1
|
Gavriiloglou M, Hammad M, Iliopoulos JM, Layrolle P, Apazidou DA. Bioengineering the Junctional Epithelium in 3D Oral Mucosa Models. J Funct Biomater 2024; 15:330. [PMID: 39590534 PMCID: PMC11595533 DOI: 10.3390/jfb15110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Two-dimensional (2D) culture models and animal experiments have been widely used to study the pathogenesis of periodontal and peri-implant diseases and to test new treatment approaches. However, neither of them can reproduce the complexity of human periodontal tissues, making the development of a successful 3D oral mucosal model a necessity. The soft-tissue attachment formed around a tooth or an implant function like a biologic seal, protecting the deeper tissues from bacterial infection. The aim of this review is to explore the advancements made so far in the biofabrication of a junctional epithelium around a tooth-like or an implant insert in vitro. This review focuses on the origin of cells and the variety of extracellular components and biomaterials that have been used for the biofabrication of 3D oral mucosa models. The existing 3D models recapitulate soft-tissue attachment around implant abutments and hydroxyapatite discs. Hereby, the qualitative and quantitative assessments performed for evidencing the soft-tissue attachment are critically reviewed. In perspective, the design of sophisticated 3D models should work together for oral immunology and microbiology biofilms to accurately reproduce periodontal and peri-implant diseases.
Collapse
Affiliation(s)
- Marianna Gavriiloglou
- Department of Preventive Dentistry, Periodontology & Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.G.); (D.A.A.)
| | - Mira Hammad
- Toulouse NeuroImaging Center (ToNIC), INSERM, Toulouse University UMR 1214, CHU Toulouse Purpan, 31024 Toulouse, France;
| | - Jordan M. Iliopoulos
- Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Pierre Layrolle
- Toulouse NeuroImaging Center (ToNIC), INSERM, Toulouse University UMR 1214, CHU Toulouse Purpan, 31024 Toulouse, France;
| | - Danae A. Apazidou
- Department of Preventive Dentistry, Periodontology & Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.G.); (D.A.A.)
| |
Collapse
|
2
|
Wang Y, Yang F, Yang M, Wang S, He H, Hong M, Wang G, Li S, Liu H, Wang Y. Construction of Dome-Shaped 3D Corneal Epithelial Tissue Models Based on Eyeball-Shaped Gel Microspheres. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31597-31609. [PMID: 38850560 DOI: 10.1021/acsami.4c05697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
By overcoming interspecies differences and mimicking the in vivo microenvironment, three-dimensional (3D) in vitro corneal models have become a significant novel tool in contemporary ophthalmic disease research. However, existing 3D corneal models struggle to replicate the actual human corneal environment, especially the dome-shaped physiological structure with adjustable curvature. Addressing these challenges, this study introduces a straightforward method for fabricating collagen/chitosan-alginate eyeball-shaped gel microspheres with a Janus structure via a two-phase aqueous system, used subsequently to construct in vitro 3D corneal epithelial tissue models. By adjusting the diameter ratio of collagen/chitosan to alginate droplets, we can create eyeball-shaped gel microspheres with varying curvatures. Human corneal epithelial cells were seeded on the surfaces of these microspheres, leading to the formation of in vitro 3D corneal epithelial tissues characterized by dome-like multilayers and tight junctions. Additionally, the model demonstrated responsiveness to UVB exposure through the secretion of reactive oxygen species (ROS) and proinflammatory factors. Therefore, we believe that in vitro 3D corneal epithelial tissue models with dome-shaped structures hold significant potential for advancing ophthalmic research.
Collapse
Affiliation(s)
- Yilan Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Feng Yang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Menghan Yang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Siping Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Huatao He
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Meiying Hong
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Guanxiong Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Suiyan Li
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Hong Liu
- Department of General Surgery, Wuxi No. 5 People's Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214061, China
| | - Yaolei Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| |
Collapse
|
3
|
Naser MA, Sayed AM, Abdelmoez W, El-Wakad MT, Abdo MS. Biodegradable suture development-based albumin composites for tissue engineering applications. Sci Rep 2024; 14:7912. [PMID: 38575715 PMCID: PMC10995150 DOI: 10.1038/s41598-024-58194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Recent advancements in the field of biomedical engineering have underscored the pivotal role of biodegradable materials in addressing the challenges associated with tissue regeneration therapies. The spectrum of biodegradable materials presently encompasses ceramics, polymers, metals, and composites, each offering distinct advantages for the replacement or repair of compromised human tissues. Despite their utility, these biomaterials are not devoid of limitations, with issues such as suboptimal tissue integration, potential cytotoxicity, and mechanical mismatch (stress shielding) emerging as significant concerns. To mitigate these drawbacks, our research collective has embarked on the development of protein-based composite materials, showcasing enhanced biodegradability and biocompatibility. This study is dedicated to the elaboration and characterization of an innovative suture fabricated from human serum albumin through an extrusion methodology. Employing a suite of analytical techniques-namely tensile testing, scanning electron microscopy (SEM), and thermal gravimetric analysis (TGA)-we endeavored to elucidate the physicochemical attributes of the engineered suture. Additionally, the investigation extends to assessing the influence of integrating biodegradable organic modifiers on the suture's mechanical performance. Preliminary tensile testing has delineated the mechanical profile of the Filament Suture (FS), delineating tensile strengths spanning 1.3 to 9.616 MPa and elongation at break percentages ranging from 11.5 to 146.64%. These findings illuminate the mechanical versatility of the suture, hinting at its applicability across a broad spectrum of medical interventions. Subsequent analyses via SEM and TGA are anticipated to further delineate the suture's morphological features and thermal resilience, thereby enriching our comprehension of its overall performance characteristics. Moreover, the investigation delves into the ramifications of incorporating biodegradable organic constituents on the suture's mechanical integrity. Collectively, the study not only sheds light on the mechanical and thermal dynamics of a novel suture material derived from human serum albumin but also explores the prospective enhancements afforded by the amalgamation of biodegradable organic compounds, thereby broadening the horizon for future biomedical applications.
