1
|
Sim H, Doh KY, Park Y, Song K, Kim GY, Son J, Lee D, Choi SY. Crystallographic Pathways to Tailoring Metal-Insulator Transition through Oxygen Transport in VO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402260. [PMID: 38982949 DOI: 10.1002/smll.202402260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/07/2024] [Indexed: 07/11/2024]
Abstract
The metal-insulator (MI) transition of vanadium dioxide (VO2) is effectively modulated by oxygen vacancies, which decrease the transition temperature and insulating resistance. Oxygen vacancies in thin films can be driven by oxygen transport using electrochemical potential. This study delves into the role of crystallographic channels in VO2 in facilitating oxygen transport and the subsequent tuning of electrical properties. A model system is designed with two types of VO2 thin films: (100)- and (001)-oriented, where channels align parallel and perpendicular to the surface, respectively. Growing an oxygen-deficient TiO2 layer on these VO2 films prompted oxygen transport from VO2 to TiO2. Notably, in (001)-VO2 film, where oxygen ions move along the open channels, the oxygen migration deepens the depleted region beyond that in (100)-VO2, leading to more pronounced changes in metal-insulator transition behaviors. The findings emphasize the importance of understanding the intrinsic crystal structure, such as channel pathways, in controlling ionic defects and customizing electrical properties for applications.
Collapse
Affiliation(s)
- Hyeji Sim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kyung-Yeon Doh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yunkyu Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kyung Song
- Materials Characterization Center, Korea Institute of Materials Science, Changwon, 51508, Republic of Korea
| | - Gi-Yeop Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junwoo Son
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Donghwa Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Si-Young Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Center of Van der Waals Quantum Solids, Institute for Basic Science (IBS) Pohang, Pohang, 37673, Republic of Korea
- Department of Semiconductor Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
2
|
Stone G, Shi Y, Jerry M, Stoica V, Paik H, Cai Z, Schlom DG, Engel-Herbert R, Datta S, Wen H, Chen LQ, Gopalan V. In-Operando Spatiotemporal Imaging of Coupled Film-Substrate Elastodynamics During an Insulator-to-Metal Transition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312673. [PMID: 38441355 DOI: 10.1002/adma.202312673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/31/2024] [Indexed: 03/19/2024]
Abstract
The drive toward non-von Neumann device architectures has led to an intense focus on insulator-to-metal (IMT) and the converse metal-to-insulator (MIT) transitions. Studies of electric field-driven IMT in the prototypical VO2 thin-film channel devices are largely focused on the electrical and elastic responses of the films, but the response of the corresponding TiO2 substrate is often overlooked, since it is nominally expected to be electrically passive and elastically rigid. Here, in-operando spatiotemporal imaging of the coupled elastodynamics using X-ray diffraction microscopy of a VO2 film channel device on TiO2 substrate reveals two new surprises. First, the film channel bulges during the IMT, the opposite of the expected shrinking in the film undergoing IMT. Second, a microns thick proximal layer in the substrate also coherently bulges accompanying the IMT in the film, which is completely unexpected. Phase-field simulations of coupled IMT, oxygen vacancy electronic dynamics, and electronic carrier diffusion incorporating thermal and strain effects suggest that the observed elastodynamics can be explained by the known naturally occurring oxygen vacancies that rapidly ionize (and deionize) in concert with the IMT (MIT). Fast electrical-triggering of the IMT via ionizing defects and an active "IMT-like" substrate layer are critical aspects to consider in device applications.
