1
|
Hernandez-Lima MA, Seo B, Urban ND, Truttmann MC. Modulation of C. elegans behavior, fitness, and lifespan by AWB/ASH-dependent death perception. Curr Biol 2025; 35:2128-2138.e6. [PMID: 40250434 PMCID: PMC12055480 DOI: 10.1016/j.cub.2025.03.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/24/2025] [Accepted: 03/27/2025] [Indexed: 04/20/2025]
Abstract
The ability of the nervous system to initiate intricate goal-directed behaviors in response to environmental stimuli is essential for metazoan survival. In this study, we demonstrate that the nematode Caenorhabditis elegans perceives and reacts to dead conspecifics. The exposure to C. elegans corpses, as well as corpse lysates, activates sensory neurons AWB and ASH, triggering a glutamate- and acetylcholine-dependent signaling cascade that regulates both immediate (aversion) and long-term (survival) responses to the presence of a death signature. We identify increased adenosine monophosphate (AMP) and histidine concentrations as potential chemical fingerprints for the presence of metazoan corpses and show that death cue sensing by AWB and ASH leads to physiological changes that promote reproduction at the expense of lifespan. Our findings illuminate a signaling paradigm that allows organisms to detect and interpret the environmental enrichment of intracellular metabolites as a death cue.
Collapse
Affiliation(s)
- Mirella A Hernandez-Lima
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian Seo
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas D Urban
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Graduate Program in Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthias C Truttmann
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Graduate Program in Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Mori Y, Ohta A, Kuhara A. Molecular, neural, and tissue circuits underlying physiological temperature responses in Caenorhabditis elegans. Neurosci Res 2025; 214:23-31. [PMID: 39547476 DOI: 10.1016/j.neures.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 11/17/2024]
Abstract
Temperature is a constant environmental factor on Earth, acting as a continuous stimulus that organisms must constantly perceive to survive. Organisms possess neural systems that receive various types of environmental information, including temperature, and mechanisms for adapting to their surroundings. This paper provides insights into the neural circuits and intertissue networks involved in physiological temperature responses, specifically the mechanisms of "cold tolerance" and "temperature acclimation," based on an analysis of the nematode Caenorhabditis elegans as an experimental system for neural and intertissue information processing.
Collapse
Affiliation(s)
- Yukina Mori
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan; Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan
| | - Akane Ohta
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan; Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan; AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| | - Atsushi Kuhara
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan; Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan; AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|
3
|
Kong S, Jia X, Liang X, Chen Y, Liang J, Zhang Y, Wu N, Su S, Chen T, He X, Yin J, Han S, Liu W, Fan Y, Xu J, Peng B. Febrile temperature-regulated TRPV1 in CD4 + T cells mediates neuroinflammation in complex febrile seizures. J Neuroinflammation 2025; 22:103. [PMID: 40197540 PMCID: PMC11977886 DOI: 10.1186/s12974-025-03421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/18/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Febrile seizures (FS) are the most prevalent convulsive disorder in children characterized by a high recurrence rate. However, the interaction between adaptive and innate immunity in the recurrence of FS remains poorly understood, and the molecular pathways involved are unclear. The objective of this study is to elucidate the role of Th17 cells in seizure susceptibility following complex febrile seizures (CFS), and to explore the regulatory mechanisms underlying Th17 cell differentiation and function under hyperthermic conditions through transient receptor potential vanilloid 1 (TRPV1). METHODS RNA sequencing was employed to validate the seizure susceptibility following CFS and to explore the potential mechanisms by which high temperature contributes to Th17 cell differentiation. Neuronal excitability and damage were examined using Multi-electrode array (MEA) analysis and Nissl staining. Flow cytometry, chromatin immunoprecipitation (ChIP) analysis, and immunofluorescence (IF) were applied to examine how TRPV1 facilitates Th17 cell differentiation. RESULTS Our study demonstrates that proinflammatory Th17 cells exhibit enhanced differentiation in a CFS mouse model and exacerbate blood-brain barrier (BBB) disruption. After infiltrating the central nervous system (CNS), Th17 cells promote neuroinflammation by activating microglia via IL-17A. Mechanistically, TRPV1 is critical for Th17 cell differentiation and function. Activated by febrile temperature both in vivo and in vitro, TRPV1 facilitates calcium ion influx, leading to the nuclear localization of nuclear factor of activated T cell 2 and 4 (NFAT2/4) and the phosphorylation of signal transducer and activator of transcription 3 (STAT3). Knockdown of TRPV1 attenuates Th17 cell differentiation and CNS infiltration, thereby protecting the BBB and reducing seizure susceptibility following CFS. CONCLUSION These results highlight the critical interplay between adaptive and innate immunity in CFS. The TRPV1/NFATs/STAT3 signaling pathway regulates Th17 cell differentiation and function under febrile conditions, revealing a promising therapeutic target for intervention.
Collapse
Affiliation(s)
- Shuo Kong
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Xianglei Jia
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Xin Liang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yu Chen
- Department of Genetics, Shandong Second Medical University, Weifang, 261053, China
| | - Jingyi Liang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yan Zhang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Ningyang Wu
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Song Su
- Epilepsy Center, Jinan Children's Hospital, 23976 Jingshi Road, Jinan, 250022, Shandong, China
| | - Taoxiang Chen
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Xiaohua He
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jun Yin
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Song Han
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Wanhong Liu
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yuanteng Fan
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jian Xu
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China.
- Clinical Laboratory, Weifang Maternal and Child Health Hospital, 407 Qingnian Road, Weifang, 261011, Shandong, China.
| | - Biwen Peng
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
4
|
Ohnishi K, Sokabe T. Thermosensory Roles of G Protein-Coupled Receptors and Other Cellular Factors in Animals. Bioessays 2025; 47:e202400233. [PMID: 39723698 PMCID: PMC11848117 DOI: 10.1002/bies.202400233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
In this review, we introduce the concept of "dual thermosensing mechanisms," highlighting the functional collaboration between G protein-coupled receptors (GPCRs) and transient receptor potential (TRP) channels that enable sophisticated cellular thermal responsiveness. GPCRs have been implicated in thermosensory processes, with recent findings identifying several candidates across species, including mammals, fruit flies, and nematodes. In many cases, these GPCRs work in conjunction with another class of thermosensors, TRP channels, offering insights into the complex mechanisms underlying thermosensory signaling. We examine how GPCRs function as thermosensors and how their signaling regulates cellular thermosensation, illustrating the complexity of thermosensory systems. Understanding these dual thermosensory mechanisms would advance our comprehension of cellular thermosensation and its regulatory pathways.
