1
|
Yum S, Lee H, Kwon YK, Lee G, Lee HY, Youn H, Youn B. Unraveling ER dimerization dynamics in endocrine disruption based on a BRET-focused approach. Anim Cells Syst (Seoul) 2025; 29:282-295. [PMID: 40304013 PMCID: PMC12039421 DOI: 10.1080/19768354.2025.2481984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 05/02/2025] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous compounds that interact with the estrogen receptor (ER), thereby disrupting estrogen-mediated signaling. In a previous study, we employed a bioluminescence resonance energy transfer (BRET) system to assess ER dimerization for detecting EDCs. To further determine whether the BRET assay could be used independently to identify EDCs, we investigated ER-EDC interactions before and after dimerization. Results from isothermal titration calorimetry (ITC) and dynamic light scattering (DLS) revealed that ER dimerization can be mediated by EDCs. Consequently, the BRET assay proved effective in detecting dimerization and clarifying its relevance to EDC-induced signaling disruption. Additionally, to examine EDC-induced transcriptional changes, we performed chromatin immunoprecipitation sequencing (ChIP-seq), followed by gene ontology (GO) analysis. These analyses demonstrated that EDCs affect various signaling pathways, including those involved in antibody-dependent cytotoxicity, bone morphogenetic protein (BMP) signaling in cardiac induction, and hepatocyte growth factor receptor signaling. Overall, this study elucidates the molecular mechanisms by which EDCs influence ER dimerization and signaling. These findings highlight the utility of the BRET-based assay for EDC detection and contribute to a deeper understanding of the systemic effects of EDCs on endocrine disruption.
Collapse
Affiliation(s)
- Soomin Yum
- Department of Integrated Biological Science, Pusan National University, Kumjeong-ku, Republic of Korea
| | - Haksoo Lee
- Department of Integrated Biological Science, Pusan National University, Kumjeong-ku, Republic of Korea
| | - Yong-Kook Kwon
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Cheongju-si, Republic of Korea
| | - Gunyoung Lee
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Cheongju-si, Republic of Korea
| | - Hye-Young Lee
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Cheongju-si, Republic of Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Kumjeong-ku, Republic of Korea
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
- Nuclear Science Research Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
2
|
Chen J, Fasihianifard P, Lian R, Gibson-Elias LJ, Moreno JL, Chang CEA, Zhong W, Hooley RJ. Supramolecular Host:Guest Arrays Site-Selectively Recognize Peptide Phosphorylation and Kinase Activity. J Am Chem Soc 2025; 147:841-850. [PMID: 39680592 DOI: 10.1021/jacs.4c13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
A synergistic combination of cationic styrylpyridinium dyes and water-soluble deep cavitand hosts can recognize phosphorylated peptides with both site- and state-selectivity. Two mechanisms of interaction are dominant: either the cationic dye interacts with Trp residues in the peptide or the host:dye pair forms a heteroternary complex with the peptide, driven by both strong dye-peptide and cavitand-peptide binding (Kd values up to 4 μM). The presence of multiple recognition mechanisms results in varying fluorescence responses dependent on the phosphorylation state and position, eliminating the need for covalent modification of the peptide target. Differential sensing aided by machine learning algorithms permits full discrimination between differently positioned serine phosphorylations with a minimal 3-component array. The array is fully functional in the presence of protein kinase A (PKA) and its required cofactors and capable of site-selective monitoring of serine phosphorylation at the privileged PKA motif, in the presence of serine residues that do not undergo reaction, illustrating the potential of the system in kinase-based drug screening.
