1
|
Frandsen JR, Yuan Z, Bedi B, Prasla Z, Choi SR, Narayanasamy P, Sadikot RT. PGC-1α activation to enhance macrophage immune function in mycobacterial infections. PLoS One 2025; 20:e0310908. [PMID: 39913377 PMCID: PMC11801632 DOI: 10.1371/journal.pone.0310908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 09/09/2024] [Indexed: 02/09/2025] Open
Abstract
Nontuberculous Mycobacteria (NTM) are a heterogeneous group of environmental microorganisms with distinct human pathogenesis. Their incidence and prevalence are rising worldwide, due in part to elevated antimicrobial resistance which complicates treatment and potential successful outcomes. Although information exists on the clinical significance of NTMs, little is known about host immune response to infection. NTM infections alter macrophage mitochondrial capacity and decrease ATP production, efficient immune response, and bacterial clearance. Transcription factor peroxisome proliferator activated receptor (PPAR) γ coactivator-1α (PGC-1α) is a master regulator of mitochondrial biogenesis, influencing metabolism, mitochondrial pathways, and antioxidant response. Mitochondrial transcription factor A (TFAM) is a protein essential for mitochondrial DNA (mtDNA) genome stability, integrity, and metabolism. Both PGC-1α and TFAM regulate mitochondrial biogenesis and activity, and their disruption is linked to inflammatory signaling and altered macrophage function. We show that NTM causes macrophage mitochondrial damage and disrupted bioenergetics. Mechanistically we show that this is related to attenuation of expression of PGC-1α and TFAM in infected macrophages. Importantly, rescuing expression of PGC-1α and TFAM using pharmacologic approaches restored macrophage immune function. Our results suggest that pharmacologic approaches to enhance mitochondrial function provide a novel approach to target macrophage immune function and means to combat NTM infections.
Collapse
Affiliation(s)
- Joel R. Frandsen
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Zhihong Yuan
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Brahmchetna Bedi
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Zohra Prasla
- Pulmonology and Critical Care Department, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Seoung-Ryoung Choi
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ruxana T. Sadikot
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
2
|
Phan TYB, Jang B, Kang SK, Seo J, Kim SR, Kim KY, Koh YH. Amelioration of Toll-like Receptor-4 Signaling and Promotion of Mitochondrial Function by Mature Silkworm Extracts in Ex Vivo and in Vitro Macrophages. Nutrients 2024; 16:3932. [PMID: 39599718 PMCID: PMC11597681 DOI: 10.3390/nu16223932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES The unknown immune-enhancing effects of steamed mature silkworms (Bombyx mori L.), known as HongJam (HJ), were investigated. METHODS Supercritical fluid extracts from the White Jade variety of HJ (WJ-SCEs) were applied to in vitro RAW264.7 macrophages (RAWMs) and ex vivo bone marrow-derived macrophages (BMDMs). RESULTS WJ-SCE enhanced the proliferation and viability of both RAWMs and BMDMs. Supplementation with WJ-SCE significantly reduced the lipopolysaccharide (LPS)-induced expression of iNOS mRNA and protein, resulting in decreased nitric oxide (NO) production. Additionally, WJ-SCE lowered the mRNA and protein expression of COX-2 and reduced the levels of pro-inflammatory cytokines. The mitochondrial function, ATP levels, and reactive oxygen species levels in LPS-treated macrophages were restored following WJ-SCE treatment. WJ-SCE modulated LPS-Toll-like receptor-4 (TLR-4) signaling by reducing the levels of phosphorylated (p)-p38, p-ERK1/2, and p-p65. WJ-SCE also restored gene expression related to cytokines, chemokines, glucose transport, mitochondrial metabolism, and TLR-4 signaling, suggesting the inhibition of pro-inflammatory M1 macrophage polarization. Furthermore, WJ-SCE enhanced macrophage phagocytic and pinocytotic activity. CONCLUSIONS WJ-SCE demonstrated anti-inflammatory effects by inhibiting LPS-induced M1 polarization in both macrophage types, potentially suppressing chronic inflammation while enhancing phagocytosis and pinocytosis.
Collapse
Affiliation(s)
- Trinh Yen Binh Phan
- Department of Bio-Medical Gerontology, Hallym University, Chuncheon 24252, Republic of Korea;
| | - Byungki Jang
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Republic of Korea;
| | - Sang-Kuk Kang
- Division of Industrial Insects and Sericulture, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea; (S.-K.K.); (S.-R.K.); (K.-Y.K.)
| | - Jongbok Seo
- Korea Basic Science Institute Seoul Center, Seoul 02841, Republic of Korea;
| | - Seong-Ryul Kim
- Division of Industrial Insects and Sericulture, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea; (S.-K.K.); (S.-R.K.); (K.-Y.K.)
| | - Kee-Young Kim
- Division of Industrial Insects and Sericulture, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea; (S.-K.K.); (S.-R.K.); (K.-Y.K.)
| | - Young Ho Koh
- Department of Bio-Medical Gerontology, Hallym University, Chuncheon 24252, Republic of Korea;
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Republic of Korea;
| |
Collapse
|
3
|
Wallings RL, McFarland K, Staley HA, Neighbarger N, Schaake S, Brüggemann N, Zittel S, Usnich T, Klein C, Sammler EM, Tansey MG. The R1441C-Lrrk2 mutation induces myeloid immune cell exhaustion in an age- and sex-dependent manner in mice. Sci Transl Med 2024; 16:eadl1535. [PMID: 39504353 DOI: 10.1126/scitranslmed.adl1535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/19/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024]
Abstract
Age is the greatest risk factor for many neurodegenerative diseases, yet immune system aging, a contributor to neurodegeneration, is understudied. Genetic variation in the LRRK2 gene affects risk for both familial and sporadic Parkinson's disease (PD). The leucine-rich repeat kinase 2 (LRRK2) protein is implicated in peripheral immune cell signaling, but the effects of an aging immune system on LRRK2 function remain unclear. We analyzed peritoneal macrophages from R1441C-Lrrk2 knock-in mice and observed a biphasic, age-dependent effect of the R1441C-Lrrk2 mutation on peritoneal macrophage function. We report increases in antigen presentation, anti-inflammatory cytokine production, lysosomal activity, and pathogen uptake in peritoneal macrophages from young (2- to 3-month-old) female R1441C-Lrrk2 mice. Conversely, macrophages from aged (18- to 21-month-old) female R1441C-Lrrk2 mice exhibited decreased antigen presentation after inflammatory insult, decreased lysosomal function, and pathogen uptake, with a concomitant increase in DNA fragmentation in the presence of pathogens. This immune cell exhaustion phenotype was not observed in male R1441C-Lrrk2 mice and was driven by increased LRRK2 protein kinase activity. This phenotype was also observed in human peripheral myeloid cells, with monocyte-derived macrophages from patients with PD who had either the R1441C- or Y1699C-LRRK2 mutation exhibiting decreased pathogen uptake and increased PDL1 expression, consistent with immune cell exhaustion. Our findings that LRRK2 mutations conferred an immunological advantage at a young age but could predispose the carrier to age-acquired immune cell exhaustion have implications for the therapeutic development of LRRK2 inhibitors.