Collapse
Affiliation(s)
- Kohei Ohnishi
- Physiology and Biophysics, Graduate School of Biomedical and Health Sciences (Medical)Hiroshima UniversityHiroshimaJapan
| | - Takaaki Sokabe
- Section of Sensory Physiology, Center for Genetic Analysis of BehaviorNational Institute for Physiological SciencesOkazakiAichiJapan
- Thermal Biology Group, Exploratory Research Center on Life and Living SystemsNational Institutes of Natural SciencesOkazakiAichiJapan
- Graduate Institute for Advanced Studies, SOKENDAIHayamaKanagawaJapan
- AMED‐PRIMEJapan Agency for Medical Research and DevelopmentTokyoJapan
| |
Collapse
|
5
|
Ohta A, Morimoto C, Kamino S, Tezuka M. Temperature Acclimation and Cold Tolerance in Caenorhabditis Elegans are Regulated by Multiorgan Coordination. Zoolog Sci 2025; 42. [PMID: 39932747 DOI: 10.2108/zs240029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/02/2024] [Indexed: 05/08/2025]
Abstract
To ensure survival and reproduction, organisms must continually adapt to environmental fluctuations, such as temperature, humidity, oxygen level, and salinity. Particularly, temperature profoundly influences biochemical reactions crucial for survival. Here, we present the mechanisms employed by the nematode Caenorhabditis elegans to anticipate and respond to cold temperatures. Our findings reveal that temperature is detected by specific neurons linked to various physiological processes in the gut, spermatheca, and muscles. Notably, the gut, a primary fat storage organ in C. elegans, regulates fat mobilization and accumulation in a temperature-dependent manner, thereby contributing to temperature adaptation. Furthermore, normal spermatogenetic mechanisms influence cold tolerance by modulating the responsiveness of thermosensory neurons to temperature changes. Considering our results together with recent reports, we suggest that a polyU-specific endoribonuclease expressed in muscle cells plays a role in cold tolerance through a non-cell-autonomous mechanism, possibly involving transportation intertissues. Thus, understanding cold tolerance and temperature acclimation in C. elegans can provide valuable insights on systemic physiological regulation in response to temperature fluctuations. Moreover, they could help elucidate the actions of thermosensory neurons and their downstream neuronal circuits or neuropeptides on the peripheral organs.
Collapse
Affiliation(s)
- Akane Ohta
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan,
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan
| | - Chinatsu Morimoto
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan
| | - Seiya Kamino
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan
| | - Moe Tezuka
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan
| |
Collapse
|
6
|
Hernandez-Lima MA, Seo B, Urban ND, Truttmann MC. C. elegans behavior, fitness, and lifespan, are modulated by AWB/ASH-dependent death perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617097. [PMID: 39416137 PMCID: PMC11482816 DOI: 10.1101/2024.10.07.617097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The ability of the nervous system to initiate intricate goal-directed behaviors in response to environmental stimuli is essential for metazoan survival. In this study, we demonstrate that the nematode Caenorhabditis elegans perceives and reacts to dead conspecifics. The exposure to C. elegans corpses as well as corpse lysates activates sensory neurons AWB and ASH, triggering a glutamate- and acetylcholine-dependent signaling cascade that regulates both immediate (aversion) and long-term (survival) responses to the presence of a death signature. We identify increased adenosine monophosphate (AMP) and cysteine concentrations as chemical fingerprints for the presence of metazoan corpses and show that death cue sensing by AWB and ASH leads to physiological changes which promote reproduction at the expense of lifespan. Our findings illuminate a novel signaling paradigm that allows organisms to detect and interpret the environmental enrichment of intracellular metabolites as a death cue.
Collapse
Affiliation(s)
- Mirella A. Hernandez-Lima
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brian Seo
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nicholas D. Urban
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Graduate Program in Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matthias C. Truttmann
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Graduate Program in Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Geriatrics Center, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
7
|
Bai H, Naidu T, Anderson JB, Montemayor H, Do C, Ni L. The impacts of hypertonic conditions on Drosophila larval cool cells. Front Cell Neurosci 2024; 18:1347460. [PMID: 39381503 PMCID: PMC11459462 DOI: 10.3389/fncel.2024.1347460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Drosophila melanogaster exhibits multiple highly sophisticated temperature-sensing systems, enabling its effective response and navigation to temperature changes. Previous research has identified three dorsal organ cool cells (DOCCs) in fly larvae, consisting of two A-type and one B-type cell with distinct calcium dynamics. When subjected to hypertonic conditions, calcium imaging shows that A-type DOCCs maintain their responses to cool temperatures. In contrast, a subset of B-type DOCCs does not exhibit detectable GCaMP baseline signals, and the remaining detectable B-type DOCCs exhibit reduced temperature responses. The activation of both A-type and B-type DOCCs depends on the same members of the ionotropic receptor (IR) family: IR21a, IR93a, and IR25a. A-type DOCCs exhibit a higher somal level of IR93a than B-type DOCCs. Overexpression of Ir93a restores B-type calcium responses to cool temperatures, but not the proportion of B-type cells with a detectable GCaMP baseline, in a hypertonic environment, suggesting a selective role of IR93a in maintaining the temperature responses under hypertonic conditions. Our findings identify a novel function of B-type DOCCs in integrating temperature and tonic stimuli.