Collapse
Affiliation(s)
- Junyi Chen
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Parisa Fasihianifard
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Ria Lian
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Lucas J Gibson-Elias
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Jose L Moreno
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Chia-En A Chang
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Wenwan Zhong
- Key Laboratory of Precision and Intelligent Chemistry; Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Richard J Hooley
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| |
Collapse
|
3
|
Cheng A, Wang J, Li J, Wang J, Xu M, Chen H, Zhang P. S-Nitrosylation of p39 promotes its degradation and contributes to synaptic dysfunction induced by β-amyloid peptide. Commun Biol 2024; 7:1113. [PMID: 39256547 PMCID: PMC11387606 DOI: 10.1038/s42003-024-06832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Alzheimer's disease (AD), characterized by cognitive decline, is increasingly recognized as a disorder marked by synaptic loss and dysfunction. Despite this understanding, the underlying pathophysiological mechanisms contributing to synaptic impairment remain largely unknown. In this study, we elucidate a previously undiscovered signaling pathway wherein the S-nitrosylation of the Cdk5 activator p39, a post-translational modification involving the addition of nitric oxide to protein cysteine residues, plays a crucial role in synaptic dysfunction associated with AD. Our investigation reveals heightened p39 S-nitrosylation in the brain of an amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mouse model of AD. Additionally, soluble amyloid-β oligomers (Aβ), implicated in synaptic loss in AD, induce p39 S-nitrosylation in cultured neurons. Notably, we uncover that p39 protein level is regulated by S-nitrosylation, with nitric oxide S-nitrosylating p39 at Cys265 and subsequently promoting its degradation. Furthermore, our study demonstrates that S-nitrosylation of p39 at Cys265 significantly contributes to amyloid-β (Aβ) peptide-induced dendrite retraction and spine loss. Collectively, our findings highlight S-nitrosylation of p39 as a novel aberrant redox protein modification involved in the pathogenesis of AD, suggesting its potential as a therapeutic target for the disease.
Collapse
Affiliation(s)
- Aobing Cheng
- Department of Anesthesiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Jingyi Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Li
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mufan Xu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongzhuan Chen
- Shuguang Lab for Future Health, Academy of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Peng Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Emotions and Affective Disorders(LEAD), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Tian Y, Zheng X, Li R, Hu L, Shui X, Wang L, Chen D, Lee TH, Zhang T. Quantitative Proteomic and Phosphoproteomic Analyses Reveal a Role of Death-Associated Protein Kinase 1 in Regulating Hippocampal Synapse. Mol Neurobiol 2024; 61:1794-1806. [PMID: 37775722 DOI: 10.1007/s12035-023-03674-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Death-associated protein kinase 1 (DAPK1) is a stress-responsive calcium/calmodulin (CaM)-regulated serine/threonine protein kinase that is actively involved in stress-induced cell death. The dysregulation of DAPK1 has been established in various neurological disorders such as epilepsy, Alzheimer's disease (AD), and Parkinson's disease (PD). Recent research indicates a synaptic localization of DAPK1 in neurons, suggesting a potential role of DAPK1 in modulating synaptic structure and function. However, the key molecules and pathways underlying the influence of DAPK1 on synapses remain elusive. We utilized quantitative proteomic and phosphoproteomic analyses to compare the differences in protein expression and phosphorylation in hippocampal tissues of wild-type (WT) and DAPK1-knockout (KO) mice. Bioinformatic analysis of differentially expressed proteins and phosphoproteins revealed a preferential enrichment of proteins involved in regulating synaptic function, cytoskeletal structure, and neurotransmission. Gene set enrichment analysis (GESA) highlighted altered presynaptic functions including synaptic vesicle priming and glutamate secretion in KO mice. Besides, we observed that proteins with potential phosphorylation motifs of ERK and DAPK1 were overrepresented among the differential phosphoproteins and were highly enriched in neuronal function-related pathways. Furthermore, Western blot analysis validated differences in the expression of several proteins closely associated with presynaptic organization, dendrites and calcium transmembrane transport between KO and WT mice, further corroborating the potential involvement of DAPK1 in the regulation of synaptic functions. Overall, our data provide molecular evidence to elucidate the physiological links between DAPK1 and neuronal functions and help clarify the role of DAPK1 in the pathogenesis of neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuan Tian
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Xiaoqing Zheng
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Ruomeng Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Li Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Xindong Shui
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Long Wang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Dongmei Chen
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| | - Tao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
5
|