Collapse
Affiliation(s)
- Mohamed A Naser
- Faculty of Engineering, Biomedical Engineering Department, Minia University, Minia, Egypt.
- Faculty of Engineering, Biomedical Engineering Department, Helwan University, Helwan, Egypt.
| | - Ahmed M Sayed
- Faculty of Engineering, Biomedical Engineering Department, Helwan University, Helwan, Egypt.
- EECS Department, MSOE University, Milwaukee, United States.
| | - Wael Abdelmoez
- Faculty of Engineering, Chemical Engineering Department, Minia University, Minia, Egypt
| | - Mohamed Tarek El-Wakad
- Faculty of Engineering and Technology, Future University Egypt, Fifth Settlement, Cairo, Egypt
| | - Mohamed S Abdo
- Faculty of Engineering, Biomedical Engineering Department, Minia University, Minia, Egypt
| |
Collapse
|
4
|
Izumi K, Yortchan W, Aizawa Y, Kobayashi R, Hoshikawa E, Ling Y, Suzuki A. Recent trends and perspectives in reconstruction and regeneration of intra/extra-oral wounds using tissue-engineered oral mucosa equivalents. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:365-374. [PMID: 37954029 PMCID: PMC10632115 DOI: 10.1016/j.jdsr.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
Many conditions, including cancer, trauma, and congenital anomalies, can damage the oral mucosa. Multiple cultures of oral mucosal cells have been used for biocompatibility tests and oral biology studies. In recent decades, the clinical translation of tissue-engineered products has progressed significantly in developing tangible therapies and inspiring advancements in medical science. However, the reconstruction of an intraoral mucosa defect remains a significant challenge. Despite the drawbacks of donor-site morbidity and limited tissue supply, the use of autologous oral mucosa remains the gold standard for oral mucosa reconstruction and repair. Tissue engineering offers a promising solution for repairing and reconstructing oral mucosa tissues. Cell- and scaffold-based tissue engineering approaches have been employed to treat various soft tissue defects, suggesting the potential clinical use of tissue-engineered oral mucosa (TEOMs). In this review, we first cover the recent trends in the reconstruction and regeneration of extra-/intra-oral wounds using TEOMs. Next, we describe the current status and challenges of TEOMs. Finally, future strategic approaches and potential technologies to support the advancement of TEOMs for clinical use are discussed.
Collapse
Affiliation(s)
- Kenji Izumi
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | - Witsanu Yortchan
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
- Department of Preventive Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
| | - Yuka Aizawa
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | - Ryota Kobayashi
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | - Emi Hoshikawa
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
- Division of Periodontology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | - Yiwei Ling
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ayako Suzuki
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
| |
Collapse
|
5
|
Nagarajan MB, Ainscough AJ, Reynolds DS, Uzel SGM, Bjork JW, Baker BA, McNulty AK, Woulfe SL, Lewis JA. Biomimetic human skin model patterned with rete ridges. Biofabrication 2023; 16:015006. [PMID: 37734324 DOI: 10.1088/1758-5090/acfc29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
Rete ridges consist of undulations between the epidermis and dermis that enhance the mechanical properties and biological function of human skin. However, most human skin models are fabricated with a flat interface between the epidermal and dermal layers. Here, we report a micro-stamping method for producing human skin models patterned with rete ridges of controlled geometry. To mitigate keratinocyte-induced matrix degradation, telocollagen-fibrin matrices with and without crosslinks enable these micropatterned features to persist during longitudinal culture. Our human skin model exhibits an epidermis that includes the following markers: cytokeratin 14, p63, and Ki67 in the basal layer, cytokeratin 10 in the suprabasal layer, and laminin and collagen IV in the basement membrane. We demonstrated that two keratinocyte cell lines, one from a neonatal donor and another from an adult diabetic donor, are compatible with this model. We tested this model using an irritation test and showed that the epidermis prevents rapid penetration of sodium dodecyl sulfate. Gene expression analysis revealed differences in keratinocytes obtained from the two donors as well as between 2D (control) and 3D culture conditions. Our human skin model may find potential application for drug and cosmetic testing, disease and wound healing modeling, and aging studies.