Collapse
Affiliation(s)
| | | | | | | | | | - Lina Ni
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
8
|
Abdollahi M, Castaño JD, Salem JB, Beaudry F. Anandamide Modulates Thermal Avoidance in Caenorhabditis elegans Through Vanilloid and Cannabinoid Receptor Interplay. Neurochem Res 2024; 49:2423-2439. [PMID: 38847909 DOI: 10.1007/s11064-024-04186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/09/2024]
Abstract
Understanding the endocannabinoid system in C. elegans may offer insights into basic biological processes and potential therapeutic targets for managing pain and inflammation in human. It is well established that anandamide modulates pain perception by binding to cannabinoid and vanilloid receptors, regulating neurotransmitter release and neuronal activity. One objective of this study was to demonstrate the suitability of C. elegans as a model organism for assessing the antinociceptive properties of bioactive compounds and learning about the role of endocannabinoid system in C. elegans. The evaluation of the compound anandamide (AEA) revealed antinociceptive activity by impeding C. elegans nocifensive response to noxious heat. Proteomic and bioinformatic investigations uncovered several pathways activated by AEA. Enrichment analysis unveiled significant involvement of ion homeostasis pathways, which are crucial for maintaining neuronal function and synaptic transmission, suggesting AEA's impact on neurotransmitter release and synaptic plasticity. Additionally, pathways related to translation, protein synthesis, and mTORC1 signaling were enriched, highlighting potential mechanisms underlying AEA's antinociceptive effects. Thermal proteome profiling identified NPR-32 and NPR-19 as primary targets of AEA, along with OCR-2, Cathepsin B, Progranulin, Transthyretin, and ribosomal proteins. These findings suggest a complex interplay between AEA and various cellular processes implicated in nociceptive pathways and inflammation modulation. Further investigation into these interactions could provide valuable insights into the therapeutic potential of AEA and its targets for the management of pain-related conditions.
Collapse
Affiliation(s)
- Marzieh Abdollahi
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jesus D Castaño
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jennifer Ben Salem
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Francis Beaudry
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
9
|
Ohta A, Sato Y, Isono K, Kajino T, Tanaka K, Taji T, Kuhara A. The intron binding protein EMB-4 is an opposite regulator of cold and high temperature tolerance in Caenorhabditis elegans. PNAS NEXUS 2024; 3:pgae293. [PMID: 39118835 PMCID: PMC11309393 DOI: 10.1093/pnasnexus/pgae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/07/2024] [Indexed: 08/10/2024]
Abstract
Adaptation and tolerance to changes in heat and cold temperature are essential for survival and proliferation in plants and animals. However, there is no clear information regarding the common molecules between animals and plants. In this study, we found that heat, and cold tolerance of the nematode Caenorhabditis elegans is oppositely regulated by the RNA-binding protein EMB-4, whose plant homolog contains polymorphism causing heat tolerance diversity. Caenorhabditis elegans alters its cold and heat tolerance depending on the previous cultivation temperature, wherein EMB-4 respectively acts as a positive and negative controller of heat and cold tolerance by altering gene expression. Among the genes whose expression is regulated by EMB-4, a phospholipid scramblase, and an acid sphingomyelinase, which are involved in membrane lipid metabolism, were found to play essential roles in the negative regulation of heat tolerance.
Collapse
Affiliation(s)
- Akane Ohta
- Graduate School of Natural Science, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
- Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
| | - Yuki Sato
- Graduate School of Natural Science, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
| | - Kazuho Isono
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Takuma Kajino
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Atsushi Kuhara
- Graduate School of Natural Science, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
- Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
10
|
Horikawa M, Fukuyama M, Antebi A, Mizunuma M. Regulatory mechanism of cold-inducible diapause in Caenorhabditis elegans. Nat Commun 2024; 15:5793. [PMID: 38987256 PMCID: PMC11237089 DOI: 10.1038/s41467-024-50111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Temperature is a critical environmental cue that controls the development and lifespan of many animal species; however, mechanisms underlying low-temperature adaptation are poorly understood. Here, we describe cold-inducible diapause (CID), another type of diapause induced by low temperatures in Caenorhabditis elegans. A premature stop codon in heat shock factor 1 (hsf-1) triggers entry into CID at 9 °C, whereas wild-type animals enter CID at 4 °C. Furthermore, both wild-type and hsf-1(sy441) mutant animals undergoing CID can survive for weeks, and resume growth at 20 °C. Using epistasis analysis, we demonstrate that neural signalling pathways, namely tyraminergic and neuromedin U signalling, regulate entry into CID of the hsf-1 mutant. Overexpression of anti-ageing genes, such as hsf-1, XBP1/xbp-1, FOXO/daf-16, Nrf2/skn-1, and TFEB/hlh-30, also inhibits CID entry of the hsf-1 mutant. Based on these findings, we hypothesise that regulators of the hsf-1 mutant CID may impact longevity, and successfully isolate 16 long-lived mutants among 49 non-CID mutants via genetic screening. Furthermore, we demonstrate that the nonsense mutation of MED23/sur-2 prevents CID entry of the hsf-1(sy441) mutant and extends lifespan. Thus, CID is a powerful model to investigate neural networks involving cold acclimation and to explore new ageing mechanisms.
Collapse
Affiliation(s)
- Makoto Horikawa
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
| | - Masamitsu Fukuyama
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Masaki Mizunuma
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan.
| |
Collapse
|
11
|
Boujenoui F, Nkambeu B, Salem JB, Castano Uruena JD, Beaudry F. Cannabidiol and Tetrahydrocannabinol Antinociceptive Activity is Mediated by Distinct Receptors in Caenorhabditis elegans. Neurochem Res 2024; 49:935-948. [PMID: 38141130 DOI: 10.1007/s11064-023-04069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/05/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023]
Abstract
Cannabis has gained popularity in recent years as a substitute treatment for pain following the risks of typical treatments uncovered by the opioid crisis. The active ingredients frequently associated with pain-relieving effects are the phytocannabinoids Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), but their effectiveness and mechanisms of action are still under research. In this study, we used Caenorhabditis elegans, an ideal model organism for the study of nociception that expresses mammal ortholog cannabinoid (NPR-19 and NPR-32) and vanilloid (OSM-9 and OCR-2) receptors. Here, we evaluated the antinociceptive activity of THC and CBD, identifying receptor targets and several metabolic pathways activated following exposure to these molecules. The thermal avoidance index was used to phenotype each tested C. elegans experimental group. The data revealed for the first time that THC and CBD decreases the nocifensive response of C. elegans to noxious heat (32-35 °C). The effect was reversed 6 h post- CBD exposure but not for THC. Further investigations using specific mutants revealed CBD and THC are targeting different systems, namely the vanilloid and cannabinoid systems, respectively. Proteomic analysis revealed differences following Reactome pathways and gene ontology biological process database enrichment analyses between CBD or THC-treated nematodes and provided insights into potential targets for future drug development.
