1
|
Shao C, Chen H, Liu T, Pan C. The Hippo pathway in bone and cartilage: implications for development and disease. PeerJ 2025; 13:e19334. [PMID: 40292098 PMCID: PMC12024444 DOI: 10.7717/peerj.19334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Bone is the main structure of the human body; it mainly plays a supporting role and participates in metabolic processes. The Hippo signaling pathway is composed of a series of protein kinases, including the mammalian STE20-like kinase MST1/2 and the large tumor suppressor LATS1/2, which are widely involved in pathophysiological processes, including cell proliferation, differentiation, apoptosis and death, especially those related to biomechanical transduction in vivo. However, the role of it in regulating skeletal system development and the evolution of bone-related diseases remains poorly understood. The pathway can intervene in and regulate the physiological activities of bone-related cells such as osteoclasts and chondrocytes through its own or other bone-related signaling pathways, such as the Wnt pathway, the Notch pathway, and receptor activator of nuclear factor-κB ligand (RANKL), thereby affecting the occurrence and development of bone diseases. This article discusses the role of the Hippo signaling pathway in bone development and disease to provide new insights into the treatment of bone-related diseases by targeting the Hippo signaling pathway.
Collapse
Affiliation(s)
- Chenwei Shao
- Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hao Chen
- Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Tingting Liu
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Chun Pan
- Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Heinrich T, Schwarz D, Petersson C, Gunera J, Garg S, Schneider R, Keil M, Grimmeisen L, Unzue Lopez A, Albers L, Schlesiger S, Gambardella A, Bomke J, Carswell E, Schilke H, Diehl P, Doerfel B, Musil D, Trivier E, Broome R, Marshall S, Balsiger A, Friedrich E, Lemos AR, Santos SP, Sousa PMF, Freire F, Bandeiras TM, Bortoluzzi A, Wienke D. MoA Studies of the TEAD P-Site Binding Ligand MSC-4106 and Its Optimization to TEAD1-Selective Amide M3686. J Med Chem 2025; 68:6149-6164. [PMID: 39704449 DOI: 10.1021/acs.jmedchem.4c01949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Taking the structural information into account, we were able to tune the TEAD selectivity for a specific chemotype. However, different TEAD selectivity profiles did not affect the compound potency or efficacy in the NCI-H226 viability assay. Amides based on MSC-4106 or analogues showed improved viability efficacy compared with the corresponding acids. The amide M3686 exhibited AUC-driven efficacy in NCI-H226 xenograft models and had an improved 25-fold lower human dose prediction than MSC-4106. MSC-4106 was also used in HDX-MS studies to aid in the understanding of the MoA of P-site binding TEAD inhibitors. Artificial P-site binders rigidify certain areas in the periphery of the transcription factor that seem to be crucial for cofactor interaction, whereas a native fatty acid increased the protein dynamics of cofactor-binding interfaces.
Collapse
Affiliation(s)
- Timo Heinrich
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Daniel Schwarz
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Carl Petersson
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Jakub Gunera
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Sakshi Garg
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Richard Schneider
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Marina Keil
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Lisa Grimmeisen
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | | | - Lisa Albers
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Sarah Schlesiger
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | | | - Joerg Bomke
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Emma Carswell
- Cancer Research Horizons, Jonas Webb Building, Babraham Research Campus, CambridgeCB22 3AT, U.K
| | - Heike Schilke
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Patrizia Diehl
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Benjamin Doerfel
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Djordje Musil
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Elisabeth Trivier
- Cancer Research Horizons, 4NW, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, U.K
| | - Rebecca Broome
- Cancer Research Horizons, 4NW, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, U.K
| | - Sam Marshall
- Cancer Research Horizons, 4NW, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, U.K
| | - Alexander Balsiger
- Cancer Research Horizons, 4NW, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, U.K
| | - Erik Friedrich
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Ana R Lemos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Sandra P Santos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Pedro M F Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Filipe Freire
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Alessio Bortoluzzi
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Dirk Wienke
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| |
Collapse
|
3
|
Chène P. Direct Inhibition of the YAP : TEAD Interaction: An Unprecedented Drug Discovery Challenge. ChemMedChem 2024; 19:e202400361. [PMID: 38863297 DOI: 10.1002/cmdc.202400361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
The Hippo pathway, which is key in organ morphogenesis, is frequently deregulated in cancer. The TEAD (TEA domain family member) transcription factors are the most distal elements of this pathway, and their activity is regulated by proteins such as YAP (Yes-associated protein). The identification of inhibitors of the YAP : TEAD interaction is one approach to develop novel anticancer drugs: the first clinical candidate (IAG933) preventing the association between these two proteins by direct competition has just been reported. The discovery of this molecule was particularly challenging because the interface between these two proteins is large (~3500 Å2 buried in complex formation) and made up of distinct contact areas. The most critical of these involves an omega-loop (Ω-loop), a secondary structure element rarely found in protein-protein interactions. This review summarizes how the knowledge gained from structure-function studies of the interaction between the Ω-loop of YAP and TEAD was used to devise the strategy to identify potent low-molecular weight compounds that show a pronounced anti-tumor effect.