Collapse
Affiliation(s)
- Rebecca L Wallings
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Karen McFarland
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL, USA
- Department of Neurology and Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - Hannah A Staley
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL, USA
| | - Noelle Neighbarger
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL, USA
| | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatiana Usnich
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Klein
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Esther M Sammler
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Department of Neurology, School of Medicine, Ninewells Hospital, Ninewells Drive, Dundee DD1 9SY, UK
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Neurology and Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| |
Collapse
|
4
|
Cheng P, Gan R, Wang C, Xu Q, Norbu K, Zhou F, Kong S, Jia Z, Jiabu D, Feng X, Wang J. Comparative Evaluation of the Chemical Components and Anti-Inflammatory Potential of Yellow- and Blue-Flowered Meconopsis Species: M. integrifolia and M. betonicifolia. Metabolites 2024; 14:563. [PMID: 39452944 PMCID: PMC11509530 DOI: 10.3390/metabo14100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives:Meconopsis has long been used in traditional Tibetan medicine to treat various inflammatory and pain-related conditions. However, blue-flowered Meconopsis (M. betonicifolia) is becoming increasingly scarce due to overharvesting. As a potential alternative, yellow-flowered Meconopsis (M. integrifolia) shows promise but requires comprehensive characterization. This study aimed to evaluate and compare the anti-inflammatory potential of yellow- and blue-flowered Meconopsis species. Methods: Liquid chromatography-mass spectrometry (LC-MS) techniques were used to analyze the chemical profiles of yellow- and blue-flowered Meconopsis. Putative targets of shared constituents were subjected to GO and disease enrichment analysis. The LPS-induced RAW264.7 macrophage model was employed to assess anti-inflammatory effects. Metabolomics was applied to gain mechanistic insights. Results: LC-MS revealed over 70% chemical similarity between species. Enrichment analysis associated targets with inflammation-related pathways. In macrophage assays, both species demonstrated dose-dependent antioxidative and anti-inflammatory activities, with yellow Meconopsis exhibiting superior efficacy. Metabolomics showed modulation of key inflammatory metabolic pathways. Conclusions: This integrative study validated yellow-flowered Meconopsis as a credible alternative to its blue-flowered counterpart for anti-inflammatory applications. Metabolic profiling provided initial clues regarding their multi-targeted modes of action, highlighting their potential for sustainable utilization and biodiversity conservation.
Collapse
Affiliation(s)
- Peizhao Cheng
- Center of Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China; (P.C.); (R.G.); (C.W.); (Q.X.)
| | - Ruixi Gan
- Center of Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China; (P.C.); (R.G.); (C.W.); (Q.X.)
| | - Cong Wang
- Center of Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China; (P.C.); (R.G.); (C.W.); (Q.X.)
| | - Qian Xu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China; (P.C.); (R.G.); (C.W.); (Q.X.)
| | - Kelsang Norbu
- Tibet Ganlu Tibetan Medicine Co., Ltd., Lhasa 851400, China;
- Tibet Ganlu Pharmaceutical Technology Co., Ltd., Lhasa 851400, China; (F.Z.); (Z.J.); (D.J.)
| | - Feng Zhou
- Tibet Ganlu Pharmaceutical Technology Co., Ltd., Lhasa 851400, China; (F.Z.); (Z.J.); (D.J.)
| | - Sixin Kong
- Shiningherb (Beijing) International Bio-Tech Co., Ltd., Beijing 100073, China;
| | - Zhuoma Jia
- Tibet Ganlu Pharmaceutical Technology Co., Ltd., Lhasa 851400, China; (F.Z.); (Z.J.); (D.J.)
| | - Dawa Jiabu
- Tibet Ganlu Pharmaceutical Technology Co., Ltd., Lhasa 851400, China; (F.Z.); (Z.J.); (D.J.)
| | - Xin Feng
- Tibetan Medicine Institute, China Tibetan Research Center, Beijing 100101, China
| | - Junsong Wang
- Center of Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China; (P.C.); (R.G.); (C.W.); (Q.X.)
| |
Collapse
|
5
|
Vassileff N, Spiers JG, Juliani J, Lowe RGT, Datta KK, Hill AF. Acute neuroinflammation promotes a metabolic shift that alters extracellular vesicle cargo in the mouse brain cortex. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e165. [PMID: 38947878 PMCID: PMC11212288 DOI: 10.1002/jex2.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/13/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Neuroinflammation is initiated through microglial activation and cytokine release which can be induced through lipopolysaccharide treatment (LPS) leading to a transcriptional cascade culminating in the differential expression of target proteins. These differentially expressed proteins can then be packaged into extracellular vesicles (EVs), a form of cellular communication, further propagating the neuroinflammatory response over long distances. Despite this, the EV proteome in the brain, following LPS treatment, has not been investigated. Brain tissue and brain derived EVs (BDEVs) isolated from the cortex of LPS-treated mice underwent thorough characterisation to meet the minimal information for studies of extracellular vesicles guidelines before undergoing mass spectrometry analysis to identify the differentially expressed proteins. Fourteen differentially expressed proteins were identified in the LPS brain tissue samples compared to the controls and 57 were identified in the BDEVs isolated from the LPS treated mice compared to the controls. This included proteins associated with the initiation of the inflammatory response, epigenetic regulation, and metabolism. These results allude to a potential link between small EV cargo and early inflammatory signalling.