Collapse
Affiliation(s)
- Maxwell B Nagarajan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States of America
| | - Alexander J Ainscough
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States of America
| | - Daniel S Reynolds
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States of America
| | - Sebastien G M Uzel
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States of America
| | - Jason W Bjork
- 3M, 3M Center, St. Paul, MN 55144, United States of America
| | - Bryan A Baker
- 3M, 3M Center, St. Paul, MN 55144, United States of America
| | - Amy K McNulty
- 3M, 3M Center, St. Paul, MN 55144, United States of America
| | - Susan L Woulfe
- 3M, 3M Center, St. Paul, MN 55144, United States of America
| | - Jennifer A Lewis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States of America
| |
Collapse
|
6
|
Shen Z, Liu Z, Sun L, Li M, Han L, Wang J, Wu X, Sang S. Constructing epidermal rete ridges using a composite hydrogel to enhance multiple signaling pathways for the maintenance of epidermal stem cell niche. Acta Biomater 2023; 169:273-288. [PMID: 37516415 DOI: 10.1016/j.actbio.2023.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
The undulating microstructure rete ridge (RR) located at the junction between the dermis and epidermis plays a crucial role in improving skin mechanical properties and maintaining skin homeostasis. However, the investigation of RR microstructures is usually neglected in current tissue engineering for skin regeneration. Here, to create an epidermal model with RR microstructures, keratinocytes were cultured on a patterned GelMA-PEGDA hydrogel constructed using molding technology. Furthermore, grafting acryloylated Arg-Gly-Asp (RGD) peptides on the hydrogel surface significantly improved cell adhesion, fusion, and development. RT-PCR, Western blot, and immunofluorescence staining confirmed that cells on RR microstructures exhibited higher gene and protein expression associated with epidermal stem cells. RNA sequencing analysis of cells on RR microstructure showed higher gene expression profiles related to stem cell maintenance, basement membrane formation, and epidermal development. Furthermore, RT-PCR analysis of epidermal models of various dimensions demonstrated that smaller microstructures were more conducive to epidermal stem cell marker gene expression, which is analogous to human skin. Overall, we have successfully developed a method for integrating RR microstructures into an epidermal model that mimics natural skin to maintain epidermal stem cell niche, providing a valuable reference for researching skin regeneration within the fields of tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE: This study presents a method for precisely fabricating microstructures of skin rete ridges using composite hydrogels, thereby creating a skin model that mimics natural human skin. The findings reveal that this microstructure provides a stem cell niche that regulates the pathways and promotes the expression of proteins related to epidermal stem cells. This work advances the functional properties of tissue engineered skin and holds promise for improving the therapeutic efficacy of artificial skin grafts for the skin wounds.
Collapse
Affiliation(s)
- Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Lei Sun
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030031, China
| | - Lu Han
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030031, China
| | - Jianming Wang
- General Hospital of TISCO, North Street, Xinghualing District, Taiyuan, 030809, China
| | - Xunwei Wu
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China; Department of Tissue Engineering and Regeneration, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Jinan, Shandong, China
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
7
|
Galán-Navea L, Guerle-Cavero R, Balfagón-Costa A, Artalejo-Ortega B. Creation of Chemically Tri-Layered Collagen Crosslinked Membranes and Their Comparison with Ionically Tri-Layered Chitosan Crosslinked Membranes to Study Human Skin Properties. Int J Mol Sci 2023; 24:13443. [PMID: 37686251 PMCID: PMC10487804 DOI: 10.3390/ijms241713443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
In 2009, a new European regulation came into force that forbade the use of animals in the cosmetics industry. As a result, new alternatives were sought, taking into account the new ethical considerations. The main objective of this article is to continue a line of research that aims to build a physical model of skin from a biomaterial scaffold composed of collagen, chitosan or a combination to investigate whether they offer similar behavior to human skin. Collagen, the major component in the dermis, was crosslinked with glutaraldehyde (GTA) to develop three formulations for studying some properties of the skin through rheological tests like swelling index, elasticity or water loss. In addition, this article makes a comparison with the results obtained in the previous article where the membranes were made of chitosan and tripolyphosphate (TPP). The results obtained highlight that the tri-layered membranes scaffold better than the mono-layered ones to increase the elastic modulus (G') and the permeability. Furthermore, they offer a protective effect against water loss compared to mono-layered membranes. As regards chitosan membranes, these have a higher G' modulus than collagen membranes when the degree of deacetylation (DDA) is 85%. However, collagen membranes are more elastic when the DDA of chitosan is 76%, and their linear viscoelastic limit (LVL) doubles that of chitosan membranes, both for the degree of acetylation of 76 and 85%.
Collapse
Affiliation(s)
| | | | - Albert Balfagón-Costa
- Pharmaceutical Chemistry Research Group, Institut Químic de Sarrià, Universitat Ramón Llull, 08017 Barcelona, Spain; (L.G.-N.); (R.G.-C.); (B.A.-O.)
| | | |
Collapse
|
8
|
Blackstone BN, Malara MM, Baumann ME, McFarland KL, Supp DM, Powell HM. Laser Micropatterning Promotes Rete Ridge Formation and Enhanced Engineered Skin Strength without Increased Inflammation. Bioengineering (Basel) 2023; 10:861. [PMID: 37508888 PMCID: PMC10376754 DOI: 10.3390/bioengineering10070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Rete ridges play multiple important roles in native skin tissue function, including enhancing skin strength, but they are largely absent from engineered tissue models and skin substitutes. Laser micropatterning of fibroblast-containing dermal templates prior to seeding of keratinocytes was shown to facilitate rete ridge development in engineered skin (ES) both in vitro and in vivo. However, it is unknown whether rete ridge development results exclusively from the microarchitectural features formed by ablative processing or whether laser treatment causes an inflammatory response that contributes to rete ridge formation. In this study, laser-micropatterned and non-laser- treated ES grafts were developed and assessed during culture and for four weeks post grafting onto full-thickness wounds in immunodeficient mice. Decreases in inflammatory cytokine secretion were initially observed in vitro in laser-treated grafts compared to non-treated controls, although cytokine levels were similar in both groups five days after laser treatment. Post grafting, rete ridge-containing ES showed a significant increase in vascularization at week 2, and in collagen deposition and biomechanics at weeks 2 and 4, compared with controls. No differences in inflammatory cytokine expression after grafting were observed between groups. The results suggest that laser micropatterning of ES to create rete ridges improves the mechanical properties of healed skin grafts without increasing inflammation.