Collapse
Affiliation(s)
- Fatma Boujenoui
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Bruno Nkambeu
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jennifer Ben Salem
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jesus David Castano Uruena
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
12
|
Okahata M, Sawada N, Nakao K, Ohta A, Kuhara A. Screening for cold tolerance genes in C. elegans, whose expressions are affected by anticancer drugs camptothecin and leptomycin B. Sci Rep 2024; 14:5401. [PMID: 38443452 PMCID: PMC10914781 DOI: 10.1038/s41598-024-55794-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
Temperature is a vital environmental factor affecting organisms' survival as they determine the mechanisms to tolerate rapid temperature changes. We demonstrate an experimental system for screening chemicals that affect cold tolerance in Caenorhabditis elegans. The anticancer drugs leptomycin B and camptothecin were among the 4000 chemicals that were screened as those affecting cold tolerance. Genes whose expression was affected by leptomycin B or camptothecin under cold stimuli were investigated by transcriptome analysis. Abnormal cold tolerance was detected in several mutants possessing genes that were rendered defective and whose expression altered after exposure to either leptomycin B or camptothecin. The genetic epistasis analysis revealed that leptomycin B or camptothecin may increase cold tolerance by affecting a pathway upstream of the insulin receptor DAF-2 that regulates cold tolerance in the intestine. Our experimental system combining drug and cold tolerance could be used for a comprehensive screening of genes that control cold tolerance at a low cost and in a short time period.
Collapse
Affiliation(s)
- Misaki Okahata
- Graduate School of Frontier Biosciences, Osaka University Suita, Osaka, Japan
- Graduate School of Natural Science, Konan University, Kobe, Hyogo, Japan
- Faculty of Science and Engineering, Konan University, Kobe, Hyogo, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo, Japan
| | - Natsumi Sawada
- Graduate School of Natural Science, Konan University, Kobe, Hyogo, Japan
| | - Kenji Nakao
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Akane Ohta
- Graduate School of Natural Science, Konan University, Kobe, Hyogo, Japan.
- Faculty of Science and Engineering, Konan University, Kobe, Hyogo, Japan.
- Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo, Japan.
| | - Atsushi Kuhara
- Graduate School of Natural Science, Konan University, Kobe, Hyogo, Japan.
- Faculty of Science and Engineering, Konan University, Kobe, Hyogo, Japan.
- Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo, Japan.
- PRIME, AMED, Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
13
|
Ohnishi K, Sokabe T, Miura T, Tominaga M, Ohta A, Kuhara A. G protein-coupled receptor-based thermosensation determines temperature acclimatization of Caenorhabditis elegans. Nat Commun 2024; 15:1660. [PMID: 38396085 PMCID: PMC10891075 DOI: 10.1038/s41467-024-46042-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Animals must sense and acclimatize to environmental temperatures for survival, yet their thermosensing mechanisms other than transient receptor potential (TRP) channels remain poorly understood. We identify a trimeric G protein-coupled receptor (GPCR), SRH-40, which confers thermosensitivity in sensory neurons regulating temperature acclimatization in Caenorhabditis elegans. Systematic knockdown of 1000 GPCRs by RNAi reveals GPCRs involved in temperature acclimatization, among which srh-40 is highly expressed in the ADL sensory neuron, a temperature-responsive chemosensory neuron, where TRP channels act as accessorial thermoreceptors. In vivo Ca2+ imaging demonstrates that an srh-40 mutation reduced the temperature sensitivity of ADL, resulting in supranormal temperature acclimatization. Ectopically expressing SRH-40 in a non-warmth-sensing gustatory neuron confers temperature responses. Moreover, temperature-dependent SRH-40 activation is reconstituted in Drosophila S2R+ cells. Overall, SRH-40 may be involved in thermosensory signaling underlying temperature acclimatization. We propose a dual thermosensing machinery through a GPCR and TRP channels in a single sensory neuron.
Collapse
Affiliation(s)
- Kohei Ohnishi
- Graduate school of Natural Science, Konan University, Kobe, Hyogo, 658-8501, Japan
- Faculty of Science and Engineering, Konan University, Kobe, Hyogo, 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo, 658-8501, Japan
- Physiology and Biophysics, Graduate School of Biomedical and Health Sciences (Medical), Hiroshima University, Hiroshima, 734-8553, Japan
| | - Takaaki Sokabe
- Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan.
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.
- Department of Physiological Sciences, SOKENDAI, Okazaki, Aichi, 444-8787, Japan.
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| | - Toru Miura
- Faculty of Science and Engineering, Konan University, Kobe, Hyogo, 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo, 658-8501, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI, Okazaki, Aichi, 444-8787, Japan
| | - Akane Ohta
- Graduate school of Natural Science, Konan University, Kobe, Hyogo, 658-8501, Japan.
- Faculty of Science and Engineering, Konan University, Kobe, Hyogo, 658-8501, Japan.
- Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo, 658-8501, Japan.
| | - Atsushi Kuhara
- Graduate school of Natural Science, Konan University, Kobe, Hyogo, 658-8501, Japan.
- Faculty of Science and Engineering, Konan University, Kobe, Hyogo, 658-8501, Japan.
- Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo, 658-8501, Japan.
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
14
|
Kuhara A, Takagaki N, Okahata M, Ohta A. Cold Tolerance in the Nematode Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:33-46. [PMID: 39289272 DOI: 10.1007/978-981-97-4584-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Organisms receive environmental information and respond accordingly in order to survive and proliferate. Temperature is the environmental factor of most immediate importance, as exceeding its life-supporting range renders essential biochemical reactions impossible. In this chapter, we introduce the mechanisms underlying cold tolerance and temperature acclimation in a model organism-the nematode Caenorhabditis elegans, at molecular and physiological levels. Recent investigations utilizing molecular genetics and neural calcium imaging have unveiled a novel perspective on cold tolerance within the nematode worm. Notably, the ASJ neuron, previously known to possess photosensitive properties, has been found to sense temperature and regulate the sperm and gut cell-mediated pathway underlying cold tolerance. We will also explore C. elegans' cold tolerance and cold acclimation at the molecular and tissue levels.