Collapse
Affiliation(s)
- Natasha Vassileff
- The Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Clear Vision Research, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityActonAustralian Capital TerritoryAustralia
- School of Medicine and Psychology, College of Health and MedicineThe Australian National UniversityActonAustralian Capital TerritoryAustralia
| | - Jereme G. Spiers
- The Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Clear Vision Research, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityActonAustralian Capital TerritoryAustralia
- School of Medicine and Psychology, College of Health and MedicineThe Australian National UniversityActonAustralian Capital TerritoryAustralia
| | - Juliani Juliani
- The Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
| | - Rohan G. T. Lowe
- La Trobe University Proteomics and Metabolomics PlatformLa Trobe UniversityBundooraVictoriaAustralia
| | - Keshava K. Datta
- La Trobe University Proteomics and Metabolomics PlatformLa Trobe UniversityBundooraVictoriaAustralia
| | - Andrew F. Hill
- The Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Institute for Health and SportVictoria UniversityFootscrayVictoriaAustralia
| |
Collapse
|
6
|
Lin H, Deng H, Jiang Z, Hua P, Hu S, Ao H, Zhong M, Liu M, Guo G. Microarray analysis of tRNA-derived small RNA (tsRNA) in LPS-challenged macrophages treated with metformin. Gene 2024; 913:148399. [PMID: 38518902 DOI: 10.1016/j.gene.2024.148399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Metformin, a widely used anti-diabetic drug, has demonstrated its efficacy in addressing various inflammatory conditions. tRNA-derived small RNA (tsRNA), a novel type of small non-coding RNA, exhibits diverse regulatory functions and holds promise as both a diagnostic biomarker and a therapeutic target for various diseases. The purpose of this study is to investigate whether the abundance of tsRNAs changed in LPS versus LPS + metformin-treated cells, utilizing microarray technology. Firstly, we established an in vitro lipopolysaccharide (LPS)-induced inflammation model using RAW264.7 macrophages and assessed the protective effects of metformin against inflammatory damage. Subsequently, we extracted total RNA from both LPS-treated and metformin + LPS-treated cell samples for microarray analysis to identify differentially abundant tsRNAs (DA-tsRNAs). Furthermore, we conducted bioinformatics analysis to predict target genes for validated DA-tsRNAs and explore the biological functions and signaling pathways associated with DA-tsRNAs. Notably, metformin was found to inhibit the inflammatory response in RAW264.7 macrophages. The microarray results revealed a total of 247 DA-tsRNAs, with 58 upregulated and 189 downregulated tsRNAs in the Met + LPS group compared to the LPS group. The tsRNA-mRNA network was visualized, shedding light on potential interactions. The results of bioinformatics analysis suggested that these potential targets of specific tsRNAs were mainly related to inflammation and immunity. Our study provides compelling evidence that metformin exerts anti-inflammatory effects and modulates the abundance of tsRNAs in LPS-treated RAW264.7 macrophages. These findings establish a valuable foundation for using tsRNAs as potential biomarkers for metformin in the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Huan Lin
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongao Deng
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhengying Jiang
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Peng Hua
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shiqiang Hu
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and Engineering, East China Jiaotong University, Nanchang, China
| | - Meiling Zhong
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, China
| | - Mingzhuo Liu
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Guanghua Guo
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
7
|
Jacques C, Marchand F, Chatelais M, Floris I. Actives from the Micro-Immunotherapy Medicine 2LMIREG ® Reduce the Expression of Cytokines and Immune-Related Markers Including Interleukin-2 and HLA-II While Modulating Oxidative Stress and Mitochondrial Function. J Inflamm Res 2024; 17:1161-1181. [PMID: 38406323 PMCID: PMC10894519 DOI: 10.2147/jir.s445053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Micro-immunotherapy (MI) is a therapeutic option employing low doses (LD) and ultra-low doses (ULD) of cytokines and immune factors to help the organism at modulating the immune responses. In an overpowering inflammatory context, this strategy may support the restoration of the body's homeostasis, as the active ingredients of MI medicines' (MIM) could boost or slow down the physiological functions of the immune cells. The aim of the study is to evaluate for the first time the in vitro anti-inflammatory properties of some actives employed by the MIM of interest in several human immune cell models. Methods In the first part of the study, the effects of the actives from the MIM of interest were assessed from a molecular standpoint: the expression of HLA-II, interleukin (IL)-2, and the secretion of several other cytokines were evaluated. In addition, as mitochondrial metabolism is also involved in the inflammatory processes, the second part of the study aimed at assessing the effects of these actives on the mitochondrial reactive oxygen species (ROS) production and on the mitochondrial membrane potential. Results We showed that the tested actives decreased the expression of HLA-DR and HLA-DP in IFN-γ-stimulated endothelial cells and in LPS-treated-M1-macrophages. The tested MIM slightly reduced the intracellular expression of IL-2 in CD4+ and CD8+ T-cells isolated from PMA/Iono-stimulated human PBMCs. Additionally, while the secretion of IL-2, IL-10, and IFN-γ was diminished, the treatment increased IL-6, IL-9, and IL-17A, which may correspond to a "Th17-like" secretory pattern. Interestingly, in PMA/Iono-treated PBMCs, we reported that the treatment reduced the ROS production in B-cells. Finally, in PMA/Iono-treated human macrophages, we showed that the treatment slightly protected the cells from early cell death/apoptosis. Discussion Overall, these results provide data about the molecular and functional anti-inflammatory effects of several actives contained in the tested MIM in immune-related cells, and their impact on two mitochondria-related processes.