Deprez MA, Caligaris M, Rosseels J, Hatakeyama R, Ghillebert R, Sampaio-Marques B, Mudholkar K, Eskes E, Meert E, Ungermann C, Ludovico P, Rospert S, De Virgilio C, Winderickx J. The nutrient-responsive CDK Pho85 primes the Sch9 kinase for its activation by TORC1. PLoS Genet 2023; 19:e1010641. [PMID: 36791155 PMCID: PMC9974134 DOI: 10.1371/journal.pgen.1010641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/28/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Yeast cells maintain an intricate network of nutrient signaling pathways enabling them to integrate information on the availability of different nutrients and adjust their metabolism and growth accordingly. Cells that are no longer capable of integrating this information, or that are unable to make the necessary adaptations, will cease growth and eventually die. Here, we studied the molecular basis underlying the synthetic lethality caused by loss of the protein kinase Sch9, a key player in amino acid signaling and proximal effector of the conserved growth-regulatory TORC1 complex, when combined with either loss of the cyclin-dependent kinase (CDK) Pho85 or loss of its inhibitor Pho81, which both have pivotal roles in phosphate sensing and cell cycle regulation. We demonstrate that it is specifically the CDK-cyclin pair Pho85-Pho80 or the partially redundant CDK-cyclin pairs Pho85-Pcl6/Pcl7 that become essential for growth when Sch9 is absent. Interestingly, the respective three CDK-cyclin pairs regulate the activity and distribution of the phosphatidylinositol-3 phosphate 5-kinase Fab1 on endosomes and vacuoles, where it generates phosphatidylinositol-3,5 bisphosphate that serves to recruit both TORC1 and its substrate Sch9. In addition, Pho85-Pho80 directly phosphorylates Sch9 at Ser726, and to a lesser extent at Thr723, thereby priming Sch9 for its subsequent phosphorylation and activation by TORC1. The TORC1-Sch9 signaling branch therefore integrates Pho85-mediated information at different levels. In this context, we also discovered that loss of the transcription factor Pho4 rescued the synthetic lethality caused by loss of Pho85 and Sch9, indicating that both signaling pathways also converge on Pho4, which appears to be wired to a feedback loop involving the high-affinity phosphate transporter Pho84 that fine-tunes Sch9-mediated responses.
Collapse
Affiliation(s)
- Marie-Anne Deprez
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Marco Caligaris
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Joëlle Rosseels
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Riko Hatakeyama
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Ruben Ghillebert
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Braga, Portugal
| | - Kaivalya Mudholkar
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elja Eskes
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Els Meert
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Christian Ungermann
- Department of Biology/Chemistry & Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Braga, Portugal
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- * E-mail: (CDV); (JW)
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
- * E-mail: (CDV); (JW)
| |
Collapse
|
6
|
Ao C, Li C, Chen J, Tan J, Zeng L. The role of Cdk5 in neurological disorders. Front Cell Neurosci 2022; 16:951202. [PMID: 35966199 PMCID: PMC9368323 DOI: 10.3389/fncel.2022.951202] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Neurological disorders are a group of disorders with motor, sensory or cognitive damage, caused by dysfunction of the central or peripheral nervous system. Cyclin-dependent kinases 5 (Cdk5) is of vital significance for the development of the nervous system, including the migration and differentiation of neurons, the formation of synapses, and axon regeneration. However, when the nervous system is subject to pathological stimulation, aberrant activation of Cdk5 will induce abnormal phosphorylation of a variety of substrates, resulting in a cascade signaling pathway, and thus lead to pathological changes. Cdk5 is intimately related to the pathological mechanism of a variety of neurological disorders, such as A-β protein formation in Alzheimer’s disease, mitochondrial fragmentation in cerebral ischemia, and apoptosis of dopaminergic neurons in Parkinson’s disease. It is worth noting that Cdk5 inhibitors have been reported to have neuroprotective effects by inhibiting related pathological processes. Therefore, in this review, we will briefly introduce the physiological and pathological mechanisms of Cdk5 in the nervous system, focusing on the recent advances of Cdk5 in neurological disorders and the prospect of targeted Cdk5 for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Chuncao Ao
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chenchen Li
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinlun Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Model for Human Diseases, Central South University, Changsha, China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Liuwang Zeng
| |
Collapse
|
7
|
Takahashi M, Takasugi T, Kawakami A, Wei R, Ando K, Ohshima T, Hisanaga SI. Valproic Acid-Induced Anxiety and Depression Behaviors are Ameliorated in p39 Cdk5 Activator-Deficient Mice. Neurochem Res 2022; 47:2773-2779. [PMID: 35674931 DOI: 10.1007/s11064-022-03642-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 01/11/2023]
Abstract
Valproic acid (VPA) is a drug used for the treatment of epilepsy, seizures, migraines, and bipolar disorders. Cyclin-dependent kinase 5 (Cdk5) is a Ser/Thr kinase activated by p35 or p39 in neurons and plays a role in a variety of neuronal functions, including psychiatric behaviors. We previously reported that VPA suppressed Cdk5 activity by reducing the expression of p35 in cultured cortical neurons, leaving p39 unchanged. In this study, we asked for the role of Cdk5 in VPA-induced anxiety and depression behaviors. Wild-type (WT) mice displayed increased anxiety and depression after chronic administration of VPA for 14 days, when the expression of p35 was decreased. To clarify their relationship, we used p39 knockout (KO) mice, in which p35 is the only Cdk5 activator. When p39 KO mice were treated chronically with VPA, unexpectedly, they exhibited fewer anxiety and depression behaviors than WT mice. The effects were p39 cdk5r2 gene-dosage dependent. Together, these results indicate that Cdk5-p39 plays a specific role in VPA-induced anxiety and depression behaviors.