Collapse
Affiliation(s)
- Atsushi Kuhara
- Faculty of Science and Engineering, Graduate School of Natural Science, Institute for Integrative Neurobiology, Konan University, Okamoto, Higashinada-ku, Kobe, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Natsune Takagaki
- Faculty of Science and Engineering, Graduate School of Natural Science, Institute for Integrative Neurobiology, Konan University, Okamoto, Higashinada-ku, Kobe, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Misaki Okahata
- Faculty of Science and Engineering, Graduate School of Natural Science, Institute for Integrative Neurobiology, Konan University, Okamoto, Higashinada-ku, Kobe, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Akane Ohta
- Faculty of Science and Engineering, Graduate School of Natural Science, Institute for Integrative Neurobiology, Konan University, Okamoto, Higashinada-ku, Kobe, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
15
|
Lahaise M, Boujenoui F, Beaudry F. Cannflavins isolated from Cannabis sativa impede Caenorhabditis elegans response to noxious heat. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:535-548. [PMID: 37480489 DOI: 10.1007/s00210-023-02621-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
Cannflavins, flavonoids abundantly present in Cannabis sativa, possess a distinct chemical structure comprising a vanillyl group. Notably, the capsaicin structure also contains a vanillyl group, which is considered essential for interacting with the vanilloid receptor. The vanilloid receptor plays a crucial role in the perception of pain, heat, and inflammation and mediates the analgesic effects of capsaicin. Therefore, we postulated that prolonged exposure to cannflavin A (Can A) and cannflavin B (Can B) would provoke vanilloid receptor desensitization and hinder nocifensive responses to noxious thermal stimuli. C. elegans wild-type (N2) and mutants were exposed to Can A and Can B solutions for 60 min and then aliquoted on Petri dishes divided into quadrants for thermal stimulation. We then determined the thermal avoidance index for each C. elegans experimental group. Proteomics was performed to identify proteins and pathways associated with Can A or B treatment. Prolonged exposure to Can A and Can B hindered heat avoidance (32-35 °C) in C. elegans. No antinociceptive effect was observed 6 h post Can A or B exposure. Proteomics and Reactome pathway enrichment analyses identified hierarchical differences between Can A- and B-treated nematodes. However, both treatments were related to eukaryotic translation initiation (R-CEL-72613) and metabolic processes strongly associated with pain development. Our study aids in characterizing the pharmacological activity of cannflavins isolated from Cannabis sativa and outlines a possible application as pain therapy.
Collapse
Affiliation(s)
- Mathilde Lahaise
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
- Département de Sciences Biologiques, Faculté Des Arts Et Des Sciences, Université de Montréal, Montréal, Québec, Canada
| | - Fatma Boujenoui
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
16
|
Huang Z, Sun Z, Liu J, Ju X, Xia H, Yang Y, Chen K, Wang Q. Insect transient receptor potential vanilloid channels as potential targets of insecticides. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 148:104899. [PMID: 37531974 DOI: 10.1016/j.dci.2023.104899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Chordotonal organs are miniature sensory organs present in insects. Chordotonal organs depend on transient receptor potential (TRP) channels. Transient receptor potential vanilloid (TRPV) channels are the only TRPs identified that can act as targets of insecticides. By binding with TRPV channels, insecticides targeting the chordotonal organs trigger the inflow of calcium ions, resulting in abnormal function of the chordotonal organ to achieve the goal of eliminating pests. TRPV channels are highly expressed in various developmental stages and tissue parts of insects and play an important role in the whole life history of insects. In this review, we will discuss the structure and types of TRPV channels as well as their genetic relationships in different species. We also systematically reviewed the recent progress of TRPV channels as insecticide targets, demonstrating that TRPV channels can be used as the target of new high-efficiency insecticides.
Collapse
Affiliation(s)
- Zengqing Huang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Zhonghe Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Jiayi Liu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Hengchuan Xia
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
17
|
Zhong G, Kroo L, Prakash M. Thermotaxis in an apolar, non-neuronal animal. J R Soc Interface 2023; 20:20230279. [PMID: 37700707 PMCID: PMC10498350 DOI: 10.1098/rsif.2023.0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
Neuronal circuits are hallmarks of complex decision-making processes in the animal world. How animals without neurons process information and respond to environmental cues promises a new window into studying precursors of neuronal control and origin of the nervous system as we know it today. Robust decision making in animals, such as in chemotaxis or thermotaxis, often requires internal symmetry breaking (such as anterior-posterior (AP) axis) provided naturally by a given body plan of an animal. Here we report the discovery of robust thermotaxis behaviour in Trichoplax adhaerens, an early-divergent, enigmatic animal with no anterior-posterior symmetry breaking (apolar) and no known neurons or muscles. We present a quantitative and robust behavioural response assay in Placozoa, which presents an apolar flat geometry. By exposing T. adhaerens to a thermal gradient under a long-term imaging set-up, we observe robust thermotaxis that occurs over timescale of hours, independent of any circadian rhythms. We quantify that T. adhaerens can detect thermal gradients of at least 0.1°C cm-1. Positive thermotaxis is observed for a range of baseline temperatures from 17°C to 22.5°C, and distributions of momentary speeds for both thermotaxis and control conditions are well described by single exponential fits. Interestingly, the organism does not maintain a fixed orientation while performing thermotaxis. Using natural diversity in size of adult organisms (100 µm to a few millimetres), we find no apparent size-dependence in thermotaxis behaviour across an order of magnitude of organism size. Several transient receptor potential (TRP) family homologues have been previously reported to be conserved in metazoans, including in T. adhaerens. We discover naringenin, a known TRPM3 antagonist, inhibits thermotaxis in T. adhaerens. The discovery of robust thermotaxis in T. adhaerens provides a tractable handle to interrogate information processing in a brainless animal. Understanding how divergent marine animals process thermal cues is also critical due to rapid temperature rise in our oceans.