Collapse
Affiliation(s)
- Camille Jacques
- Preclinical Research Department, Labo’Life France, Pescalis-Les Magnys, Moncoutant-sur-Sevre, 79320, France
| | | | | | - Ilaria Floris
- Preclinical Research Department, Labo’Life France, Pescalis-Les Magnys, Moncoutant-sur-Sevre, 79320, France
| |
Collapse
|
8
|
Raghul Kannan S, Tamizhselvi R. N-acetyltransferase and inflammation: Bridging an unexplored niche. Gene 2023; 887:147730. [PMID: 37625560 DOI: 10.1016/j.gene.2023.147730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Protein N-terminal (Nt) acetylation is an essential post-translational process catalysed by N-acetyltransferases or N-terminal acetyltransferases (NATs). Over the past several decades, several types of NATs (NatA- NatH) have been identified along with their substrates, explaining their significance in eukaryotes. It affects protein stability, protein degradation, protein translocation, and protein-protein interaction. NATs have recently drawn attention as they are associated with the pathogenesis of human diseases. In particular, NAT-induced epigenetic modifications play an important role in the control of mitochondrial function, which may lead to inflammatory diseases. NatC knockdown causes a marked reduction in mitochondrial membrane proteins, impairing their functions, and NatA affects mitophagy via reduced phosphorylation and transcription of the autophagy receptor. However, the NAT-mediated mitochondrial epigenetic mechanisms involved in the inflammatory process remain unexplored. The current review will impart an overview of the biological functions and aberrations of various NAT, which may provide a novel therapeutic strategy for inflammatory disorders.
Collapse
Affiliation(s)
- Sampath Raghul Kannan
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Ramasamy Tamizhselvi
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
9
|
Chu S, Fei B, Yu M. Molecular Mechanism of Circ_0088300-BOLL Interaction Regulating Mitochondrial Metabolic Reprogramming and Involved in Gastric Cancer Growth and Metastasis. J Proteome Res 2023; 22:3793-3810. [PMID: 37953520 DOI: 10.1021/acs.jproteome.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
This study aims to investigate the effect and molecular mechanism of the interaction between circRNA circ_0088300 and the RNA binding protein (RBP) BOLL on the growth and metastasis of gastric cancer. A prognostic risk model was established by screening differentially expressed RBP genes from the TCGA database, and BOLL was identified as a critical RBP. Gene Set Enrichment analysis (GSEA) showed that BOLL was associated with mitochondrial function. The upregulation fold change of circ_0088300 was the highest in the GSE93541 data set, and the RPISeq database confirmed its binding relationship with BOLL. In vitro experiments showed that BOLL regulates mitochondrial metabolism and cancer cell function and circ_0088300 upregulates the expression level of BOLL. In vivo experiments demonstrated that knocking down circ_0088300 can inhibit tumor growth and metastasis, whereas overexpression of BOLL can reverse this effect. In conclusion, we have reached a preliminary conclusion that upregulation of BOLL by circ_0088300 promotes gastric cancer growth and metastasis by promoting mitochondrial metabolic reprogramming.
Collapse
Affiliation(s)
- Songtao Chu
- Department of Forensic Medicine of Basic Medical College, Beihua University, Jilin 132013, P.R. China
| | - Bingyuan Fei
- Department of Gastrointestinal Colorectal and Anal. Surgery, the Third Bethune Hospital of Jilin University, Changchun 130000, Jilin Province, P.R. China
| | - Miao Yu
- Department of Gastrointestinal Colorectal and Anal. Surgery, the Third Bethune Hospital of Jilin University, Changchun 130000, Jilin Province, P.R. China
| |
Collapse
|
10
|
Kapoor S, Padwad YS. Phloretin suppresses intestinal inflammation and maintained epithelial tight junction integrity by modulating cytokines secretion in in vitro model of gut inflammation. Cell Immunol 2023; 391-392:104754. [PMID: 37506521 DOI: 10.1016/j.cellimm.2023.104754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Ulcerative colitis is a type of inflammatory bowel disease which in long run can lead to colorectal cancer (CRC). Chronic inflammation can be a key factor for the occurrence of CRC thus mitigating an inflammation can be a preventive strategy for the occurrence of CRC. In this study we have explored the anti-inflammatory potential of phloretin, in in vitro gut inflammation model, developed by co-culture of Caco2 (intestinal epithelial) cells and RAW264.7 macrophages (immune cells). Phloretin is a dihydrochalcone present in apple, pear and strawberries. An anti-inflammatory effect of phloretin in reducing LPS induced inflammation and maintenance of transepithelial electric resistance (TEER) in Caco2 cells was examined. Paracellular permeability assay was performed using Lucifer yellow dye to evaluate the effect of phloretin in inhibiting gut leakiness caused by inflammatory mediators secreted by activated macrophages. Phloretin attenuated LPS induced nitric oxide levels, oxidative stress, depolarization of mitochondrial membrane potential in Caco2 cells as evidenced by reduction in reactive oxygen species (ROS), and enhancement of MMP, and decrease in inflammatory cytokines IL8, TNFα, IL1β and IL6. It exhibited anti-inflammatory activity by inhibiting the expression of NFκB, iNOS and Cox2. Phloretin maintained the epithelial integrity by regulating the expression of tight junction proteins ZO1, occludin, Claudin1 and JAM. Phloretin reduced LPS induced levels of Cox2 along with the reduction in Src expression which further regulated an expression of tight junction protein occludin. Phloretin in combination to sodium pyruvate exhibited potential anti-inflammatory activity via targeting NFkB signaling. Our findings paved a way to position phloretin as nutraceutical in preventing the occurrence of colitis and culmination of disease into colitis associated colorectal cancer.