Collapse
Affiliation(s)
- Britani N Blackstone
- Department of Materials Science and Engineering, The Ohio State University, 140 W 19th Avenue, Columbus, OH 43210, USA
| | - Megan M Malara
- Department of Materials Science and Engineering, The Ohio State University, 140 W 19th Avenue, Columbus, OH 43210, USA
| | - Molly E Baumann
- Department of Biomedical Engineering, The Ohio State University, 140 W 19th Avenue, Columbus, OH 43210, USA
| | - Kevin L McFarland
- Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Dorothy M Supp
- Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Shriners Children's Ohio, 1 Children's Plaza, Dayton, OH 45404, USA
| | - Heather M Powell
- Department of Materials Science and Engineering, The Ohio State University, 140 W 19th Avenue, Columbus, OH 43210, USA
- Department of Biomedical Engineering, The Ohio State University, 140 W 19th Avenue, Columbus, OH 43210, USA
- Shriners Children's Ohio, 1 Children's Plaza, Dayton, OH 45404, USA
| |
Collapse
|
9
|
Kopeć K, Podgórski R, Ciach T, Wojasiński M. System for Patterning Polydopamine and VAPG Peptide on Polytetrafluoroethylene and Biodegradable Polyesters for Patterned Growth of Smooth Muscle Cells In Vitro. ACS OMEGA 2023; 8:22055-22066. [PMID: 37360448 PMCID: PMC10285958 DOI: 10.1021/acsomega.3c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Biomaterial's surface functionalization for selective adhesion and patterned cell growth remains essential in developing novel implantable medical devices for regenerative medicine applications. We built and applied a 3D-printed microfluidic device to fabricate polydopamine (PDA) patterns on the surface of polytetrafluoroethylene (PTFE), poly(l-lactic acid-co-D,l-lactic acid) (PLA), and poly(lactic acid-co-glycolic acid) (PLGA). Then, we covalently attached the Val-Ala-Pro-Gly (VAPG) peptide to the created PDA pattern to promote the adhesion of the smooth muscle cells (SMCs). We proved that the fabrication of PDA patterns allows for the selective adhesion of mouse fibroblast and human SMCs to PDA-patterned surfaces after only 30 min of in vitro cultivation. After 7 days of SMC culture, we observed the proliferation of cells only along the patterns on PTFE but over the entire surface of the PLA and PLGA, regardless of patterning. This means that the presented approach is beneficial for application to materials resistant to cell adhesion and proliferation. The additional attachment of the VAPG peptide to the PDA patterns did not bring measurable benefits due to the high increase in adhesion and patterned cell proliferation by PDA itself.
Collapse
Affiliation(s)
- Kamil Kopeć
- Warsaw
University of Technology, Faculty of Chemical and Process Engineering,
Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Rafał Podgórski
- Warsaw
University of Technology, Faculty of Chemical and Process Engineering,
Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Tomasz Ciach
- Warsaw
University of Technology, Faculty of Chemical and Process Engineering,
Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
- Warsaw
University of Technology, CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| | - Michał Wojasiński
- Warsaw
University of Technology, Faculty of Chemical and Process Engineering,
Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
10
|
Cell–scaffold interactions in tissue engineering for oral and craniofacial reconstruction. Bioact Mater 2023; 23:16-44. [DOI: 10.1016/j.bioactmat.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
|
11
|
Tiozzo-Lyon P, Andrade M, Leiva-Sabadini C, Morales J, Olivares A, Ravasio A, Aguayo S. Microfabrication approaches for oral research and clinical dentistry. FRONTIERS IN DENTAL MEDICINE 2023; 4:1120394. [PMID: 39916924 PMCID: PMC11797961 DOI: 10.3389/fdmed.2023.1120394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 02/09/2025] Open
Abstract
Currently, a variety of laboratory tools and strategies have been developed to investigate in vivo processes using in vitro models. Amongst these, microfabrication represents a disruptive technology that is currently enabling next-generation biomedical research through the development of complex laboratory approaches (e.g., microfluidics), engineering of micrometer scale sensors and actuators (micropillars for traction force microscopy), and the creation of environments mimicking cell, tissue, and organ-specific contexts. Although microfabrication has been around for some time, its application in dental and oral research is still incipient. Nevertheless, in recent years multiple lines of research have emerged that use microfabrication-based approaches for the study of oral diseases and conditions with micro- and nano-scale sensitivities. Furthermore, many investigations are aiming to develop clinically relevant microfabrication-based applications for diagnostics, screening, and oral biomaterial manufacturing. Therefore, the objective of this review is to summarize the current application of microfabrication techniques in oral sciences, both in research and clinics, and to discuss possible future applications of these technologies for in vitro studies and practical patient care. Initially, this review provides an overview of the most employed microfabrication methods utilized in biomedicine and dentistry. Subsequently, the use of micro- and nano-fabrication approaches in relevant fields of dental research such as endodontic and periodontal regeneration, biomaterials research, dental implantology, oral pathology, and biofilms was discussed. Finally, the current and future uses of microfabrication technology for clinical dentistry and how these approaches may soon be widely available in clinics for the diagnosis, prevention, and treatment of relevant pathologies are presented.