Collapse
Affiliation(s)
- Greg Stone
- Department of Materials Science and Engineering and Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Yin Shi
- Department of Materials Science and Engineering and Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Matthew Jerry
- Department of Materials Science and Engineering and Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Vladimir Stoica
- Department of Materials Science and Engineering and Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Hanjong Paik
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Zhonghou Cai
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Darrell G Schlom
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Roman Engel-Herbert
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V, Hausvogteiplatz 5, 10117, Berlin, Germany
| | - Suman Datta
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Haidan Wen
- Materials Science Division and Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Long-Qing Chen
- Department of Materials Science and Engineering and Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Venkatraman Gopalan
- Department of Materials Science and Engineering and Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
3
|
Bidoul N, Roisin N, Flandre D. Tuning the Intrinsic Stochasticity of Resistive Switching in VO 2 Microresistors. NANO LETTERS 2024; 24:6201-6209. [PMID: 38757925 DOI: 10.1021/acs.nanolett.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Vanadium dioxide (VO2) microresistors exhibit resistive switching above a certain threshold voltage, allowing them to emulate neurons in neuromorphic systems. However, such devices present intrinsic cycle-to-cycle variations in their resistances and threshold voltages, which can be detrimental or beneficial, depending on their use. Here, we study this stochasticity in VO2 microresistors with various grain sizes and dimensions, through high-resolution electrical and optical measurements across numerous cycles. Our results highlight that the cycle-to-cycle variations in threshold voltage increase as the grain size becomes comparable to the device dimensions. We also present observations of multimodal threshold voltage distributions in the smaller-length resistors. To understand the underlying phenomenon, we investigate the relationship between the device insulating resistance and threshold voltage distributions, showing that these modes could correspond to distinct percolation paths and filaments. Our findings provide the first experimentally verified guidelines for designing VO2 devices with minimized/maximized stochasticity, depending on the targeted application.
Collapse
Affiliation(s)
- Noémie Bidoul
- Institute for Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), UCLouvain, Louvain-la-Neuve 1348, Belgium
| | - Nicolas Roisin
- Institute for Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), UCLouvain, Louvain-la-Neuve 1348, Belgium
| | - Denis Flandre
- Institute for Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), UCLouvain, Louvain-la-Neuve 1348, Belgium
| |
Collapse
|
4
|
Checa M, Fuhr AS, Sun C, Vasudevan R, Ziatdinov M, Ivanov I, Yun SJ, Xiao K, Sehirlioglu A, Kim Y, Sharma P, Kelley KP, Domingo N, Jesse S, Collins L. High-speed mapping of surface charge dynamics using sparse scanning Kelvin probe force microscopy. Nat Commun 2023; 14:7196. [PMID: 37938577 PMCID: PMC10632481 DOI: 10.1038/s41467-023-42583-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/15/2023] [Indexed: 11/09/2023] Open
Abstract
Unraveling local dynamic charge processes is vital for progress in diverse fields, from microelectronics to energy storage. This relies on the ability to map charge carrier motion across multiple length- and timescales and understanding how these processes interact with the inherent material heterogeneities. Towards addressing this challenge, we introduce high-speed sparse scanning Kelvin probe force microscopy, which combines sparse scanning and image reconstruction. This approach is shown to enable sub-second imaging (>3 frames per second) of nanoscale charge dynamics, representing several orders of magnitude improvement over traditional Kelvin probe force microscopy imaging rates. Bridging this improved spatiotemporal resolution with macroscale device measurements, we successfully visualize electrochemically mediated diffusion of mobile surface ions on a LaAlO3/SrTiO3 planar device. Such processes are known to impact band-alignment and charge-transfer dynamics at these heterointerfaces. Furthermore, we monitor the diffusion of oxygen vacancies at the single grain level in polycrystalline TiO2. Through temperature-dependent measurements, we identify a charge diffusion activation energy of 0.18 eV, in good agreement with previously reported values and confirmed by DFT calculations. Together, these findings highlight the effectiveness and versatility of our method in understanding ionic charge carrier motion in microelectronics or nanoscale material systems.