Collapse
Affiliation(s)
- Smita Kapoor
- Pharmacology and Toxicology Lab, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yogendra S Padwad
- Pharmacology and Toxicology Lab, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
Mohanta O, Ray A, Jena S, Sahoo A, Panda SS, Das PK, Nayak S, Panda PC. Mesosphaerum suaveolens Essential Oil Attenuates Inflammatory Response and Oxidative Stress in LPS-Stimulated RAW 264.7 Macrophages by Regulating NF-κB Signaling Pathway. Molecules 2023; 28:5817. [PMID: 37570786 PMCID: PMC10420984 DOI: 10.3390/molecules28155817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Mesosphaerum suaveolens (L.) Kuntze (Syn. Hyptis suaveolens (L.) Poit.) is a wild essential-oil-bearing plant having multiple uses in traditional medicine, perfumery, food, agriculture, and pharmaceutical industries. The present paper is the first report on the in vitro anti-inflammatory effects of the leaf essential oil of M. suaveolens (MSLEO) and unravels its molecular mechanism in LPS-stimulated RAW 264.7 macrophage cells. GC-MS analysis of the essential oil (EO) isolated from the leaves by hydro-distillation led to the identification of 48 constituents, accounting for 90.55% of the total oil, and β-caryophyllene (16.17%), phyllocladene (11.85%), abietatriene (11.46%), and spathulenol (7.89%) were found to be the major components. MSLEO treatment had no effect on the viability of RAW 264.7 cells up to a concentration of 100 μg/mL, and the EO was responsible for a reduction in proinflammatory cytokines like IL-6, IL-1β, and TNF-α, a decrease in intracellular ROS production, and the restoration of oxidative damage by elevating the levels of endogenous antioxidative enzymes like CAT, SOD, GPx, and GSH. RT-qPCR analysis indicated that MSLEO reduced the mRNA expression levels of iNOS and COX-2 as compared to the LPS-induced group. In addition, a confocal microscopy analysis showed that MSLEO inhibited the translocation of NF-κB from the cytosol to the nucleus. The results of this experiment demonstrate that MSLEO possesses significant anti-inflammatory potential by preventing the activation of NF-κB, which, in turn, inhibits the downstream expression of other inflammatory mediators associated with the activation of the NF-κB pathway in LPS-induced RAW 264.7 cells. Thus, the leaf essential oil of M. suaveolens may prove to be a promising therapeutic agent for the treatment of inflammation, and targeting the NF-κB signaling pathway may be considered as an attractive approach for anti-inflammatory therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pratap Chandra Panda
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar 751003, India
| |
Collapse
|
12
|
Myakala K, Wang XX, Shults NV, Krawczyk E, Jones BA, Yang X, Rosenberg AZ, Ginley B, Sarder P, Brodsky L, Jang Y, Na CH, Qi Y, Zhang X, Guha U, Wu C, Bansal S, Ma J, Cheema A, Albanese C, Hirschey MD, Yoshida T, Kopp JB, Panov J, Levi M. NAD metabolism modulates inflammation and mitochondria function in diabetic kidney disease. J Biol Chem 2023; 299:104975. [PMID: 37429506 PMCID: PMC10413283 DOI: 10.1016/j.jbc.2023.104975] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023] Open
Abstract
Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients with diabetes, there remains a need for additional therapeutic targets and therapies in diabetic kidney disease (DKD). Inflammation and oxidative stress are increasingly recognized as important causes of renal diseases. Inflammation is closely associated with mitochondrial damage. The molecular connection between inflammation and mitochondrial metabolism remains to be elucidated. Recently, nicotinamide adenine nucleotide (NAD+) metabolism has been found to regulate immune function and inflammation. In the present studies, we tested the hypothesis that enhancing NAD metabolism could prevent inflammation in and progression of DKD. We found that treatment of db/db mice with type 2 diabetes with nicotinamide riboside (NR) prevented several manifestations of kidney dysfunction (i.e., albuminuria, increased urinary kidney injury marker-1 (KIM1) excretion, and pathologic changes). These effects were associated with decreased inflammation, at least in part via inhibiting the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway. An antagonist of the serum stimulator of interferon genes (STING) and whole-body STING deletion in diabetic mice showed similar renoprotection. Further analysis found that NR increased SIRT3 activity and improved mitochondrial function, which led to decreased mitochondrial DNA damage, a trigger for mitochondrial DNA leakage which activates the cGAS-STING pathway. Overall, these data show that NR supplementation boosted NAD metabolism to augment mitochondrial function, reducing inflammation and thereby preventing the progression of diabetic kidney disease.
Collapse
Affiliation(s)
- Komuraiah Myakala
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| | - Xiaoxin X Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA.
| | - Nataliia V Shults
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| | - Ewa Krawczyk
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| | - Bryce A Jones
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia, USA
| | - Xiaoping Yang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Brandon Ginley
- Departments of Pathology and Anatomical Sciences, SUNY, Buffalo, New York, USA
| | - Pinaki Sarder
- Department of Medicine-Quantitative Health, Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, USA
| | - Leonid Brodsky
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
| | - Yura Jang
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yue Qi
- Thoracic and GI Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xu Zhang
- Thoracic and GI Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington District of Columbia, USA
| | - Shivani Bansal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington District of Columbia, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington District of Columbia, USA
| | - Amrita Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington District of Columbia, USA
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington District of Columbia, USA
| | - Matthew D Hirschey
- Division of Endocrinology, Metabolism, and Nutrition, and Pharmacology and Cancer Biology, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Teruhiko Yoshida
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Julia Panov
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA.
| |
Collapse
|
13
|
Teissier V, Gao Q, Shen H, Li J, Li X, Huang EE, Kushioka J, Toya M, Tsubosaka M, Hirata H, Alizadeh HV, Maduka CV, Contag CH, Yang YP, Zhang N, Goodman SB. Metabolic profile of mesenchymal stromal cells and macrophages in the presence of polyethylene particles in a 3D model. Stem Cell Res Ther 2023; 14:99. [PMID: 37085909 PMCID: PMC10122387 DOI: 10.1186/s13287-023-03260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/23/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Continuous cross talk between MSCs and macrophages is integral to acute and chronic inflammation resulting from contaminated polyethylene particles (cPE); however, the effect of this inflammatory microenvironment on mitochondrial metabolism has not been fully elucidated. We hypothesized that (a) exposure to cPE leads to impaired mitochondrial metabolism and glycolytic reprogramming and (b) macrophages play a key role in this pathway. METHODS We cultured MSCs with/without uncommitted M0 macrophages, with/without cPE in 3-dimensional gelatin methacrylate (3D GelMA) constructs/scaffolds. We evaluated mitochondrial function (membrane potential and reactive oxygen species-ROS production), metabolic pathways for adenosine triphosphate (ATP) production (glycolysis or oxidative phosphorylation) and response to stress mechanisms. We also studied macrophage polarization toward the pro-inflammatory M1 or the anti-inflammatory M2 phenotype and the osteogenic differentiation of MSCs. RESULTS Exposure to cPE impaired mitochondrial metabolism of MSCs; addition of M0 macrophages restored healthy mitochondrial function. Macrophages exposed to cPE-induced glycolytic reprogramming, but also initiated a response to this stress to restore mitochondrial biogenesis and homeostatic oxidative phosphorylation. Uncommitted M0 macrophages in coculture with MSC polarized to both M1 and M2 phenotypes. Osteogenesis was comparable among groups after 21 days. CONCLUSION This work confirmed that cPE exposure triggers impaired mitochondrial metabolism and glycolytic reprogramming in a 3D coculture model of MSCs and macrophages and demonstrated that macrophages cocultured with MSCs undergo metabolic changes to maintain energy production and restore homeostatic metabolism.