Collapse
Affiliation(s)
- Patrick Chène
- Disease Area Oncology, Biomedical Research, CH-4056, Basel, Switzerland
- Novartis, WSJ 386 4.13.06, CH-4002, Basel, Switzerland
| |
Collapse
|
4
|
Mesrouze Y, Chène P. Study of the TEAD-binding domain of the VGLL1, VGLL2 and VGLL3 proteins from vertebrates. Arch Biochem Biophys 2024; 760:110136. [PMID: 39182750 DOI: 10.1016/j.abb.2024.110136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
The TEAD transcription factors are the final effectors of the Hippo pathway, and to exert their transcriptional activity they need to interact with other proteins. The three paralogous vestigial-like proteins VGLL1, VGLL2 and VGLL3 bind to TEAD via a conserved short linear sequence, the Tondu motif. The TEAD-binding domain of human VGLL2 contains in addition an Ω-loop, which is also present in Vg (vestigial) from arthropods and the YAP proteins, another family of TEAD interactors. In this report, using the available structural data, we study the amino acid sequence of the TEAD-binding domain of more than 2400 putative VGLL proteins from vertebrates. This analysis shows a strong link between sequence conservation and functional role for the residues from the Tondu motif. It also reveals that one protein sequence containing both a Tondu motif and an Ω-loop is present in most (if not all) vertebrate species. This suggests that there is a selective pressure to keep a VGLL paralog with a functional Ω-loop in vertebrates. Finally, this study identifies, particularly in mammals, variants of VGLL2 and VGLL3 with an altered TEAD-binding domain suggesting that they may have a different biological function than their homologs.
Collapse
Affiliation(s)
- Yannick Mesrouze
- Disease Area Oncology, Novartis Institutes for Biomedical Research, CH-4056, Basel, Switzerland
| | - Patrick Chène
- Disease Area Oncology, Novartis Institutes for Biomedical Research, CH-4056, Basel, Switzerland.
| |
Collapse
|
5
|
Kucinski JP, Calderon D, Kendall GC. Biological and therapeutic insights from animal modeling of fusion-driven pediatric soft tissue sarcomas. Dis Model Mech 2024; 17:dmm050704. [PMID: 38916046 PMCID: PMC11225592 DOI: 10.1242/dmm.050704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
Survival for children with cancer has primarily improved over the past decades due to refinements in surgery, radiation and chemotherapy. Although these general therapies are sometimes curative, the cancer often recurs, resulting in poor outcomes for patients. Fusion-driven pediatric soft tissue sarcomas are genetically defined by chromosomal translocations that create a chimeric oncogene. This distinctive, almost 'monogenic', genetic feature supports the generation of animal models to study the respective diseases in vivo. This Review focuses on a subset of fusion-driven pediatric soft tissue sarcomas that have transgenic animal tumor models, which includes fusion-positive and infantile rhabdomyosarcoma, synovial sarcoma, undifferentiated small round cell sarcoma, alveolar soft part sarcoma and clear cell sarcoma. Studies using the animal models of these sarcomas have highlighted that pediatric cancers require a specific cellular state or developmental stage to drive tumorigenesis, as the fusion oncogenes cause different outcomes depending on their lineage and timing of expression. Therefore, understanding these context-specific activities could identify targetable activities and mechanisms critical for tumorigenesis. Broadly, these cancers show dependencies on chromatin regulators to support oncogenic gene expression and co-opting of developmental pathways. Comparative analyses across lineages and tumor models will further provide biological and therapeutic insights to improve outcomes for these children.