Collapse
Affiliation(s)
- Paola Tiozzo-Lyon
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Matías Andrade
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Leiva-Sabadini
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Morales
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonia Olivares
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Ravasio
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastian Aguayo
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
12
|
Luo R, Li F, Wang Y, Zou H, Shang J, Fan Y, Liu H, Xu Z, Li R, Liu H. MXene-modified 3D printed scaffold for photothermal therapy and facilitation of oral mucosal wound reconstruction. MATERIALS & DESIGN 2023; 227:111731. [DOI: 10.1016/j.matdes.2023.111731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
|
13
|
Rajabimashhadi Z, Gallo N, Salvatore L, Lionetto F. Collagen Derived from Fish Industry Waste: Progresses and Challenges. Polymers (Basel) 2023; 15:544. [PMID: 36771844 PMCID: PMC9920587 DOI: 10.3390/polym15030544] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Fish collagen garnered significant academic and commercial focus in the last decades featuring prospective applications in a variety of health-related industries, including food, medicine, pharmaceutics, and cosmetics. Due to its distinct advantages over mammalian-based collagen, including the reduced zoonosis transmission risk, the absence of cultural-religious limitations, the cost-effectiveness of manufacturing process, and its superior bioavailability, the use of collagen derived from fish wastes (i.e., skin, scales) quickly expanded. Moreover, by-products are low cost and the need to minimize fish industry waste's environmental impact paved the way for the use of discards in the development of collagen-based products with remarkable added value. This review summarizes the recent advances in the valorization of fish industry wastes for the extraction of collagen used in several applications. Issues related to processing and characterization of collagen were presented. Moreover, an overview of the most relevant applications in food industry, nutraceutical, cosmetics, tissue engineering, and food packaging of the last three years was introduced. Lastly, the fish-collagen market and the open technological challenges to a reliable recovery and exploitation of this biopolymer were discussed.
Collapse
Affiliation(s)
- Zahra Rajabimashhadi
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| | | | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| |
Collapse
|
14
|
Shen Z, Sun L, Liu Z, Li M, Cao Y, Han L, Wang J, Wu X, Sang S. Rete ridges: Morphogenesis, function, regulation, and reconstruction. Acta Biomater 2023; 155:19-34. [PMID: 36427683 DOI: 10.1016/j.actbio.2022.11.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Rete ridges (RRs) are distinct undulating microstructures at the junction of the dermis and epidermis in the skin of humans and certain animals. This structure is essential for enhancing the mechanical characteristics of skin and preserving homeostasis. With the development of tissue engineering and regenerative medicine, artificial skin grafts have made great progress in the field of skin healing. However, the restoration of RRs has been often disregarded or absent in artificial skin grafts, which potentially compromise the efficacy of tissue repair and regeneration. Therefore, this review collates recent research advances in understanding the structural features, function, morphogenesis, influencing factors, and reconstruction strategies pertaining to RRs. In addition, the preparation methods and limitations of tissue-engineered skin with RRs are discussed. STATEMENT OF SIGNIFICANCE: The technology for the development of tissue-engineered skin (TES) is widely studied and reported; however, the preparation of TES containing rete ridges (RRs) is often ignored, with no literature reviews on the structural reconstruction of RRs. This review focuses on the progress pertaining to RRs and focuses on the reconstruction methods for RRs. In addition, it discusses the limitations of existing reconstruction methods. Therefore, this review could be a valuable reference for transferring TES with RR structure from the laboratory to clinical applications in skin repair.
Collapse
Affiliation(s)
- Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lei Sun
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Yanyan Cao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Lu Han
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Jianming Wang
- General Hospital of TISCO, North Street, Xinghualing District, Taiyuan 030809, China
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China; Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China.
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
15
|
In-process monitoring of a tissue-engineered oral mucosa fabricated on a micropatterned collagen scaffold: use of optical coherence tomography for quality control. Heliyon 2022; 8:e11468. [DOI: 10.1016/j.heliyon.2022.e11468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
|
16
|
Bioactive Compounds and Therapeutics from Fish: Revisiting Their Suitability in Functional Foods to Enhance Human Wellbeing. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3661866. [PMID: 36033572 PMCID: PMC9410824 DOI: 10.1155/2022/3661866] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/10/2022] [Indexed: 12/14/2022]
Abstract
Global public awareness about fish-based diet and its health/nutritional benefits is on the rise. Fish nutritional profile projects promising bioactive and other compounds with innumerable health benefits for human wellbeing. As various reported researches involving fish/marine-derived molecules reveal promising attributes, and as the position of fish-based nutrients as nutraceuticals continue to strengthen, health challenges still confront communities worldwide, from cardiovascular disease, diabetes, and obesity to hypertension. Thus, further understanding of fish-based nutrient impact as functional foods remains crucial given the diverse prevailing compositional/nutraceutical merits. In this review, therefore, we provide important information regarding bioactive compounds and therapeutics obtained from fish, specific to the context of their suitability in functional foods to enhance human health. This contribution is hereby constructed as follows: (a) fish nutraceutical/therapeutic components, (b) constituents of fish-based nutrients and their suitability in functional foods, (c) fish antioxidant/bioactive compounds to help alleviate health conditions, (d) common human ailments alleviated by fish-based nutrients, and (e) role of fish in mental health and immune system. As increased fish consumption should be encouraged, the potential of the quality proteins, omega-3 fatty acids, and other compounds inherent in fish should steadily be harnessed.