Collapse
Affiliation(s)
- Victoria Teissier
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Biomedical Innovations Building, Orthopaedic Research Laboratories 0200, 240 Pasteur Drive, Palo Alto, CA, 94304, USA.
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jiannan Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Elijah Ejun Huang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hossein Vahid Alizadeh
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Chima V Maduka
- Institute for Quantitative Health Science and Engineering, Departments of Biomedical Engineering and Microbiology and Molecular Genetics, Michigan State University, Michigan, USA
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering, Departments of Biomedical Engineering and Microbiology and Molecular Genetics, Michigan State University, Michigan, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Material Science and Engineering, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- , Redwood City, USA.
| |
Collapse
|
14
|
Thankam FG, La V, Agrawal DK. Single-cell genomics illustrates heterogeneous phenotypes of myocardial fibroblasts under ischemic insults. Biochem Cell Biol 2023; 101:12-51. [PMID: 36458696 DOI: 10.1139/bcb-2022-0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myocardial regenerative strategies are promising where the choice of ideal cell population is crucial for successful translational applications. Herein, we explored the regenerative/repair responses of infarct zone cardiac fibroblast(s) (CF) by unveiling their phenotype heterogeneity at single-cell resolution. CF were isolated from the infarct zone of Yucatan miniswine that suffered myocardial infarction, cultured under simulated ischemic and reperfusion, and grouped into control, ischemia, and ischemia/reperfusion. The single-cell RNA sequencing analysis revealed 19 unique cell clusters suggesting distinct subpopulations. The status of gene expression (log2 fold change (log2 FC) > 2 and log2 FC < -2) was used to define the characteristics of each cluster unveiling with diverse features, including the pro-survival/cardioprotective (Clusters 1, 3, 5, 9, and 18), vasculoprotective (Clusters 2 and 5), anti-inflammatory (Clusters 4 and 17), proliferative (Clusters 4 and 5), nonproliferative (Clusters 6, 8, 11, 16, 17, and 18), proinflammatory (Cluster 6), profibrotic/pathologic (Clusters 8 and 19), antihypertrophic (Clusters 8 and 10), extracellular matrix restorative (Clusters 9 and 12), angiogenic (Cluster 16), and normal (Clusters 7 and 15) phenotypes. Further understanding of these unique phenotypes of CF will provide significant translational opportunities for myocardial regeneration and cardiac management.
Collapse
Affiliation(s)
- Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vy La
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
15
|
Wang X, Chen S, Qin Y, Wang H, Liang Z, Zhao Y, Zhou L, Martyniuk CJ. Metabolomic responses in livers of female and male zebrafish (Danio rerio) following prolonged exposure to environmental levels of zinc oxide nanoparticles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106333. [PMID: 36368229 DOI: 10.1016/j.aquatox.2022.106333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Zinc oxide nanoparticles (ZnONPs) are widespread pollutants that are present in diverse environmental samples. Here, we determined metabolomic and bioenergetic responses in the liver of female and male zebrafish exposed to a prolonged environmentally relevant concentration of ZnONPs. Metabolome analysis revealed that exposure to 500 μg/L ZnONPs reduced the abundance of metabolites in the tricarboxylic acid (TCA) cycle by modulating the activities of rate-limiting enzymes α-ketoglutarate dehydrogenase and isocitrate dehydrogenase. Moreover, oxidative phosphorylation (OXPHOS) was negatively impacted in the liver based upon decreased activities of mitochondrial Complex I and V in both female and male livers. Our results revealed that bioenergetic responses were not attributed to dissolved Zn2+ and were not sex-specific. However, the metabolic responses in liver following exposure to ZnONPs did show sex-specific responses. Females exposed to ZnONPs compensated for the energetic stress via increasing fatty acids and amino acids metabolism, while males compensated to ZnONPs exposure by adjusting amino acids metabolism, based upon transcript profiles. This study demonstrates that zebrafish adjust the transcription of metabolic enzymes in the liver to compensate for metabolic disruption following ZnONPs exposure. Taken together, this study contributes to a comprehensive understanding of risks related to ZnONPs exposure in relation to metabolic activity in the liver. Environmental implication Zinc oxide nanoparticles (ZnONPs) are widely used in industry and are subsequently released into environments. However, biological responses between female and male following ZnONPs exposure has never been compared. Our data revealed for the first time that female and male zebrafish showed comparable bioenergetic responses, but different metabolic responses to ZnONPs at an environmentally relevant dose. Females compensated for the energetic stress via increasing fatty acids and amino acids metabolism, while males compensated to ZnONPs exposure by adjusting amino acids metabolism in livers. This study reveals that sex may be an important variable to consider in risk assessments of nanoparticles released into environments.