Collapse
Affiliation(s)
- Marti Checa
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Addis S Fuhr
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Changhyo Sun
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Rama Vasudevan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Maxim Ziatdinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37923, USA
| | - Ilia Ivanov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Seok Joon Yun
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Semiconductor, University of Ulsan, Ulsan, 44610, Korea
| | - Kai Xiao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Alp Sehirlioglu
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yunseok Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pankaj Sharma
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Kyle P Kelley
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Neus Domingo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Stephen Jesse
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Liam Collins
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
5
|
Mondal D, Mahapatra SR, Derrico AM, Rai RK, Paudel JR, Schlueter C, Gloskovskii A, Banerjee R, Hariki A, DeGroot FMF, Sarma DD, Narayan A, Nukala P, Gray AX, Aetukuri NPB. Modulation-doping a correlated electron insulator. Nat Commun 2023; 14:6210. [PMID: 37798279 PMCID: PMC10556139 DOI: 10.1038/s41467-023-41816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
Correlated electron materials (CEMs) host a rich variety of condensed matter phases. Vanadium dioxide (VO2) is a prototypical CEM with a temperature-dependent metal-to-insulator (MIT) transition with a concomitant crystal symmetry change. External control of MIT in VO2-especially without inducing structural changes-has been a long-standing challenge. In this work, we design and synthesize modulation-doped VO2-based thin film heterostructures that closely emulate a textbook example of filling control in a correlated electron insulator. Using a combination of charge transport, hard X-ray photoelectron spectroscopy, and structural characterization, we show that the insulating state can be doped to achieve carrier densities greater than 5 × 1021 cm-3 without inducing any measurable structural changes. We find that the MIT temperature (TMIT) continuously decreases with increasing carrier concentration. Remarkably, the insulating state is robust even at doping concentrations as high as ~0.2 e-/vanadium. Finally, our work reveals modulation-doping as a viable method for electronic control of phase transitions in correlated electron oxides with the potential for use in future devices based on electric-field controlled phase transitions.
Collapse
Affiliation(s)
- Debasish Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Smruti Rekha Mahapatra
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - Rajeev Kumar Rai
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Jay R Paudel
- Department of Physics, Temple University, Philadelphia, PA, USA
| | | | | | - Rajdeep Banerjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Atsushi Hariki
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Frank M F DeGroot
- Utrecht University, Inorganic Chemistry and Catalysis Group Universiteitsweg 99, Utrecht, The Netherlands
| | - D D Sarma
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Awadhesh Narayan
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Pavan Nukala
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Alexander X Gray
- Department of Physics, Temple University, Philadelphia, PA, USA.
| | - Naga Phani B Aetukuri
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India.
| |
Collapse
|
6
|
Long J, Chen X, Mao T, Xue S, Wang Y, Xu Y, Pi W, Lu J, Luo W, Xiong W. Laser Direct Writing of Sol-Gel-Derived Vacancy-Rich Functional Oxide Semiconductors. ACS NANO 2023. [PMID: 37216376 DOI: 10.1021/acsnano.2c12163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fabricating micro/nanostructures of oxide semiconductors with oxygen vacancies (OVs) is crucial for advancing miniaturized functional devices. However, traditional methods for the synthesis of semiconductor metal oxides (SMOs) with OVs usually involve thermal treatment, such as annealing or sintering, under anaerobic conditions. Herein, a multiphoton-induced femtosecond laser (fs) additive manufacturing method is reported for directly writing micropatterns with high resolution (∼1 μm) and abundant OVs in an atmospheric environment at room temperature (25 °C). The interdigitated functional devices fabricated by these micropatterns exhibit both photosensitivity and gas sensitivity. Additionally, this method can be applied to flexible and rigid substrates. The proposed method realizes the high-precision fabrication of SMOs with OVs, enabling the future heterogeneous integration of oxide semiconductors on various substrates, especially flexible substrates, for various device applications, such as soft and wearable electronics/optoelectronics.