Collapse
Affiliation(s)
- Jack P. Kucinski
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology PhD Program, The Ohio State University, Columbus, OH 43210, USA
| | - Delia Calderon
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology PhD Program, The Ohio State University, Columbus, OH 43210, USA
| | - Genevieve C. Kendall
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology PhD Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA
| |
Collapse
|
6
|
Jacob JB, Wei KC, Bepler G, Reyes JD, Cani A, Polin L, White K, Kim S, Viola N, McGrath J, Guastella A, Yin C, Mi QS, Kidder BL, Wagner KU, Ratner S, Phillips V, Xiu J, Parajuli P, Wei WZ. Identification of actionable targets for breast cancer intervention using a diversity outbred mouse model. iScience 2023; 26:106320. [PMID: 36968078 PMCID: PMC10034465 DOI: 10.1016/j.isci.2023.106320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/16/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
HER2-targeted therapy has improved breast cancer survival, but treatment resistance and disease prevention remain major challenges. Genes that enable HER2/Neu oncogenesis are the next intervention targets. A bioinformatics discovery platform of HER2/Neu-expressing Diversity Outbred (DO) F1 Mice was established to identify cancer-enabling genes. Quantitative Trait Loci (QTL) associated with onset ages and growth rates of spontaneous mammary tumors were sought. Twenty-six genes in 3 QTL contain sequence variations unique to the genetic backgrounds that are linked to aggressive tumors and 21 genes are associated with human breast cancer survival. Concurrent identification of TSC22D3, a transcription factor, and its target gene LILRB4, a myeloid cell checkpoint receptor, suggests an immune axis for regulation, or intervention, of disease. We also investigated TIEG1 gene that impedes tumor immunity but suppresses tumor growth. Although not an actionable target, TIEG1 study revealed genetic regulation of tumor progression, forming the basis of the genetics-based discovery platform.
Collapse
Affiliation(s)
- Jennifer B. Jacob
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Kuang-Chung Wei
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Gerold Bepler
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Joyce D. Reyes
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Andi Cani
- Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lisa Polin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Kathryn White
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Seongho Kim
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Nerissa Viola
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Julie McGrath
- Clinical and Translational Research, Caris Life Sciences, Irving, TX75039, USA
| | - Anthony Guastella
- Clinical and Translational Research, Caris Life Sciences, Irving, TX75039, USA
| | - CongCong Yin
- Department of Immunology, Henry Ford Health System, Detroit, MI48202, USA
| | - Qing-Shen Mi
- Department of Immunology, Henry Ford Health System, Detroit, MI48202, USA
| | - Benjamin L. Kidder
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Kay-Uwe Wagner
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Stuart Ratner
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Victoria Phillips
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Joanne Xiu
- Clinical and Translational Research, Caris Life Sciences, Irving, TX75039, USA
| | - Prahlad Parajuli
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Wei-Zen Wei
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| |
Collapse
|
7
|
Zhao B, Pobbati AV, Rubin BP, Stauffer S. Leveraging Hot Spots of TEAD-Coregulator Interactions in the Design of Direct Small Molecule Protein-Protein Interaction Disruptors Targeting Hippo Pathway Signaling. Pharmaceuticals (Basel) 2023; 16:ph16040583. [PMID: 37111340 PMCID: PMC10146773 DOI: 10.3390/ph16040583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The Hippo signaling pathway is a highly conserved pathway that plays important roles in the regulation of cell proliferation and apoptosis. Transcription factors TEAD1-4 and transcriptional coregulators YAP/TAZ are the downstream effectors of the Hippo pathway and can modulate Hippo biology. Dysregulation of this pathway is implicated in tumorigenesis and acquired resistance to therapies. The emerging importance of YAP/TAZ-TEAD interaction in cancer development makes it a potential therapeutic target. In the past decade, disrupting YAP/TAZ-TEAD interaction as an effective approach for cancer treatment has achieved great progress. This approach followed a trajectory wherein peptidomimetic YAP-TEAD protein-protein interaction disruptors (PPIDs) were first designed, followed by the discovery of allosteric small molecule PPIDs, and currently, the development of direct small molecule PPIDs. YAP and TEAD form three interaction interfaces. Interfaces 2 and 3 are amenable for direct PPID design. One direct YAP-TEAD PPID (IAG933) that targets interface 3 has entered a clinical trial in 2021. However, in general, strategically designing effective small molecules PPIDs targeting TEAD interfaces 2 and 3 has been challenging compared with allosteric inhibitor development. This review focuses on the development of direct surface disruptors and discusses the challenges and opportunities for developing potent YAP/TAZ-TEAD inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Bin Zhao