Collapse
Affiliation(s)
- Miyuki Takahashi
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo, 192-0397, Japan. .,Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku, Tokyo, 162-0056, Japan.
| | - Toshiyuki Takasugi
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo, 192-0397, Japan.,Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Asahimachi, Niigata, 951-8510, Japan
| | - Arisa Kawakami
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Ran Wei
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo, 192-0397, Japan.,Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku, Tokyo, 162-0056, Japan
| | - Kanae Ando
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku, Tokyo, 162-0056, Japan
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
8
|
Abstract
Cdk5 is a proline-directed serine/threonine protein kinase that governs a variety of cellular processes in neurons, the dysregulation of which compromises normal brain function. The mechanisms underlying the modulation of Cdk5, its modes of action, and its effects on the nervous system have been a great focus in the field for nearly three decades. In this review, we provide an overview of the discovery and regulation of Cdk5, highlighting recent findings revealing its role in neuronal/synaptic functions, circadian clocks, DNA damage, cell cycle reentry, mitochondrial dysfunction, as well as its non-neuronal functions under physiological and pathological conditions. Moreover, we discuss evidence underscoring aberrant Cdk5 activity as a common theme observed in many neurodegenerative diseases.
Collapse
Affiliation(s)
- Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
9
|
Terse A, Amin N, Hall B, Bhaskar M, Binukumar B, Utreras E, Pareek TK, Pant H, Kulkarni AB. Protocols for Characterization of Cdk5 Kinase Activity. Curr Protoc 2021; 1:e276. [PMID: 34679246 PMCID: PMC8555461 DOI: 10.1002/cpz1.276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclin-dependent kinases (Cdks) are generally known to be involved in controlling the cell cycle, but Cdk5 is a unique member of this protein family for being most active in post-mitotic neurons. Cdk5 is developmentally important in regulating neuronal migration, neurite outgrowth, and axon guidance. Cdk5 is enriched in synaptic membranes and is known to modulate synaptic activity. Postnatally, Cdk5 can also affect neuronal processes such as dopaminergic signaling and pain sensitivity. Dysregulated Cdk5, in contrast, has been linked to neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Despite primarily being implicated in neuronal development and activity, Cdk5 has lately been linked to non-neuronal functions including cancer cell growth, immune responses, and diabetes. Since Cdk5 activity is tightly regulated, a method for measuring its kinase activity is needed to fully understand the precise role of Cdk5 in developmental and disease processes. This article includes methods for detecting Cdk5 kinase activity in cultured cells or tissues, identifying new substrates, and screening for new kinase inhibitors. Furthermore, since Cdk5 shares homology and substrate specificity with Cdk1 and Cdk2, the Cdk5 kinase assay can be used, with modification, to measure the activity of other Cdks as well. © 2021 Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Basic Protocol 1: Measuring Cdk5 activity from protein lysates Support Protocol 1: Immunoprecipitation of Cdk5 using Dynabeads Alternate Protocol: Non-radioactive protocols to measure Cdk5 kinase activity Support Protocol 2: Western blot analysis for the detection of Cdk5, p35, and p39 Support Protocol 3: Immunodetection analysis for Cdk5, p35, and p39 Support Protocol 4: Genetically engineered mice (+ and - controls) Basic Protocol 2: Identifying new Cdk5 substrates and kinase inhibitors.