Collapse
Affiliation(s)
- Jing Long
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xi Chen
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Tianli Mao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Songyan Xue
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Yingchen Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Yinuo Xu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Wenbo Pi
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Jinbo Lu
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Wei Luo
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Wei Xiong
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- Optics Valley Laboratory, Hubei 430074, People's Republic of China
| |
Collapse
|
7
|
Ichibha T, Saritas K, Krogel JT, Luo Y, Kent PRC, Reboredo FA. Existence of La-site antisite defects in [Formula: see text] ([Formula: see text], Fe, and Co) predicted with many-body diffusion quantum Monte Carlo. Sci Rep 2023; 13:6703. [PMID: 37185382 PMCID: PMC10130183 DOI: 10.1038/s41598-023-33578-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The properties of [Formula: see text] (M: 3d transition metal) perovskite crystals are significantly dependent on point defects, whether introduced accidentally or intentionally. The most studied defects in La-based perovskites are the oxygen vacancies and doping impurities on the La and M sites. Here, we identify that intrinsic antisite defects, the replacement of La by the transition metal, M, can be formed under M-rich and O-poor growth conditions, based on results of an accurate many-body ab initio approach. Our fixed-node diffusion Monte Carlo (FNDMC) calculations of [Formula: see text] ([Formula: see text], Fe, and Co) find that such antisite defects can have low formation energies and are magnetized. Complementary density functional theory (DFT)-based calculations show that Mn antisite defects in [Formula: see text] may cause the p-type electronic conductivity. These features could affect spintronics, redox catalysis, and other broad applications. Our bulk validation studies establish that FNDMC reproduces the antiferromagnetic state of [Formula: see text], whereas DFT with PBE (Perdew-Burke-Ernzerhof), SCAN (strongly constrained and appropriately normed), and the LDA+U (local density approximation with Coulomb U) functionals all favor ferromagnetic states, at variance with experiment.
Collapse
Affiliation(s)
- Tom Ichibha
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- School of Information Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa 923-1292 Japan
| | - Kayahan Saritas
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Jaron T. Krogel
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Ye Luo
- Computational Sciences Division, Argonne National Laboratory, Argonne, IL 60439 USA
| | - Paul R. C. Kent
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Fernando A. Reboredo
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
8
|
Kim JP, Kim SK, Park S, Kuk SH, Kim T, Kim BH, Ahn SH, Cho YH, Jeong Y, Choi SY, Kim S. Dielectric-Engineered High-Speed, Low-Power, Highly Reliable Charge Trap Flash-Based Synaptic Device for Neuromorphic Computing beyond Inference. NANO LETTERS 2023; 23:451-461. [PMID: 36637103 DOI: 10.1021/acs.nanolett.2c03453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The coming of the big-data era brought a need for power-efficient computing that cannot be realized in the Von Neumann architecture. Neuromorphic computing which is motivated by the human brain can greatly reduce power consumption through matrix multiplication, and a device that mimics a human synapse plays an important role. However, many synaptic devices suffer from limited linearity and symmetry without using incremental step pulse programming (ISPP). In this work, we demonstrated a charge-trap flash (CTF)-based synaptic transistor using trap-level engineered Al2O3/Ta2O5/Al2O3 gate stack for successful neuromorphic computing. This novel gate stack provided precise control of the conductance with more than 6 bits. We chose the appropriate bias for highly linear and symmetric modulation of conductance and realized it with very short (25 ns) identical pulses at low voltage, resulting in low power consumption and high reliability. Finally, we achieved high learning accuracy in the training of 60000 MNIST images.