- Cleveland Clinic Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ajaybabu V Pobbati
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Shaun Stauffer
- Cleveland Clinic Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
8
|
Bokhovchuk F, Mesrouze Y, Meyerhofer M, Fontana P, Zimmermann C, Villard F, Erdmann D, Kallen J, Clemens S, Velez‐Vega C, Chène P. N-terminal β-strand in YAP is critical for stronger binding to scalloped relative to TEAD transcription factor. Protein Sci 2023; 32:e4545. [PMID: 36522189 PMCID: PMC9798255 DOI: 10.1002/pro.4545] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
The yes-associated protein (YAP) regulates the transcriptional activity of the TEAD transcription factors that are key in the control of organ morphogenesis. YAP interacts with TEAD via three secondary structure elements: a β-strand, an α-helix, and an Ω-loop. Earlier results have shown that the β-strand has only a marginal contribution in the YAP:TEAD interaction, but we show here that it significantly enhances the affinity of YAP for the Drosophila homolog of TEAD, scalloped (Sd). Nuclear magnetic resonance shows that the β-strand adopts a more rigid conformation once bound to Sd; pre-steady state kinetic measurements show that the YAP:Sd complex is more stable. Although the crystal structures of the YAP:TEAD and YAP:Sd complexes reveal no differences at the binding interface that could explain these results. Molecular Dynamics simulations are in line with our experimental findings regarding β-strand stability and overall binding affinity of YAP to TEAD and Sd. In particular, RMSF, correlated motion and MMGBSA analyses suggest that β-sheet fluctuations play a relevant role in YAP53-57 β-strand dissociation from TEAD4 and contribute to the lower affinity of YAP for TEAD4. Identifying a clear mechanism leading to the difference in YAP's β-strand stability proved to be challenging, pointing to the potential relevance of multiple modest structural changes or fluctuations for regulation of binding affinity.
Collapse
Affiliation(s)
- Fedir Bokhovchuk
- Disease Area OncologyNovartis Institutes for Biomedical ResearchBaselSwitzerland
| | - Yannick Mesrouze
- Disease Area OncologyNovartis Institutes for Biomedical ResearchBaselSwitzerland
| | - Marco Meyerhofer
- Disease Area OncologyNovartis Institutes for Biomedical ResearchBaselSwitzerland
| | - Patrizia Fontana
- Disease Area OncologyNovartis Institutes for Biomedical ResearchBaselSwitzerland
| | - Catherine Zimmermann
- Disease Area OncologyNovartis Institutes for Biomedical ResearchBaselSwitzerland
| | - Frédéric Villard
- Chemical Biology and TherapeuticsNovartis Institutes for Biomedical ResearchBaselSwitzerland
| | - Dirk Erdmann
- Disease Area OncologyNovartis Institutes for Biomedical ResearchBaselSwitzerland
| | - Joerg Kallen
- Chemical Biology and TherapeuticsNovartis Institutes for Biomedical ResearchBaselSwitzerland
| | - Scheufler Clemens
- Chemical Biology and TherapeuticsNovartis Institutes for Biomedical ResearchBaselSwitzerland
| | - Camilo Velez‐Vega
- Global Discovery ChemistryNovartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
| | - Patrick Chène
- Disease Area OncologyNovartis Institutes for Biomedical ResearchBaselSwitzerland
| |
Collapse
|
9
|
Ahi EP, Sinclair-Waters M, Donner I, Primmer CR. A pituitary gene network linking vgll3 to regulators of sexual maturation in male Atlantic salmon. Comp Biochem Physiol A Mol Integr Physiol 2023; 275:111337. [PMID: 36341967 DOI: 10.1016/j.cbpa.2022.111337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Age at maturity is a key life history trait and a significant contributor to life history strategy variation. The maturation process is influenced by genetic and environmental factors, but specific causes of variation in maturation timing remain elusive. In many species, the increase in the regulatory gonadotropin-releasing hormone 1 (GnRH1) marks the onset of puberty. Atlantic salmon, however, lacks the gnrh1 gene, suggesting gnrh3 and/or other regulatory factors are involved in the maturation process. Earlier research in Atlantic salmon has found a strong association between alternative alleles of vgll3 and maturation timing. Recently we reported strong induction of gonadotropin genes (fshb and lhb) in the pituitary of Atlantic salmon homozygous for the early maturation allele (E) of vgll3. The induction of gonadotropins was accompanied by increased expression of their direct upstream regulators, c-jun and sf1 (nr5a1b) but the regulatory connection between vgll3 and these regulators has never been investigated in any organism. In this study, we investigated the potential regulatory connection between vgll3 genotypes and these regulators through a stepwise approach of identifying a gene regulatory network (GRN) containing c-jun and sf1, and transcription factor motif enrichment analysis. We found a GRN containing c-jun with predicted upstream regulators, e2f1, egr1, foxj1 and klf4, to be differentially expressed in the pituitary. Finally, we suggest a vgll3 and Hippo pathway -dependent model for transcriptional regulation of c-jun and sf1 in the pituitary, which may have broader implications across vertebrates.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland.