Collapse
|
17
|
Allen BN, Wang Q, Filali Y, Worthington KS, Kacmarynski DSF. Full-Thickness Oral Mucoperiosteal Defects: Challenges and Opportunities. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:813-829. [PMID: 34409870 PMCID: PMC9469748 DOI: 10.1089/ten.teb.2021.0044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/10/2021] [Indexed: 11/12/2022]
Abstract
Regenerative engineering strategies for the oral mucoperiosteum, as may be needed following surgeries, such as cleft palate repair and tumor resection, are underdeveloped compared with those for maxillofacial bone. However, critical-size tissue defects left to heal by secondary intention can lead to complications, such as infection, fistula formation, scarring, and midface hypoplasia. This review describes current clinical practice for replacing mucoperiosteal tissue, including autografts and allografts. Potentially paradigm-shifting experimental regenerative engineering strategies for mucoperiosteal wound healing, such as hybrid grafts and engineered matrices, are also discussed. Throughout the review, the advantages and disadvantages of each replacement or regeneration strategy are outlined in the context of clinical outcomes, quality of life for the patient, availability of materials, and cost of care. Finally, future directions for research and development in the area of mucoperiosteum repair are proposed, with an emphasis on identifying globally available and affordable solutions for promoting mucoperiosteal regeneration. Impact statement Unassisted oral mucoperiosteal wound healing can lead to severe complications such as infection, fistulae, scarring, and developmental abnormalities. Thus, strategies for promoting wound healing must be considered when mucoperiosteal defects are incident to oral surgery, as in palatoplasty or tumor resection. Emerging mucoperiosteal tissue engineering strategies, described in this study, have the potential to overcome the limitations of current standard-of-care donor tissue grafts. For example, the use of engineered mucoperiosteal biomaterials could circumvent concerns about tissue availability and immunogenicity. Moreover, employment of tissue engineering strategies may improve the equity of oral wound care by increasing global affordability and accessibility of materials.
Collapse
Affiliation(s)
- Brittany N Allen
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa, USA
| | - Qi Wang
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa, USA
| | - Yassine Filali
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa, USA
| | - Kristan S Worthington
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa, USA
| | - Deborah S F Kacmarynski
- Department of Otolaryngology - Head and Neck Surgery, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
18
|
Mehwish N, Chen Y, Zaeem M, Wang Y, Lee BH, Deng H. Novel biohybrid spongy scaffolds for fabrication of suturable intraoral graft substitutes. Int J Biol Macromol 2022; 214:617-631. [PMID: 35753514 DOI: 10.1016/j.ijbiomac.2022.06.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 11/05/2022]
Abstract
Despite the fact that classic autograft is the gold standard material for periodontal plastic surgery, it has some drawbacks, including the need for a second surgical site and the scarcity of palatal donor tissue. However, only a few research works on the manufacturing of bioengineered intraoral connective tissue grafts have been conducted. In this work, porous bovine serum albumin methacryloyl/gelatin methacryloyl (BG) biohybrid scaffolds were developed for super-elasticity, shape recovery, suturability for persistent stability, sufficient scaffolding function, and convenient manipulating characteristics to fabricate an intraoral graft substitute with superb stability to resist frequent dynamic forces caused by functional movement (speaking, masticating, and swallowing). Furthermore, in a 3D cell culture assay, BG scaffolds demonstrated excellent cell adhesion and proliferation of L929 cells. In addition, the BG scaffolds were able to release Ibuprofen in a controlled manner for postoperative recovery. The use of a low-cost, optimized cryogelation technique for functional biomacromolecules offers up new possibilities to develop promising scaffolds for dental clinical settings.
Collapse
Affiliation(s)
- Nabila Mehwish
- Wenzhou Institute, University of CAS, Wenzhou, Zhejiang 325011, China
| | - Yuan Chen
- Wenzhou Institute, University of CAS, Wenzhou, Zhejiang 325011, China; Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Muhammad Zaeem
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Department of Orthodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Bae Hoon Lee
- Wenzhou Institute, University of CAS, Wenzhou, Zhejiang 325011, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China.