Collapse
Affiliation(s)
- Xiaohong Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Siying Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yingju Qin
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Haiqing Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhenda Liang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yuanhui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Li Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
16
|
Vizuete AFK, Fróes F, Seady M, Zanotto C, Bobermin LD, Roginski AC, Wajner M, Quincozes-Santos A, Gonçalves CA. Early effects of LPS-induced neuroinflammation on the rat hippocampal glycolytic pathway. J Neuroinflammation 2022; 19:255. [PMID: 36221097 PMCID: PMC9552490 DOI: 10.1186/s12974-022-02612-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022] Open
Abstract
Neuroinflammation is a common feature during the development of neurological disorders and neurodegenerative diseases, where glial cells, such as microglia and astrocytes, play key roles in the activation and maintenance of inflammatory responses in the central nervous system. Neuroinflammation is now known to involve a neurometabolic shift, in addition to an increase in energy consumption. We used two approaches (in vivo and ex vivo) to evaluate the effects of lipopolysaccharide (LPS)-induced neuroinflammation on neurometabolic reprogramming, and on the modulation of the glycolytic pathway during the neuroinflammatory response. For this, we investigated inflammatory cytokines and receptors in the rat hippocampus, as well as markers of glial reactivity. Mitochondrial respirometry and the glycolytic pathway were evaluated by multiple parameters, including enzymatic activity, gene expression and regulation by protein kinases. Metabolic (e.g., metformin, 3PO, oxamic acid, fluorocitrate) and inflammatory (e.g., minocycline, MCC950, arundic acid) inhibitors were used in ex vivo hippocampal slices. The induction of early inflammatory changes by LPS (both in vivo and ex vivo) enhanced glycolytic parameters, such as glucose uptake, PFK1 activity and lactate release. This increased glucose consumption was independent of the energy expenditure for glutamate uptake, which was in fact diverted for the maintenance of the immune response. Accordingly, inhibitors of the glycolytic pathway and Krebs cycle reverted neuroinflammation (reducing IL-1β and S100B) and the changes in glycolytic parameters induced by LPS in acute hippocampal slices. Moreover, the inhibition of S100B, a protein predominantly synthesized and secreted by astrocytes, inhibition of microglia activation and abrogation of NLRP3 inflammasome assembly confirmed the role of neuroinflammation in the upregulation of glycolysis in the hippocampus. Our data indicate a neurometabolic glycolytic shift, induced by inflammatory activation, as well as a central and integrative role of astrocytes, and suggest that interference in the control of neurometabolism may be a promising strategy for downregulating neuroinflammation and consequently for diminishing negative neurological outcomes.
Collapse
Affiliation(s)
- Adriana Fernanda K Vizuete
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, Zip Code: 90035-003, Brazil. .,Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.
| | - Fernanda Fróes
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, Zip Code: 90035-003, Brazil.,Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Marina Seady
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, Zip Code: 90035-003, Brazil.,Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Caroline Zanotto
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, Zip Code: 90035-003, Brazil.,Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Ana Cristina Roginski
- Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.,Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.,Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Carlos Alberto Gonçalves
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, Zip Code: 90035-003, Brazil.,Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.,Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
Stifel U, Caratti G, Tuckermann J. Novel insights into the regulation of cellular catabolic metabolism in macrophages through nuclear receptors. FEBS Lett 2022; 596:2617-2629. [PMID: 35997656 DOI: 10.1002/1873-3468.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/07/2022]
Abstract
Regulation of cellular catabolic metabolism in immune cells has recently become a major concept for resolution of inflammation. Nuclear receptors (NRs), including peroxisome proliferator activator receptors (PPARs), 1,25-dihydroxyvitamin D(3) receptor (VDR), liver X receptors (LXRs), glucocorticoid receptors (GRs), estrogen-related receptor α (ERRα) and Nur77, have been identified as major modulators of inflammation, affecting innate immune cells, such as macrophages. Evidence emerges on how NRs regulate cellular metabolism in macrophages during inflammatory processes and contribute to the resolution of inflammation. This could have new implications for our understanding of how NRs shape immune responses and inform anti-inflammatory drug design. This review will highlight the recent developments about NRs and their role in cellular metabolism in macrophages.
Collapse
Affiliation(s)
- Ulrich Stifel
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Giorgio Caratti
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany.,NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| |
Collapse
|
18
|
Jian J, Li LG, Zhao PJ, Zheng RJ, Dong XW, Zhao YH, Yin BQ, Cheng H, Li HL, Li EY. TCHis mitigate oxidative stress and improve abnormal behavior in a prenatal valproic acid-exposed rat model of autism. Physiol Genomics 2022; 54:325-336. [PMID: 35723222 DOI: 10.1152/physiolgenomics.00104.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective Troxerutin is known for its anti-inflammatory and antioxidative effects in nerve impairment. The purpose of this study is to investigate the effect of troxerutin and cerebroprotein hydrolysate injections (TCHis) on prenatal valproic acid (VPA)-exposed rats. Methods The VPA was administered to pregnant rats on gestational day 12.5 to induce a model of autism. The offsprings were given the treatment of TCHis on postnatal day (PND) 21-50. On PND 43-50, the behavioral analysis of offsprings was performed after the treatment of TCHis for 1 h. On PND 50, the offsprings were harvested and the brains were collected. The hippocampus and prefrontal cortex were isolated for relevant biochemical detections. Results The administration of TCHis increased the pain sensitivity and improved abnormal social behaviors in prenatal VPA-exposed rats. Prenatal expose of VPA induced neuronal loss and apoptosis, enhanced reactive oxygen species (ROS) production, and promoted oxidative stress in hippocampus and prefrontal cortex, while these effects were reversed by the postnatal treatment of TCHis. In addition, postnatal administration of TCHis ameliorated mitochondrial function in hippocampus and prefrontal cortex of prenatal VPA-exposed rats. Conclusion This study concluded that postnatal treatment of TCHis reduced oxidative stress and ameliorated abnormal behavior in a prenatal VPA-induced rat model of autism.
Collapse
Affiliation(s)
- Jie Jian
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Guo Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Health Engineering, Zhengzhou Health Vocational College, Zhengzhou, China
| | - Peng-Ju Zhao
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui-Juan Zheng
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xian-Wen Dong
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong-Hong Zhao
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao-Qi Yin
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Cheng
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong-Lei Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - En-Yao Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Chen L, Shi H, Li Z, Yang F, Zhang X, Xue Y, Zhang H, Xue C. Molecular mechanism of protein dynamic change in Pacific oyster (Crassostrea gigas) during depuration at different salinities uncovered by mass spectrometry-based proteomics combined with bioinformatics. Food Chem 2022; 394:133454. [PMID: 35753254 DOI: 10.1016/j.foodchem.2022.133454] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/04/2022] [Accepted: 06/08/2022] [Indexed: 11/04/2022]
Abstract
Salinity stress during depuration of Pacific oysters (Crassostrea gigas) leads to degradation in quality; therefore, an understanding of the molecular mechanisms regulating dynamic changes during depuration is needed. Here, C. gigas was depurated for 72 h at salinities ranging from 26 to 38 g/L, a ± 10-20% fluctuation from that in the production area, and the gill proteomes were analyzed by sequential window acquisition of all theoretical fragment ion mass spectra (SWATH-MS). Of the 1218 proteins analyzed, 241 were differentiating proteins (DPs). Salinity stress led to increased levels of DPs associated with glycolysis and the extracellular matrix-receptor interaction pathway, and decreased levels of DPs associated with the citric acid cycle, lipid metabolism, genetic information processing, and cell transformation, especially in oysters exposed to 38 g/L salinity (+20%). Controlling salinity fluctuation within ± 10% of the production area during depuration was conducive to maintaining quality in C. gigas.