| | - Marion Sinclair-Waters
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland; Centre d'Ecologie Fonctionelle et Evolutive, Centre National de la Recherche Scientifique, Montpellier, France. https://twitter.com/Marionswaters
| | - Iikki Donner
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland.
| | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland.
| |
Collapse
|
10
|
Genetic Alterations and Deregulation of Hippo Pathway as a Pathogenetic Mechanism in Bone and Soft Tissue Sarcoma. Cancers (Basel) 2022; 14:cancers14246211. [PMID: 36551696 PMCID: PMC9776600 DOI: 10.3390/cancers14246211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The Hippo pathway is an evolutionarily conserved modulator of developmental biology with a key role in tissue and organ size regulation under homeostatic conditions. Like other signaling pathways with a significant role in embryonic development, the deregulation of Hippo signaling contributes to oncogenesis. Central to the Hippo pathway is a conserved cascade of adaptor proteins and inhibitory kinases that converge and regulate the activity of the oncoproteins YAP and TAZ, the final transducers of the pathway. Elevated levels and aberrant activation of YAP and TAZ have been described in many cancers. Though most of the studies describe their pervasive activation in epithelial neoplasms, there is increasing evidence pointing out its relevance in mesenchymal malignancies as well. Interestingly, somatic or germline mutations in genes of the Hippo pathway are scarce compared to other signaling pathways that are frequently disrupted in cancer. However, in the case of sarcomas, several examples of genetic alteration of Hippo members, including gene fusions, have been described during the last few years. Here, we review the current knowledge of Hippo pathway implication in sarcoma, describing mechanistic hints recently reported in specific histological entities and how these alterations represent an opportunity for targeted therapy in this heterogeneous group of neoplasm.
Collapse
|
11
|
Lou J, Lu Y, Cheng J, Zhou F, Yan Z, Zhang D, Meng X, Zhao Y. A chemical perspective on the modulation of TEAD transcriptional activities: Recent progress, challenges, and opportunities. Eur J Med Chem 2022; 243:114684. [DOI: 10.1016/j.ejmech.2022.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
|
12
|
Luo M, Xu Y, Chen H, Wu Y, Pang A, Hu J, Dong X, Che J, Yang H. Advances of targeting the YAP/TAZ-TEAD complex in the hippo pathway for the treatment of cancers. Eur J Med Chem 2022; 244:114847. [DOI: 10.1016/j.ejmech.2022.114847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/03/2022]
|
13
|
Du Y, Cui R, Tian N, Chen M, Zhang XL, Dai SM. Regulation of type I interferon signature by VGLL3 in the fibroblast-like synoviocytes of rheumatoid arthritis patients via targeting the Hippo pathway. Arthritis Res Ther 2022; 24:188. [PMID: 35941675 PMCID: PMC9358906 DOI: 10.1186/s13075-022-02880-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/23/2022] [Indexed: 11/28/2022] Open
Abstract
Background The upregulation of interferon (IFN)-stimulated genes induced by type I IFNs (namely type I IFN signature) in rheumatoid arthritis (RA) patients had implications in early diagnosis and prediction of therapy responses. However, factors that modulate the type I IFN signature in RA are largely unknown. In this study, we aim to explore the involvement of VGLL3, a homologue of the vestigial-like gene in Drosophila and a putative regulator of the Hippo pathway, in the modulation of type I IFN signature in the fibroblast-like synoviocytes (FLS) of RA patients. Methods FLS were isolated from RA and osteoarthritis (OA) patients. Expression of VGLL3 in the synovial tissues and FLS was analyzed by immunohistochemistry and PCR. RNA sequencing was performed in RA-FLS upon VGLL3 overexpression. The expression of IFN-stimulated genes was examined by PCR and Western blotting. Results VGLL3 was upregulated in the RA synovium and RA-FLS compared to OA. Overexpression of VGLL3 promoted the expression of IFN-stimulated genes in RA-FLS. The expression of STAT1 and MX1 was also upregulated in RA synovium compared to OA and was associated with the expression of VGLL3 in RA and OA patients. VGLL3 promoted the IRF3 activation and IFN-β1 expression in RA-FLS. Increased IFN-β1 induced the expression of IFN-stimulated genes in RA-FLS in an autocrine manner. VGLL3 also modulated the expression of the Hippo pathway molecules WWTR1 and AMOTL2, which mediated the regulation of IRF3 activation and IFN-β1 production by VGLL3 in RA-FLS. Conclusions VGLL3 drives the IRF3-induced IFN-β1 expression in RA-FLS by inhibiting WWTR1 expression and subsequently promotes the type I IFN signature expression in RA-FLS through autocrine IFN-β1 signaling.