| | - Hui Deng
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
19
|
Ge B, Hou C, Bao B, Pan Z, de Val JEMS, Elango J, Wu W. Comparison of Physicochemical and Structural Properties of Acid-Soluble and Pepsin-Soluble Collagens from Blacktip Reef Shark Skin. Mar Drugs 2022; 20:md20060376. [PMID: 35736179 PMCID: PMC9228053 DOI: 10.3390/md20060376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Fish collagen has been widely used in tissue engineering (TE) applications as an implant, which is generally transplanted into target tissue with stem cells for better regeneration ability. In this case, the success rate of this research depends on the fundamental components of fish collagen such as amino acid composition, structural and rheological properties. Therefore, researchers have been trying to find an innovative raw material from marine origins for tissue engineering applications. Based on this concept, collagens such as acid-soluble (ASC) and pepsin-soluble (PSC) were extracted from a new type of cartilaginous fish, the blacktip reef shark, for the first time, and were further investigated for physicochemical, protein pattern, microstructural and peptide mapping. The study results confirmed that the extracted collagens resemble the protein pattern of type-I collagen comprising the α1, α2, β and γ chains. The hydrophobic amino acids were dominant in both collagens with glycine and hydroxyproline as major amino acids. From the FTIR spectra, α helix (27.72 and 26.32%), β-sheet (22.24 and 23.35%), β-turn (21.34 and 22.08%), triple helix (14.11 and 14.13%) and random coil (14.59 and 14.12%) structures of ASC and PSC were confirmed, respectively. Collagens retained their triple helical and secondary structure well. Both collagens had maximum solubility at 3% NaCl and pH 4, and had absorbance maxima at 234 nm, respectively. The peptide mapping was almost similar for ASC and PSC at pH 2, generating peptides ranging from 15 to 200 kDa, with 23 kDa as a major peptide fragment. The microstructural analysis confirmed the homogenous fibrillar nature of collagens with more interconnected networks. Overall, the preset study concluded that collagen can be extracted more efficiently without disturbing the secondary structure by pepsin treatment. Therefore, the blacktip reef shark skin could serve as a potential source for collagen extraction for the pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Baolin Ge
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.G.); (C.H.); (B.B.); (Z.P.)
| | - Chunyu Hou
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.G.); (C.H.); (B.B.); (Z.P.)
| | - Bin Bao
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.G.); (C.H.); (B.B.); (Z.P.)
| | - Zhilin Pan
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.G.); (C.H.); (B.B.); (Z.P.)
| | - José Eduardo Maté Sánchez de Val
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain;
| | - Jeevithan Elango
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.G.); (C.H.); (B.B.); (Z.P.)
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain;
- Correspondence: or (J.E.); (W.W.)
| | - Wenhui Wu
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.G.); (C.H.); (B.B.); (Z.P.)
- Correspondence: or (J.E.); (W.W.)
| |
Collapse
|
20
|
Nadine S, Chung A, Diltemiz SE, Yasuda B, Lee C, Hosseini V, Karamikamkar S, de Barros NR, Mandal K, Advani S, Zamanian BB, Mecwan M, Zhu Y, Mofidfar M, Zare MR, Mano J, Dokmeci MR, Alambeigi F, Ahadian S. Advances in microfabrication technologies in tissue engineering and regenerative medicine. Artif Organs 2022; 46:E211-E243. [PMID: 35349178 DOI: 10.1111/aor.14232] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tissue engineering provides various strategies to fabricate an appropriate microenvironment to support the repair and regeneration of lost or damaged tissues. In this matter, several technologies have been implemented to construct close-to-native three-dimensional structures at numerous physiological scales, which are essential to confer the functional characteristics of living tissues. METHODS In this article, we review a variety of microfabrication technologies that are currently utilized for several tissue engineering applications, such as soft lithography, microneedles, templated and self-assembly of microstructures, microfluidics, fiber spinning, and bioprinting. RESULTS These technologies have considerably helped us to precisely manipulate cells or cellular constructs for the fabrication of biomimetic tissues and organs. Although currently available tissues still lack some crucial functionalities, including vascular networks, innervation, and lymphatic system, microfabrication strategies are being proposed to overcome these issues. Moreover, the microfabrication techniques that have progressed to the preclinical stage are also discussed. CONCLUSIONS This article aims to highlight the advantages and drawbacks of each technique and areas of further research for a more comprehensive and evolving understanding of microfabrication techniques in terms of tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Sara Nadine
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ada Chung
- Department of Psychology, University of California-Los Angeles, Los Angeles, California, USA
| | | | - Brooke Yasuda
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,Department of Psychology, University of California-Los Angeles, Los Angeles, California, USA
| | - Charles Lee
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA.,Station 1, Lawrence, Massachusetts, USA
| | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | | | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Shailesh Advani
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | | | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Mohammad Mofidfar
- Department of Chemistry, Stanford University, Palo Alto, California, USA
| | | | - João Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Farshid Alambeigi
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| |
Collapse
|
21
|
Shen Z, Cao Y, Li M, Yan Y, Cheng R, Zhao Y, Shao Q, Wang J, Sang S. Construction of tissue-engineered skin with rete ridges using co-network hydrogels of gelatin methacrylated and poly(ethylene glycol) diacrylate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112360. [PMID: 34579879 DOI: 10.1016/j.msec.2021.112360] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/19/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Tissue-engineered skin, as a promising skin substitute, can be used for in vitro skin research and skin repair. However, most of research on tissue-engineered skin tend to ignore the rete ridges (RRs) microstructure, which enhances the adhesion between dermis and epidermis and provides a growth environment for epidermal stem cells. Here, we prepared and characterized photocurable gelatin methacrylated (GelMA) and poly(ethylene glycol) diacrylate (PEGDA) co-network hydrogels with different concentrations. Using a UV curing 3D printer, resin molds were designed and fabricated to create three-dimensional micropatterns and replicated onto GelMA-PEGDA scaffolds. Human keratinocytes (HaCaTs) and human skin fibroblasts (HSFs) were co-cultured on the hydrogel scaffold to prepare tissue-engineered skin. The results showed that 10%GelMA-2%PEGDA hydrogel provides the sufficient mechanical properties and biocompatibility to prepare a human skin model with RRs microstructure, that is, it presents excellent structural support, suitable degradation rate, good bioactivity and is suitable for long-term culturing. Digital microscope image analyses showed the micropattern was well-transferred onto the scaffold surface. Both in vitro and in vivo experiments confirmed the formation of the epidermal layer with undulating microstructure. In wound healing experiments, hydrogel can significantly accelerate wound healing. This study provides a simple and powerful way to mimic the structures of human skin and can make a contribution to skin tissue engineering and wound healing.