Collapse
Affiliation(s)
- Joon Pyo Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Seong Kwang Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Seohak Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Song-Hyeon Kuk
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Taeyoon Kim
- Korea Institute of Science and Technology (KIST), Seoul02792, Republic of Korea
| | - Bong Ho Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Seong-Hun Ahn
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Yong-Hoon Cho
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - YeonJoo Jeong
- Korea Institute of Science and Technology (KIST), Seoul02792, Republic of Korea
| | - Sung-Yool Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Sanghyeon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| |
Collapse
|
9
|
Birkhölzer YA, Sotthewes K, Gauquelin N, Riekehr L, Jannis D, van der Minne E, Bu Y, Verbeeck J, Zandvliet HJW, Koster G, Rijnders G. High-Strain-Induced Local Modification of the Electronic Properties of VO 2 Thin Films. ACS APPLIED ELECTRONIC MATERIALS 2022; 4:6020-6028. [PMID: 36588623 PMCID: PMC9798830 DOI: 10.1021/acsaelm.2c01176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Vanadium dioxide (VO2) is a popular candidate for electronic and optical switching applications due to its well-known semiconductor-metal transition. Its study is notoriously challenging due to the interplay of long- and short-range elastic distortions, as well as the symmetry change and the electronic structure changes. The inherent coupling of lattice and electronic degrees of freedom opens the avenue toward mechanical actuation of single domains. In this work, we show that we can manipulate and monitor the reversible semiconductor-to-metal transition of VO2 while applying a controlled amount of mechanical pressure by a nanosized metallic probe using an atomic force microscope. At a critical pressure, we can reversibly actuate the phase transition with a large modulation of the conductivity. Direct tunneling through the VO2-metal contact is observed as the main charge carrier injection mechanism before and after the phase transition of VO2. The tunneling barrier is formed by a very thin but persistently insulating surface layer of the VO2. The necessary pressure to induce the transition decreases with temperature. In addition, we measured the phase coexistence line in a hitherto unexplored regime. Our study provides valuable information on pressure-induced electronic modifications of the VO2 properties, as well as on nanoscale metal-oxide contacts, which can help in the future design of oxide electronics.
Collapse
Affiliation(s)
- Yorick A. Birkhölzer
- MESA+
Institute of Nanotechnology, University
of Twente, P.O. Box 217, 7500AEEnschede, The Netherlands
| | - Kai Sotthewes
- MESA+
Institute of Nanotechnology, University
of Twente, P.O. Box 217, 7500AEEnschede, The Netherlands
| | - Nicolas Gauquelin
- Electron
Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Lars Riekehr
- Electron
Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Daen Jannis
- Electron
Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Emma van der Minne
- MESA+
Institute of Nanotechnology, University
of Twente, P.O. Box 217, 7500AEEnschede, The Netherlands
| | - Yibin Bu
- MESA+
Institute of Nanotechnology, University
of Twente, P.O. Box 217, 7500AEEnschede, The Netherlands
| | - Johan Verbeeck
- Electron
Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Harold J. W. Zandvliet
- MESA+
Institute of Nanotechnology, University
of Twente, P.O. Box 217, 7500AEEnschede, The Netherlands
| | - Gertjan Koster
- MESA+
Institute of Nanotechnology, University
of Twente, P.O. Box 217, 7500AEEnschede, The Netherlands
| | - Guus Rijnders
- MESA+
Institute of Nanotechnology, University
of Twente, P.O. Box 217, 7500AEEnschede, The Netherlands
| |
Collapse
|
10
|
Shan W, Luo W. Charge transfer and metal-insulator transition in (CrO 2) m/(TaO 2) nsuperlattices. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:385001. [PMID: 35835091 DOI: 10.1088/1361-648x/ac8133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Various interfacial emergent phenomena have been discovered in tunable nanoscale materials, especially in artificially designed epitaxial superlattices. In conjunction, the atomically fabricated superlattices have exhibited a plethora of exceptional properties compared to either bulk materials separately. Here, the (CrO2)m/(TaO2)nsuperlattices composed of two lattice-matched metallic metal oxides are constructed. With the help of first-principle density-functional theory calculations, a computational and theoretical study of (CrO2)m/(TaO2)nsuperlattices manifests the interfacial electronic properties in detail. The results suggest that emergent properties result from the charge transfer from the TaO2to CrO2layers. At two special ratios of1:1and1:2betweenmandn, the superlattices undergo metal-to-insulator transition. Additionally, the bands below the Fermi level become narrower with the increasing thickness of the CrO2and TaO2layers. The study reveals that the electronic reconstruction at the interface of two metallic materials can generate interesting physics, which points the direction for the manipulation of functionalities in artificial superlattices or heterostructures within a few atomic layers.
Collapse
Affiliation(s)
- Wanfei Shan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Weidong Luo
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|