Collapse
Affiliation(s)
- Grace Zhong
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Laurel Kroo
- Department of Mechanical engineering, Stanford University, Stanford, CA 94305, USA
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Le E, McCarthy T, Honer M, Curtin CE, Fingerut J, Nelson MD. The neuropeptide receptor npr-38 regulates avoidance and stress-induced sleep in Caenorhabditis elegans. Curr Biol 2023; 33:3155-3168.e9. [PMID: 37419114 DOI: 10.1016/j.cub.2023.06.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/19/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
Although essential and conserved, sleep is not without its challenges that must be overcome; most notably, it renders animals vulnerable to threats in the environment. Infection and injury increase sleep demand, which dampens sensory responsiveness to stimuli, including those responsible for the initial insult. Stress-induced sleep in Caenorhabditis elegans occurs in response to cellular damage following noxious exposures the animals attempted to avoid. Here, we describe a G-protein-coupled receptor (GPCR) encoded by npr-38, which is required for stress-related responses including avoidance, sleep, and arousal. Overexpression of npr-38 shortens the avoidance phase and causes animals to initiate movement quiescence and arouse early. npr-38 functions in the ADL sensory neurons, which express neuropeptides encoded by nlp-50, also required for movement quiescence. npr-38 regulates arousal by acting on the DVA and RIS interneurons. Our work demonstrates that this single GPCR regulates multiple aspects of the stress response by functioning in sensory and sleep interneurons.
Collapse
Affiliation(s)
- Emily Le
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Teagan McCarthy
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Madison Honer
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Caroline E Curtin
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Jonathan Fingerut
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Matthew D Nelson
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA.
| |
Collapse
|
19
|
Ohta A, Yamashiro S, Kuhara A. Temperature acclimation: Temperature shift induces system conversion to cold tolerance in C. elegans. Neurosci Res 2023:S0168-0102(23)00075-5. [PMID: 37086751 DOI: 10.1016/j.neures.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/24/2023]
Abstract
Acclimation to temperature is one of the survival strategies used by organisms to adapt to changing environmental temperatures. Caenorhabditis elegans' cold tolerance is altered by previous cultivation temperature, and similarly, past low-temperature induces a longer lifespan. Temperature is thought to cause a large shift in homeostasis, lipid metabolism, and reproduction in the organism because it is a direct physiological factor during chemical events. This paper will share and discuss what we know so far about the neural and molecular mechanisms that control cold tolerance and lifespan by altering lipid metabolism and physiological characteristics. We hope that this will contribute to a better understanding of how organisms respond to temperature changes.
Collapse
Affiliation(s)
- Akane Ohta
- Graduate School of Natural Science, Konan University, Kobe 658-8501, JAPAN; Faculty of Science and Engineering, Konan University, Kobe 658-8501, JAPAN; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, JAPAN; AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, JAPAN.
| | - Serina Yamashiro
- Graduate School of Natural Science, Konan University, Kobe 658-8501, JAPAN; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, JAPAN
| | - Atsushi Kuhara
- Graduate School of Natural Science, Konan University, Kobe 658-8501, JAPAN; Faculty of Science and Engineering, Konan University, Kobe 658-8501, JAPAN; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, JAPAN; AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, JAPAN.
| |
Collapse
|
20
|
Antinociceptive Activity of Vanilloids in Caenorhabditis elegans is Mediated by the Desensitization of the TRPV Channel OCR-2 and Specific Signal Transduction Pathways. Neurochem Res 2023; 48:1900-1911. [PMID: 36737562 DOI: 10.1007/s11064-023-03876-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Vanilloids, including capsaicin and eugenol, are ligands of transient receptor potential channel vanilloid subfamily member 1 (TRPV1). Prolonged treatment with vanilloids triggered the desensitization of TRPV1, leading to analgesic or antinociceptive effects. Caenorhabditis elegans (C. elegans) is a model organism expressing vanilloid receptor orthologs (e.g., OSM-9 and OCR-2) that are associated with behavioral and physiological processes, including sensory transduction. We have shown that capsaicin and eugenol hamper the nocifensive response to noxious heat in C. elegans. The objective of this study was to perform proteomics to identify proteins and pathways responsible for the induced phenotype and to identify capsaicin and eugenol targets using a thermal proteome profiling (TPP) strategy. The results indicated hierarchical differences following Reactome Pathway enrichment analyses between capsaicin- and eugenol-treated nematodes. However, both treated groups were associated mainly with signal transduction pathways, energy generation, biosynthesis and structural processes. Wnt signaling, a specific signal transduction pathway, is involved following treatment with both molecules. Wnt signaling pathway is noticeably associated with pain. The TPP results show that capsaicin and eugenol target OCR-2 but not OSM-9. Further protein-protein interaction (PPI) analyses showed other targets associated with enzymatic catalysis and calcium ion binding activity. The resulting data help to better understand the broad-spectrum pharmacological activity of vanilloids.
Collapse
|
21
|
Mobille Z, Follmann R, Vidal-Gadea A, Rosa E. Quantitative description of neuronal calcium dynamics in C. elegans' thermoreception. Biosystems 2023; 223:104814. [PMID: 36435352 DOI: 10.1016/j.biosystems.2022.104814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
The dynamical mechanisms underlying thermoreception in the nematode C. elegans are studied with a mathematical model for the amphid finger-like ciliated (AFD) neurons. The equations, equipped with Arrhenius temperature factors, account for the worm's thermotaxis when seeking environments at its cultivation temperature, and for the AFD's calcium dynamics when exposed to both linearly ramping and oscillatory temperature stimuli. Calculations of the peak time for calcium responses during simulations of pulse-like temperature inputs are consistent with known behavioral time scales of C. elegans.
Collapse
Affiliation(s)
- Zachary Mobille
- Department of Physics, Illinois State University, Normal, 61790, IL, USA; Department of Mathematics, Illinois State University, Normal, 61790, IL, USA.
| | - Rosangela Follmann
- School of Information Technology, Illinois State University, Normal, 61790, IL, USA.
| | - Andrés Vidal-Gadea
- School of Biological Sciences, Illinois State University, Normal, 61790, IL, USA.
| | - Epaminondas Rosa
- Department of Physics, Illinois State University, Normal, 61790, IL, USA; School of Biological Sciences, Illinois State University, Normal, 61790, IL, USA.