Collapse
Affiliation(s)
- Anita Terse
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Niranjana Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Bradford Hall
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Manju Bhaskar
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - B.K Binukumar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Elias Utreras
- Department of Biology, Universidad de Chile, Santiago, Chile
| | | | - Harish Pant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ashok B. Kulkarni
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Tatomir A, Beltrand A, Nguyen V, Courneya JP, Boodhoo D, Cudrici C, Muresanu DF, Rus V, Badea TC, Rus H. RGC-32 Acts as a Hub to Regulate the Transcriptomic Changes Associated With Astrocyte Development and Reactive Astrocytosis. Front Immunol 2021; 12:705308. [PMID: 34394104 PMCID: PMC8358671 DOI: 10.3389/fimmu.2021.705308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/16/2021] [Indexed: 01/14/2023] Open
Abstract
Response Gene to Complement 32 (RGC-32) is an important mediator of the TGF-β signaling pathway, and an increasing amount of evidence implicates this protein in regulating astrocyte biology. We showed recently that spinal cord astrocytes in mice lacking RGC-32 display an immature phenotype reminiscent of progenitors and radial glia, with an overall elongated morphology, increased proliferative capacity, and increased expression of progenitor markers when compared to their wild-type (WT) counterparts that make them incapable of undergoing reactive changes during the acute phase of experimental autoimmune encephalomyelitis (EAE). Here, in order to decipher the molecular networks underlying RGC-32's ability to regulate astrocytic maturation and reactivity, we performed next-generation sequencing of RNA from WT and RGC-32 knockout (KO) neonatal mouse brain astrocytes, either unstimulated or stimulated with the pleiotropic cytokine TGF-β. Pathway enrichment analysis showed that RGC-32 is critical for the TGF-β-induced up-regulation of transcripts encoding proteins involved in brain development and tissue remodeling, such as axonal guidance molecules, transcription factors, extracellular matrix (ECM)-related proteins, and proteoglycans. Our next-generation sequencing of RNA analysis also demonstrated that a lack of RGC-32 results in a significant induction of WD repeat and FYVE domain-containing protein 1 (Wdfy1) and stanniocalcin-1 (Stc1). Immunohistochemical analysis of spinal cords isolated from normal adult mice and mice with EAE at the peak of disease showed that RGC-32 is necessary for the in vivo expression of ephrin receptor type A7 in reactive astrocytes, and that the lack of RGC-32 results in a higher number of homeodomain-only protein homeobox (HOPX)+ and CD133+ radial glia cells. Collectively, these findings suggest that RGC-32 plays a major role in modulating the transcriptomic changes in astrocytes that ultimately lead to molecular programs involved in astrocytic differentiation and reactive changes during neuroinflammation.
Collapse
Affiliation(s)
- Alexandru Tatomir
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Austin Beltrand
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Vinh Nguyen
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Jean-Paul Courneya
- Health Sciences and Human Services Library, University of Maryland, Baltimore, MD, United States
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Cornelia Cudrici
- Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Dafin F. Muresanu
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Violeta Rus
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Tudor C. Badea
- Retinal Circuit Development and Genetics Unit, N-NRL, National Eye Institute, Bethesda, MD, United States
- Research and Development Institute, Faculty of Medicine, Transylvania University of Brasov, Brasov, Romania
| | - Horea Rus
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, United States
| |
Collapse
|
11
|
CCL5 promotion of bioenergy metabolism is crucial for hippocampal synapse complex and memory formation. Mol Psychiatry 2021; 26:6451-6468. [PMID: 33931731 PMCID: PMC8760051 DOI: 10.1038/s41380-021-01103-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/10/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022]
Abstract
Glucoregulatory efficiency and ATP production are key regulators for neuronal plasticity and memory formation. Besides its chemotactic and neuroinflammatory functions, the CC chemokine--CCL5 displays neurotrophic activity. We found impaired learning-memory and cognition in CCL5-knockout mice at 4 months of age correlated with reduced hippocampal long-term potentiation and impaired synapse structure. Re-expressing CCL5 in knockout mouse hippocampus restored synaptic protein expression, neuronal connectivity and cognitive function. Using metabolomics coupled with FDG-PET imaging and seahorse analysis, we found that CCL5 participates in hippocampal fructose and mannose degradation, glycolysis, gluconeogenesis as well as glutamate and purine metabolism. CCL5 additionally supports mitochondrial structural integrity, purine synthesis, ATP generation, and subsequent aerobic glucose metabolism. Overexpressing CCL5 in WT mice also enhanced memory-cognition performance as well as hippocampal neuronal activity and connectivity through promotion of de novo purine and glutamate metabolism. Thus, CCL5 actions on glucose aerobic metabolism are critical for mitochondrial function which contribute to hippocampal spine and synapse formation, improving learning and memory.
Collapse
|