Collapse
Affiliation(s)
- Yu Du
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Ran Cui
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Na Tian
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Miao Chen
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Xian-Long Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Sheng-Ming Dai
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
14
|
RNA-sequencing of myxoinflammatory fibroblastic sarcomas reveals a novel SND1::BRAF fusion and 3 different molecular aberrations with the potential to upregulate the TEAD1 gene including SEC23IP::VGLL3 and TEAD1::MRTFB gene fusions. Virchows Arch 2022; 481:613-620. [PMID: 35776191 DOI: 10.1007/s00428-022-03368-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
Myxoinflammatory fibroblastic sarcoma (MIFS) has been shown to harbor various recurrent molecular aberrations; most of which, however, seem to be present in only a minority of cases. In order to better characterize the molecular underpinnings of MIFS, fourteen cases were analyzed by targeted RNA-sequencing (RNA-seq), VGLL3 enumeration FISH probe, and BRAF break-apart and enumeration probes. Neither t(1;10)(p22;q24) nor BRAF gene amplifications were found. However, VGLL3 gene amplification was detected in 5 cases by FISH which corresponded with an increase in VGLL3 expression detected by RNA-seq. In 1 of these cases, RNA-seq additionally revealed a novel SND1::BRAF fusion. Two of the 9 cases lacking VGLL3 amplification harbored either a SEC23IP::VGLL3 or a TEAD1::MRTFB rearrangement by RNA-seq, both confirmed by RT-PCR and Sanger sequencing. The detected molecular aberrations have a potential to either activate the expression of genes regulated by the transcription factors of the TEAD family, which are involved in tumor initiation and progression, or switch on the MEK/ERK signaling cascade, which plays an important role in cell cycle progression. Our results broaden the molecular genetic spectrum of MIFS and point toward the importance of the VGLL3-TEAD interaction, as well as the deregulation of the MEK/ERK pathway in the pathogenesis of MIFS, and may represent a potential target for therapy of recurrent or advanced disease.
Collapse
|
15
|
Liberelle M, Toulotte F, Renault N, Gelin M, Allemand F, Melnyk P, Guichou JF, Cotelle P. Toward the Design of Ligands Selective for the C-Terminal Domain of TEADs. J Med Chem 2022; 65:5926-5940. [PMID: 35389210 DOI: 10.1021/acs.jmedchem.2c00075] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Hippo signaling pathway plays a fundamental role in the control of organ growth, cell proliferation, and stem cell characters. TEADs are the main transcriptional output regulators of the Hippo signaling pathway and bind to YAP and TAZ co-activators. TEAD1-4 are expressed differently, depending on the tissue and developmental level, and can be overexpressed in certain pathologies. TEAD ligands mainly target the internal pocket of the C-terminal domain of TEAD, and the first ligands selective for TEAD1 and TEAD3 have been recently reported. In this paper, we focus on the topographic homology of the TEAD C-terminal domain both externally and in the internal pocket to highlight the possibility of rationally designing ligands selective for one of the TEAD family members. We identified a novel TEAD2-specific pocket and reported its first ligand. Finally, AlphaFold2 models of full-length TEADs suggest TEAD autoregulation and emphasize the importance of the interface 2.