| |
Collapse
|
22
|
Hernandez-Cravero B, Gallino S, Florman J, Vranych C, Diaz P, Elgoyhen AB, Alkema MJ, de Mendoza D. Cannabinoids activate the insulin pathway to modulate mobilization of cholesterol in C. elegans. PLoS Genet 2022; 18:e1010346. [PMID: 36346800 PMCID: PMC9674138 DOI: 10.1371/journal.pgen.1010346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/18/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022] Open
Abstract
The nematode Caenorhabditis elegans requires exogenous cholesterol to survive and its depletion leads to early developmental arrest. Thus, tight regulation of cholesterol storage and distribution within the organism is critical. Previously, we demonstrated that the endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) plays a key role in C. elegans since it modulates sterol mobilization. However, the mechanism remains unknown. Here we show that mutations in the ocr-2 and osm-9 genes, coding for transient receptors potential V (TRPV) ion channels, dramatically reduce the effect of 2-AG in cholesterol mobilization. Through genetic analysis in combination with the rescue of larval arrest induced by sterol starvation, we found that the insulin/IGF-1signaling (IIS) pathway and UNC-31/CAPS, a calcium-activated regulator of neural dense-core vesicles release, are essential for 2-AG-mediated stimulation of cholesterol mobilization. These findings indicate that 2-AG-dependent cholesterol trafficking requires the release of insulin peptides and signaling through the DAF-2 insulin receptor. These results suggest that 2-AG acts as an endogenous modulator of TRPV signal transduction to control intracellular sterol trafficking through modulation of the IGF-1 signaling pathway
Collapse
Affiliation(s)
- Bruno Hernandez-Cravero
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sofia Gallino
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), CONICET, Buenos Aires, Argentina
| | - Jeremy Florman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Cecilia Vranych
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Philippe Diaz
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, United States of America
| | - Ana Belén Elgoyhen
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), CONICET, Buenos Aires, Argentina
| | - Mark J. Alkema
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Diego de Mendoza
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- * E-mail:
| |
Collapse
|
23
|
Quintin S, Aspert T, Ye T, Charvin G. Distinct mechanisms underlie H2O2 sensing in C. elegans head and tail. PLoS One 2022; 17:e0274226. [PMID: 36173997 PMCID: PMC9521893 DOI: 10.1371/journal.pone.0274226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/23/2022] [Indexed: 12/29/2022] Open
Abstract
Environmental oxidative stress threatens cellular integrity and should therefore be avoided by living organisms. Yet, relatively little is known about environmental oxidative stress perception. Here, using microfluidics, we showed that like I2 pharyngeal neurons, the tail phasmid PHA neurons function as oxidative stress sensing neurons in C. elegans, but display different responses to H2O2 and light. We uncovered that different but related receptors, GUR-3 and LITE-1, mediate H2O2 signaling in I2 and PHA neurons. Still, the peroxiredoxin PRDX-2 is essential for both, and might promote H2O2-mediated receptor activation. Our work demonstrates that C. elegans can sense a broad range of oxidative stressors using partially distinct H2O2 signaling pathways in head and tail sensillae, and paves the way for further understanding of how the integration of these inputs translates into the appropriate behavior.
Collapse
Affiliation(s)
- Sophie Quintin
- Department of Developmental Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Théo Aspert
- Department of Developmental Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Tao Ye
- Department of Developmental Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Gilles Charvin
- Department of Developmental Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| |
Collapse
|
24
|
Head-tail-head neural wiring underlies gut fat storage in Caenorhabditis elegans temperature acclimation. Proc Natl Acad Sci U S A 2022; 119:e2203121119. [PMID: 35914124 PMCID: PMC9371718 DOI: 10.1073/pnas.2203121119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Animals maintain the ability to survive and reproduce by acclimating to environmental temperatures. We showed here that Caenorhabditis elegans exhibited temperature acclimation plasticity, which was regulated by a head-tail-head neural circuitry coupled with gut fat storage. After experiencing cold, C. elegans individuals memorized the experience and were prepared against subsequent cold stimuli. The cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) regulated temperature acclimation in the ASJ thermosensory neurons and RMG head interneurons, where it modulated ASJ thermosensitivity in response to past cultivation temperature. The PVQ tail interneurons mediated the communication between ASJ and RMG via glutamatergic signaling. Temperature acclimation occurred via gut fat storage regulation by the triglyceride lipase ATGL-1, which was activated by a neuropeptide, FLP-7, downstream of CREB. Thus, a head-tail-head neural circuit coordinated with gut fat influenced experience-dependent temperature acclimation.
Collapse
|
25
|
Wang H, Montague HR, Hess HN, Zhang Y, Aguilar GL, Dunham RA, Butts IAE, Wang X. Transcriptome Analysis Reveals Key Gene Expression Changes in Blue Catfish Sperm in Response to Cryopreservation. Int J Mol Sci 2022; 23:ijms23147618. [PMID: 35886966 PMCID: PMC9316979 DOI: 10.3390/ijms23147618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
The hybrids of female channel catfish (Ictalurus punctatus) and male blue catfish (I. furcatus) account for >50% of US catfish production due to superior growth, feed conversion, and disease resistance compared to both parental species. However, these hybrids can rarely be naturally spawned. Sperm collection is a lethal procedure, and sperm samples are now cryopreserved for fertilization needs. Previous studies showed that variation in sperm quality causes variable embryo hatch rates, which is the limiting factor in hybrid catfish breeding. Biomarkers as indicators for sperm quality and reproductive success are currently lacking. To address this, we investigated expression changes caused by cryopreservation using transcriptome profiles of fresh and cryopreserved sperm. Sperm quality measurements revealed that cryopreservation significantly increased oxidative stress levels and DNA fragmentation, and reduced sperm kinematic parameters. The present RNA-seq study identified 849 upregulated genes after cryopreservation, including members of all five complexes in the mitochondrial electron transport chain, suggesting a boost in oxidative phosphorylation activities, which often lead to excessive production of reactive oxygen species (ROS) associated with cell death. Interestingly, functional enrichment analyses revealed compensatory changes in gene expression after cryopreservation to offset detrimental effects of ultra-cold storage: MnSOD was induced to control ROS production; chaperones and ubiquitin ligases were upregulated to correct misfolded proteins or direct them to degradation; negative regulators of apoptosis, amide biosynthesis, and cilium-related functions were also enriched. Our study provides insight into underlying molecular mechanisms of sperm cryoinjury and lays a foundation to further explore molecular biomarkers on cryo-survival and gamete quality.
Collapse
Affiliation(s)
- Haolong Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (H.W.); (Y.Z.)