Collapse
Affiliation(s)
- Lipin Chen
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Haohao Shi
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, PR China
| | - Fan Yang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Xiaomei Zhang
- Food and Agricultural Products Testing Agency, Technology Center of Qingdao Customs District, Qingdao, Shandong Province, PR China
| | - Yong Xue
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Hongwei Zhang
- Food and Agricultural Products Testing Agency, Technology Center of Qingdao Customs District, Qingdao, Shandong Province, PR China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for MarineScience and Technology (Qingdao), Qingdao 266237, Shandong Province, PR China.
| |
Collapse
|
20
|
The Early Immune Response of Lymphoid and Myeloid Head-Kidney Cells of Rainbow Trout (Oncorhynchus mykiss) Stimulated with Aeromonas salmonicida. FISHES 2022. [DOI: 10.3390/fishes7010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The teleost head kidney is a highly relevant immune organ, and myeloid cells play a major role in this organ’s innate and adaptive immune responses. Because of their complexity, the early phases of the innate immune reaction of fish against bacteria are still poorly understood. In this study, naïve rainbow trout were stimulated with inactivated A. salmonicida and sampled at 12 h, 24 h and 7 d poststimulation. Cells from the head kidney were magnetically sorted with a monoclonal antibody mAB21 to obtain one (MAb21-positive) fraction enriched with myeloid cells and one (MAb21-negative) fraction enriched with lymphocytes and thrombocytes. The gene expression pattern of the resulting cell subpopulations was analysed using a panel of 43 immune-related genes. The results show an overall downregulation of the complement pathway and cytokine production at the considered time points. Some of the selected genes may be considered as parameters for diagnosing bacterial furunculosis of rainbow trout.
Collapse
|
21
|
Jiang TT, Ji CF, Cheng XP, Gu SF, Wang R, Li Y, Zuo J, Han J. α-Mangostin Alleviated HIF-1α-Mediated Angiogenesis in Rats With Adjuvant-Induced Arthritis by Suppressing Aerobic Glycolysis. Front Pharmacol 2021; 12:785586. [PMID: 34987400 PMCID: PMC8721667 DOI: 10.3389/fphar.2021.785586] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
A previously validated anti-rheumatic compound α-mangostin (MAN) shows significant metabolism regulatory effects. The current study aimed to clarify whether this property contributed to its inhibition on synovial angiogenesis. Male wistar rats with adjuvant-induced arthritis (AIA) were orally treated by MAN for 32 days. Afterwards, biochemical parameters and cytokines in plasma were determined by corresponding kits, and glycometabolism-related metabolites were further accurately quantified by LC-MS method. Anti-angiogenic effects of MAN were preliminarily assessed by joints based-immunohistochemical examination and matrigel plug assay. Obtained results were then validated by experiments in vitro. AIA-caused increase in circulating transforming growth factor beta, interleukin 6, hypoxia inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) in blood and local HIF-1α/VEGF expression in joints was abrogated by MAN treatment, and pannus formation within matrigel plugs implanted in AIA rats was inhibited too. Scratch and transwell assays revealed the inhibitory effects of MAN on human umbilical vein endothelial cells (HUVECs) migration. Furthermore, MAN inhibited tubule formation capability of HUVECs and growth potential of rat arterial ring-derived endothelial cells in vitro. Meanwhile, MAN eased oxidative stress, and altered glucose metabolism in vivo. Glycolysis-related metabolites including glucose 6-phosphate, fructose 6-phosphate, 3-phosphoglyceric acid and phosphoenolpyruvic acid in AIA rats were decreased by MAN, while the impaired pyruvate-synthesizing capability of lactate dehydrogenase (LDH) was recovered. Consistently, MAN restored lipopolysaccharide-elicited changes on levels of glucose and LDH in HUVECs culture system, and exerted similar effects with LDH inhibitor stiripentol on glycometabolism and VEGF production as well as tubule formation capability of HUVECs. These evidences show that MAN treatment inhibited aerobic glycolysis in AIA rats, which consequently eased inflammation-related hypoxia, and hampered pathological neovascularization.
Collapse
Affiliation(s)
- Tian-Tian Jiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wuhu, China
| | - Chao-Fan Ji
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Xiu-Ping Cheng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Shao-Fei Gu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Rui Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Yan Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Jian Zuo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Jun Han
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wuhu, China
| |
Collapse
|
22
|
He YF, Mai CT, Pan HD, Liu L, Zhou H, Xie Y. Targeting immunometabolism by active ingredients derived from traditional Chinese medicines for treatment of rheumatoid arthritis. CHINESE HERBAL MEDICINES 2021; 13:451-460. [PMID: 36119361 PMCID: PMC9476673 DOI: 10.1016/j.chmed.2021.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 01/19/2023] Open
Abstract
Rheumatoid arthritis (RA), the most common inflammatory arthropathy word wild, is a systemic autoimmune disease that mainly affects the synovium of joints with a high disability rate. Metabolic mis-regulation has emerged as a fundamental pathogenesis of RA linked to immune cell dysfunction, while targeting immunometabolism provides a new and effective approach to regulate the immune responses and thus alleviate the symptom of RA. Recently, natural active compounds from traditional Chinese medicines (TCMs) have potential therapeutic effects on RA and regulating immunometabolism. In this review, in addition to updating the connection between cellular metabolism and cell function in immune cells of RA, we summarized that the anti-inflammatory mechanisms of the potential natural compounds from TCM by targeting metabolic reprogramming of immune cells, and discusses them as a rich resource for providing the new potential paradigm for the treatment of RA.
Collapse
Affiliation(s)
| | | | - Hu-dan Pan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR), China
| |
Collapse
|