Collapse
Affiliation(s)
- Maxime Liberelle
- INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, Université de Lille, F-59000 Lille, France
| | - Florine Toulotte
- INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, Université de Lille, F-59000 Lille, France
| | - Nicolas Renault
- INSERM, CHU Lille, U-1286 - INFINTE - Institute for Translational Research in Inflammation, Université de Lille, F-59000 Lille, France
| | - Muriel Gelin
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Université de Montpellier, F-34090 Montpellier, France
| | - Frédéric Allemand
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Université de Montpellier, F-34090 Montpellier, France
| | - Patricia Melnyk
- INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, Université de Lille, F-59000 Lille, France
| | - Jean-François Guichou
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Université de Montpellier, F-34090 Montpellier, France
| | - Philippe Cotelle
- INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, Université de Lille, F-59000 Lille, France.,CS 90108, ENSCL-Centrale Lille, F-59652 Villeneuve d'Ascq, France
| |
Collapse
|
16
|
The role of lysine palmitoylation/myristoylation in the function of the TEAD transcription factors. Sci Rep 2022; 12:4984. [PMID: 35322151 PMCID: PMC8942982 DOI: 10.1038/s41598-022-09127-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
The TEAD transcription factors are the most downstream elements of the Hippo pathway. Their transcriptional activity is modulated by different regulator proteins and by the palmitoylation/myristoylation of a specific cysteine residue. In this report, we show that a conserved lysine present in these transcription factors can also be acylated, probably following the intramolecular transfer of the acyl moiety from the cysteine. Using Scalloped (Sd), the Drosophila homolog of human TEAD, as a model, we designed a mutant protein (Glu352GlnSd) that is predominantly acylated on the lysine (Lys350Sd). This protein binds in vitro to the three Sd regulators—Yki, Vg and Tgi—with a similar affinity as the wild type Sd, but it has a significantly higher thermal stability than Sd acylated on the cysteine. This mutant was also introduced in the endogenous locus of the sd gene in Drosophila using CRISPR/Cas9. Homozygous mutants reach adulthood, do not present obvious morphological defects and the mutant protein has both the same level of expression and localization as wild type Sd. This reveals that this mutant protein is both functional and able to control cell growth in a similar fashion as wild type Sd. Therefore, enhancing the lysine acylation of Sd has no detrimental effect on the Hippo pathway. However, we did observe a slight but significant increase of wing size in flies homozygous for the mutant protein suggesting that a higher acylation of the lysine affects the activity of the Hippo pathway. Altogether, our findings indicate that TEAD/Sd can be acylated either on a cysteine or on a lysine, and suggest that these two different forms may have similar properties in cells.
Collapse
|
17
|
Sanchez-Pulido L, Jia S, Hansen CG, Ponting CP. PERCC1, a new member of the Yap/TAZ/ FAM181 transcriptional co-regulator family. BIOINFORMATICS ADVANCES 2022; 2:vbac008. [PMID: 36699391 PMCID: PMC9710580 DOI: 10.1093/bioadv/vbac008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 01/28/2023]
Abstract
Motivation Disrupted PERCC1 gene expression causes an intractable congenital diarrhoea in infants. However, this gene's molecular mechanism is unknown and no homologous proteins have been reported. Results Our detailed evolutionary analysis of PERCC1 sequence reveals it to be a previously unappreciated member of the YAP/TAZ/FAM181 family of homologous transcriptional regulators. Like YAP and TAZ, PERCC1 likely interacts with DNA via binding to TEA/ATTS domain transcription factors (TEADs) using its conserved interface-2 and -3 sequences. We compare the expression patterns of PERCC1 with those of YAP, TAZ, TEADs. Our report provides the identification and first in-depth bioinformatic analysis of a YAP/TAZ homologue, and a likely new regulator of the YAP/TAZ-TEAD transcriptional complex. Availability and implementation The data underlying this article are available in UniProt Database. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Luis Sanchez-Pulido
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Siyang Jia
- Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Carsten Gram Hansen
- Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Chris P Ponting
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
18
|
Mesrouze Y, Meyerhofer M, Zimmermann C, Fontana P, Erdmann D, Chène P. Biochemical properties of VGLL4 from Homo sapiens and Tgi from Drosophila melanogaster and possible biological implications. Protein Sci 2021; 30:1871-1881. [PMID: 34075638 DOI: 10.1002/pro.4138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022]
Abstract
The TEAD (Sd in drosophila) transcription factors are essential for the Hippo pathway. Human VGLL4 and drosophila Tgi bind to TEAD/Sd via two distinct binding sites. These two regions are separated by few amino acids in VGLL4 but they are very distant from each other in Tgi. This difference prompted us to study whether it influences the interaction with TEAD4/Sd. We show that the full-length VGLL4/Tgi proteins behave as intrinsically disordered proteins. They have a similar affinity for TEAD4/Sd revealing that the length of the region between the two binding sites has little effect on the interaction. One of their two binding sites (high-affinity site) binds to TEAD4/Sd 100 times more tightly than to the other site, and size exclusion chromatography experiments reveal that VGLL4/Tgi only form trimeric complexes with TEAD4/Sd at high protein concentrations. In solution, therefore, VGLL4/Tgi may predominantly interact with TEAD4/Sd via their high-affinity site to create dimeric complexes. In contrast, when TEAD4/Sd molecules are immobilized on sensor chips used in Surface Plasmon Resonance experiments, one VGLL4/Tgi molecule can bind simultaneously with an enhanced affinity to two immobilized molecules. This effect, due to a local increase in protein concentration triggered by the proximity of the immobilized TEAD4/Sd molecules, suggests that in vivo VGLL4/Tgi could bind with an enhanced affinity to two nearby TEAD/Sd molecules bound to DNA. The presence of two binding sites in VGLL4/Tgi might only be required for the function of these proteins when they interact with TEAD/Sd bound to DNA.
