important role during C. coronatus infection. Its high insecticidal activity and lack of toxicity towards vertebrates suggest it could be an effective insecticide.
Collapse
|
15
|
Kaczmarek A, Wrońska AK, Boguś MI, Kazek M, Gliniewicz A, Mikulak E, Matławska M. The type of blood used to feed Aedes aegypti females affects their cuticular and internal free fatty acid (FFA) profiles. PLoS One 2021; 16:e0251100. [PMID: 33930098 PMCID: PMC8087090 DOI: 10.1371/journal.pone.0251100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/19/2021] [Indexed: 11/18/2022] Open
Abstract
Aedes aegypti, the primary vector of various arthropod-borne viral (arboviral) diseases such as dengue and Zika, is a popular laboratory model in vector biology. However, its maintenance in laboratory conditions is difficult, mostly because the females require blood meals to complete oogenesis, which is often provided as sheep blood. The outermost layer of the mosquito cuticle is consists of lipids which protects against numerous entomopathogens, prevents desiccation and plays an essential role in signalling processes. The aim of this work was to determine how the replacement of human blood with sheep blood affects the cuticular and internal FFA profiles of mosquitoes reared in laboratory culture. The individual FFAs present in cuticular and internal extracts from mosquito were identified and quantified by GC-MS method. The normality of their distribution was checked using the Kolmogorov-Smirnov test and the Student's t-test was used to compare them. GC-MS analysis revealed similar numbers of internal and cuticular FFAs in the female mosquitoes fed sheep blood by membrane (MFSB) and naturally fed human blood (NFHB), however MFSB group demonstrated 3.1 times greater FFA concentrations in the cuticular fraction and 1.4 times the internal fraction than the NFHB group. In the MFSB group, FFA concentration was 1.6 times higher in the cuticular than the internal fraction, while for NFHB, FFA concentration was 1.3 times lower in the cuticular than the internal fraction. The concentration of C18:3 acid was 223 times higher in the internal fraction than the cuticle in the MHSB group but was absent in the NFHB group. MFSB mosquito demonstrate different FFA profiles to wild mosquitoes, which might influence their fertility and the results of vital processes studied under laboratory conditions. The membrane method of feeding mosquitoes is popular, but our research indicates significant differences in the FFA profiles of MFSB and NFHB. Such changes in FFA profile might influence female fertility, as well as other vital processes studied in laboratory conditions, such as the response to pesticides. Our work indicates that sheep blood has potential shortcomings as a substitute feed for human blood, as its use in laboratory studies may yield different results to those demonstrated by free-living mosquitoes.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| | | | - Mieczysława Irena Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- BIOMIBO, Warsaw, Poland
| | - Michalina Kazek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Ewa Mikulak
- National Institute of Public Health—National Institute of Hygiene, Warsaw, Poland
| | - Marta Matławska
- National Institute of Public Health—National Institute of Hygiene, Warsaw, Poland
| |
Collapse
|