Collapse
Affiliation(s)
- Zhizhong Shen
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanyan Cao
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; College of Information Science and Engineering, Hebei North University, Zhangjiakou 075000, China
| | - Meng Li
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yayun Yan
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Rong Cheng
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yajing Zhao
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Quan Shao
- General Hospital of TISCO, North Street, Xinghualing District, Taiyuan 030024, China
| | - Jianming Wang
- General Hospital of TISCO, North Street, Xinghualing District, Taiyuan 030024, China.
| | - Shengbo Sang
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
22
|
Egorikhina MN, Semenycheva LL, Chasova VO, Bronnikova II, Rubtsova YP, Zakharychev EA, Aleynik DY. Changes in the Molecular Characteristics of Bovine and Marine Collagen in the Presence of Proteolytic Enzymes as a Stage Used in Scaffold Formation. Mar Drugs 2021; 19:502. [PMID: 34564164 PMCID: PMC8470260 DOI: 10.3390/md19090502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Biopolymers, in particular collagen and fibrinogen, are the leading materials for use in tissue engineering. When developing technology for scaffold formation, it is important to understand the properties of the source materials as well as the mechanisms that determine the formation of the scaffold structures. Both factors influence the properties of scaffolds to a great extent. Our present work aimed to identify the features of the molecular characteristics of collagens of different species origin and the changes they undergo during the enzymatic hydrolysis used for the process of scaffold formation. For this study, we used the methods of gel-penetrating chromatography, dynamic light scattering, reading IR spectra, and scanning electron microscopy. It was found that cod collagen (CC) and bovine collagen (BC) have different initial molecular weight parameters, and that, during hydrolysis, the majority of either type of protein is hydrolyzed by the proteolytic enzymes within the first minute. The differently sourced collagen samples were also hydrolyzed with the formation of two low molecular fractions: Mw ~ 10 kDa and ~20 kDa. In the case of CC, the microstructure of the final scaffolds contained denser, closely spaced fibrillar areas, while the BC-sourced scaffolds had narrow, short fibrils composed of unbound fibers of hydrolyzed collagen in their structure.
Collapse
Affiliation(s)
- Marfa N. Egorikhina
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University, the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH), Minin and Pozharsky Square 10/1, 603950 Nizhny Novgorod, Russia; (I.I.B.); (Y.P.R.); (D.Y.A.)
| | - Ludmila L. Semenycheva
- Faculty of Chemistry, Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia; (L.L.S.); (V.O.C.); (E.A.Z.)
| | - Victoria O. Chasova
- Faculty of Chemistry, Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia; (L.L.S.); (V.O.C.); (E.A.Z.)
| | - Irina I. Bronnikova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University, the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH), Minin and Pozharsky Square 10/1, 603950 Nizhny Novgorod, Russia; (I.I.B.); (Y.P.R.); (D.Y.A.)
| | - Yulia P. Rubtsova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University, the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH), Minin and Pozharsky Square 10/1, 603950 Nizhny Novgorod, Russia; (I.I.B.); (Y.P.R.); (D.Y.A.)
| | - Evgeniy A. Zakharychev
- Faculty of Chemistry, Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia; (L.L.S.); (V.O.C.); (E.A.Z.)
| | - Diana Ya. Aleynik
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University, the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH), Minin and Pozharsky Square 10/1, 603950 Nizhny Novgorod, Russia; (I.I.B.); (Y.P.R.); (D.Y.A.)
| |
Collapse
|
23
|
Coppola D, Lauritano C, Palma Esposito F, Riccio G, Rizzo C, de Pascale D. Fish Waste: From Problem to Valuable Resource. Mar Drugs 2021; 19:116. [PMID: 33669858 PMCID: PMC7923225 DOI: 10.3390/md19020116] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Following the growth of the global population and the subsequent rapid increase in urbanization and industrialization, the fisheries and aquaculture production has seen a massive increase driven mainly by the development of fishing technologies. Accordingly, a remarkable increase in the amount of fish waste has been produced around the world; it has been estimated that about two-thirds of the total amount of fish is discarded as waste, creating huge economic and environmental concerns. For this reason, the disposal and recycling of these wastes has become a key issue to be resolved. With the growing attention of the circular economy, the exploitation of underused or discarded marine material can represent a sustainable strategy for the realization of a circular bioeconomy, with the production of materials with high added value. In this study, we underline the enormous role that fish waste can have in the socio-economic sector. This review presents the different compounds with high commercial value obtained by fish byproducts, including collagen, enzymes, and bioactive peptides, and lists their possible applications in different fields.
Collapse
Affiliation(s)
- Daniela Coppola
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Fortunato Palma Esposito
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Gennaro Riccio
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Carmen Rizzo
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|