Collapse
Affiliation(s)
- Yannick Mesrouze
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Marco Meyerhofer
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Catherine Zimmermann
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Patrizia Fontana
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dirk Erdmann
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Patrick Chène
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
19
|
Niki Y, Kobayashi Y, Moriyama K. Expression pattern of transcriptional enhanced associate domain family member 1 (Tead1) in developing mouse molar tooth. Gene Expr Patterns 2021; 40:119182. [PMID: 33984529 DOI: 10.1016/j.gep.2021.119182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/24/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
The Hippo pathway is essential for determining organ size by regulating cell proliferation. Previous reports have shown that impairing this pathway causes abnormal tooth development. However, the precise expression profile of the members of the transcriptional enhanced associate domain family (Tead), which are key transcription factors mediating Yap function, during tooth development is unclear. In this study, among the four isoforms of Tead (Tead1 - 4), only the expression of Tead1 mRNA was observed using semiquantitative RT- PCR in murine developing tooth germ at E16.5. The expression level of Tead1 mRNA in the excised murine mandibular molar tooth germ was significantly higher at E16.5 than at other developmental stages, as determined using quantitative PCR. We found that the mRNA expression of connective tissue growth factor (Ctgf), which is one of the Yap target genes directly controlling cell growth, changed consistently with that of Tead1 in developing molars. Fluorescent immunostaining revealed that Tead1 protein was expressed in both epithelial cells and mesenchymal cells of the dental lamina and dental epithelium, including the primary enamel knot during the cap stage. During the early bell stage (E16.5), Tead1 was expressed intensely in the inner and outer enamel epithelium, including the secondary enamel knot and the neighboring mesenchymal cells. Tead1 then specifically localized to the inner and outer enamel epithelium, which is responsible for enamel formation during the bell stage. These expression patterns were consistent with those of Yap, Taz, and Ctgf protein in developing molars. These results suggest that Tead1 acts as a mediator of the biological functions of Yap, such as the morphogenesis of cusp formation, during tooth development.
Collapse
Affiliation(s)
- Yuki Niki
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Yukiho Kobayashi
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Keiji Moriyama
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| |
Collapse
|
20
|
Pobbati AV, Rubin BP. Protein-Protein Interaction Disruptors of the YAP/TAZ-TEAD Transcriptional Complex. Molecules 2020; 25:molecules25246001. [PMID: 33352993 PMCID: PMC7766469 DOI: 10.3390/molecules25246001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
The identification of protein-protein interaction disruptors (PPIDs) that disrupt the YAP/TAZ-TEAD interaction has gained considerable momentum. Several studies have shown that YAP/TAZ are no longer oncogenic when their interaction with the TEAD family of transcription factors is disrupted. The transcriptional co-regulator YAP (its homolog TAZ) interact with the surface pockets of TEADs. Peptidomimetic modalities like cystine-dense peptides and YAP cyclic and linear peptides exploit surface pockets (interface 2 and interface 3) on TEADs and function as PPIDs. The TEAD surface might pose a challenge for generating an effective small molecule PPID. Interestingly, TEADs also have a central pocket that is distinct from the surface pockets, and which small molecules leverage exclusively to disrupt the YAP/TAZ-TEAD interaction (allosteric PPIDs). Although small molecules that occupy the central pocket belong to diverse classes, they display certain common features. They are flexible, which allows them to adopt a palmitate-like conformation, and they have a predominant hydrophobic portion that contacts several hydrophobic residues and a small hydrophilic portion that faces the central pocket opening. Despite such progress, more selective PPIDs that also display favorable pharmacokinetic properties and show tolerable toxicity profiles are required to evaluate the feasibility of using these PPIDs for cancer therapy.
Collapse
Affiliation(s)
- Ajaybabu V. Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Correspondence: (A.V.P.); (B.P.R.); Tel.: +1-216-445-4472 (A.V.P.)
| | - Brian P. Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Correspondence: (A.V.P.); (B.P.R.); Tel.: +1-216-445-4472 (A.V.P.)
| |
Collapse
|