- Alabama Agricultural Experiment Station, Auburn, AL 36849, USA; (H.R.M.); (H.N.H.); (G.L.A.); (R.A.D.)
| | - Helen R. Montague
- Alabama Agricultural Experiment Station, Auburn, AL 36849, USA; (H.R.M.); (H.N.H.); (G.L.A.); (R.A.D.)
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Hana N. Hess
- Alabama Agricultural Experiment Station, Auburn, AL 36849, USA; (H.R.M.); (H.N.H.); (G.L.A.); (R.A.D.)
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ying Zhang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (H.W.); (Y.Z.)
- Alabama Agricultural Experiment Station, Auburn, AL 36849, USA; (H.R.M.); (H.N.H.); (G.L.A.); (R.A.D.)
| | - Gavin L. Aguilar
- Alabama Agricultural Experiment Station, Auburn, AL 36849, USA; (H.R.M.); (H.N.H.); (G.L.A.); (R.A.D.)
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Rex A. Dunham
- Alabama Agricultural Experiment Station, Auburn, AL 36849, USA; (H.R.M.); (H.N.H.); (G.L.A.); (R.A.D.)
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ian A. E. Butts
- Alabama Agricultural Experiment Station, Auburn, AL 36849, USA; (H.R.M.); (H.N.H.); (G.L.A.); (R.A.D.)
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
- Correspondence: (I.A.E.B.); (X.W.); Tel.: +1-344-728-7745 (I.A.E.B.); +1-344-844-7511 (X.W.)
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (H.W.); (Y.Z.)
- Alabama Agricultural Experiment Station, Auburn, AL 36849, USA; (H.R.M.); (H.N.H.); (G.L.A.); (R.A.D.)
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
- Correspondence: (I.A.E.B.); (X.W.); Tel.: +1-344-728-7745 (I.A.E.B.); +1-344-844-7511 (X.W.)
| |
Collapse
|
26
|
Bao K, Liu W, Song Z, Feng J, Mao Z, Bao L, Sun T, Hu Z, Li J. Crotamiton derivative JM03 extends lifespan and improves oxidative and hypertonic stress resistance in Caenorhabditis elegans via inhibiting OSM-9. eLife 2022; 11:72410. [PMID: 35510610 PMCID: PMC9071264 DOI: 10.7554/elife.72410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 04/22/2022] [Indexed: 12/22/2022] Open
Abstract
While screening our in-house 1072 marketed drugs for their ability to extend the lifespan using Caenorhabditis elegans (C. elegans) as an animal model, crotamiton (N-ethyl-o-crotonotoluidide) showed anti-aging activity and was selected for further structural optimization. After replacing the ortho-methyl of crotamiton with ortho-fluoro, crotamiton derivative JM03 was obtained and showed better activity in terms of lifespan-extension and stress resistance than crotamiton. It was further explored that JM03 extended the lifespan of C. elegans through osmotic avoidance abnormal-9 (OSM-9). Besides, JM03 improves the ability of nematode to resist oxidative stress and hypertonic stress through OSM-9, but not osm-9/capsaicin receptor related-2 (OCR-2). Then the inhibition of OSM-9 by JM03 reduces the aggregation of Q35 in C. elegans via upregulating the genes associated with proteostasis. SKN-1 signaling was also found to be activated after JM03 treatment, which might contribute to proteostasis, stress resistance and lifespan extension. In summary, this study explored a new small molecule derived from crotamiton, which has efficient anti-oxidative, anti-hypertonic, and anti-aging effects, and could further lead to promising application prospects.
Collapse
Affiliation(s)
- Keting Bao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wenwen Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou, China
| | - Zhouzhi Song
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiali Feng
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhifan Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lingyuan Bao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Tianyue Sun
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zelan Hu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.,Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou, China.,Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan, College of Pharmacy, Dali University, Dali, China.,Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Glauser DA. Temperature sensing and context-dependent thermal behavior in nematodes. Curr Opin Neurobiol 2022; 73:102525. [DOI: 10.1016/j.conb.2022.102525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 01/09/2023]
|
28
|
OKAHATA M, MOTOMURA H, OHTA A, KUHARA A. Molecular physiology regulating cold tolerance and acclimation of Caenorhabditis elegans. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:126-139. [PMID: 35283408 PMCID: PMC8948419 DOI: 10.2183/pjab.98.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Many organisms can survive and proliferate in changing environmental temperatures. Here, we introduce a molecular physiological mechanism for cold tolerance and acclimation of the nematode Caenorhabditis elegans on the basis of previous reports and a new result. Three types of thermosensory neurons located in the head, ASJ, ASG, and ADL, regulate cold tolerance and acclimation. In ASJ, components of the light-signaling pathway are involved in thermosensation. In ASG, mechanoreceptor DEG-1 acts as thermoreceptor. In ADL, transient receptor potential channels are thermoreceptors; however, the presence of an additional unidentified thermoreceptor is also speculated. ADL thermoresponsivity is modulated by oxygen sensory signaling from URX oxygen sensory neurons via hub interneurons. ASJ releases insulin and steroid hormones that are received by the intestine, which results in lipid composition changing with cold tolerance. Additionally, the intestinal transcriptional alteration affects sperm functions, which in turn affects the thermosensitivity of ASJ; thus, the neuron-intestine-sperm-neuron tissue circuit is essential for cold tolerance.
Collapse
Affiliation(s)
- Misaki OKAHATA
- Graduate School of Natural Science, Konan University, Kobe, Hyogo, Japan
- Faculty of Science and Engineering, Konan University, Kobe, Hyogo, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo, Japan
| | - Haruka MOTOMURA
- Graduate School of Natural Science, Konan University, Kobe, Hyogo, Japan
- Faculty of Science and Engineering, Konan University, Kobe, Hyogo, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo, Japan
| | - Akane OHTA
- Graduate School of Natural Science, Konan University, Kobe, Hyogo, Japan
- Faculty of Science and Engineering, Konan University, Kobe, Hyogo, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo, Japan
| | - Atsushi KUHARA
- Graduate School of Natural Science, Konan University, Kobe, Hyogo, Japan
- Faculty of Science and Engineering, Konan University, Kobe, Hyogo, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo, Japan
- PRIME, AMED, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|