1
|
Cosier DJ, Lambert K, Neale EP, Probst Y, Charlton K. The effect of oral synbiotics on the gut microbiota and inflammatory biomarkers in healthy adults: a systematic review and meta-analysis. Nutr Rev 2025; 83:e4-e24. [PMID: 38341803 DOI: 10.1093/nutrit/nuae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024] Open
Abstract
CONTEXT Prior research has explored the effect of synbiotics, the combination of probiotics and prebiotics, on the gut microbiota in clinical populations. However, evidence related to the effect of synbiotics on the gut microbiota in healthy adults has not been reviewed to date. OBJECTIVE A systematic review and meta-analysis was conducted to comprehensively investigate the effect of synbiotics on the gut microbiota and inflammatory markers in populations of healthy adults. DATA SOURCES Scopus, PubMed, Web of Science, ScienceDirect, MEDLINE, CINAHL, and The Cochrane Library were systematically searched to retrieve randomized controlled trials examining the primary outcome of gut microbiota or intestinal permeability changes after synbiotic consumption in healthy adults. Secondary outcomes of interest were short-chain fatty acids, inflammatory biomarkers, and gut microbiota diversity. DATA EXTRACTION Weighted (WMD) or standardized mean difference (SMD) outcome data were pooled in restricted maximum likelihood models using random effects. Twenty-seven articles reporting on 26 studies met the eligibility criteria (n = 1319). DATA ANALYSIS Meta-analyses of 16 studies showed synbiotics resulted in a significant increase in Lactobacillus cell count (SMD, 0.74; 95% confidence interval [CI], 0.15, 1.33; P = 0.01) and propionate concentration (SMD, 0.22; 95% CI, 0.02, 0.43; P = 0.03) compared with controls. A trend for an increase in Bifidobacterium relative abundance (WMD, 0.97; 95% CI, 0.42, 2.52; P = 0.10) and cell count (SMD, 0.82; 95% CI, 0.13, 1.88; P = 0.06) was seen. No significant differences in α-diversity, acetate, butyrate, zonulin, IL-6, CRP, or endotoxins were observed. CONCLUSION This review demonstrates that synbiotics modulate the gut microbiota by increasing Lactobacillus and propionate across various healthy adult populations, and may result in increased Bifidobacterium. Significant variations in synbiotic type, dose, and duration should be considered as limitations when applying findings to clinical practice. SYSTEMATIC REVIEW REGISTRATION PROSPERO no. CRD42021284033.
Collapse
Affiliation(s)
- Denelle J Cosier
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Kelly Lambert
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Elizabeth P Neale
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Yasmine Probst
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Karen Charlton
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
2
|
Abavisani M, Faraji S, Ebadpour N, Karav S, Sahebkar A. Beyond the Hayflick limit: How microbes influence cellular aging. Ageing Res Rev 2025; 104:102657. [PMID: 39788433 DOI: 10.1016/j.arr.2025.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/23/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Cellular senescence, a complex biological process resulting in permanent cell-cycle arrest, is central to aging and age-related diseases. A key concept in understanding cellular senescence is the Hayflick Limit, which refers to the limited capacity of normal human cells to divide, after which they become senescent. Senescent cells (SC) accumulate with age, releasing pro-inflammatory and tissue-remodeling factors collectively known as the senescence-associated secretory phenotype (SASP). The causes of senescence are multifaceted, including telomere attrition, oxidative stress, and genotoxic damage, and they extend to influences from microbial sources. Research increasingly emphasizes the role of the microbiome, especially gut microbiota (GM), in modulating host senescence processes. Beneficial microbial metabolites, such as short-chain fatty acids (SCFAs), support host health by maintaining antioxidant defenses and reducing inflammation, potentially mitigating senescence onset. Conversely, pathogenic bacteria like Pseudomonas aeruginosa and Helicobacter pylori introduce factors that damage host DNA or increase ROS, accelerating senescence via pathways such as NF-κB and p53-p21. This review explores the impact of bacterial factors on cellular senescence, highlighting the role of specific bacterial toxins in promoting senescence. Additionally, it discusses how dysbiosis and the loss of beneficial microbial species further contribute to age-related cellular deterioration. Modulating the gut microbiome to delay cellular senescence opens a path toward targeted anti-aging strategies. This work underscores the need for deeper investigation into microbial influence on aging, supporting innovative interventions to manage and potentially reverse cellular senescence.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Faraji
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Hu Q, Liu Y, Fei Y, Zhang J, Yin S, Zou H, Zhu F. Efficacy of probiotic, prebiotic, and synbiotics supplements in individuals with anemia: a systematic review and meta-analysis of randomized controlled trials. BMC Gastroenterol 2024; 24:472. [PMID: 39716076 DOI: 10.1186/s12876-024-03562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
INTRODUCTION Anemia is a common global health problem, particularly in impoverished regions, with a high incidence rate. The condition is multifactorial, with iron deficiency being one of the most prevalent causes. Current treatment for anemia often relies on iron supplements or erythropoiesis-stimulating agents, although these therapies may show limited efficacy for some patients. Recent evidence suggests that probiotics, prebiotics, and synbiotics, as microbiome modulators, hold significant potential in the treatment of anemia. These interventions may enhance iron absorption and improve overall blood health through their impact on gut microbiota, thus providing an alternative or complementary approach to conventional treatments. METHODS Six databases, including the Cochrane Central Register of Controlled Trials, Embase, PubMed, Web of Science (WOS), China National Knowledge Infrastructure (CNKI), and WangFang data library, were searched up to November 20, 2024. Studies published in English and Chinese were included. We included randomized controlled trials (RCTs) evaluating the effects of probiotics, prebiotics, or synbiotics in treating anemia. The experimental groups received probiotics, prebiotics, or synbiotics, while the control groups received placebo, alternative treatments, or no treatment. The primary outcome was hemoglobin (Hb) levels. Secondary outcomes included serum iron (SI) and serum ferritin (SF). A descriptive analysis was conducted for studies where meta-analysis was not feasible. The GRADE tool was used to assess the quality of evidence, and the Cochrane guidelines were employed to evaluate the risk of bias in each study. RESULTS Seven studies were included comprising a total of eight RCTs, with the main types of anemia being iron deficiency anemia (IDA) and anemia of chronic kidney disease (CKD), involving 632 patients. The analysis revealed that probiotics, prebiotics, or synbiotics significantly improved Hb levels in patients with anemia (WMD = 10.760, 95% CI: 4.593 to 16.747, p = 0.001), though heterogeneity was high (I² = 96.5%). Two RCTs (n = 120 participants) reported significant increases in serum iron levels in the probiotic group (WMD = 3.835, 95% CI: 3.271 to 4.400), with moderate heterogeneity (I² = 38.7%). Two RCTs (n = 192 participants) reported no significant differences were observed between the groups in serum ferritin levels (WMD = 8.048, p = 0.115), and heterogeneity remained high (I² = 62.6%). Subgroup analyses revealed that probiotics improved Hb levels in renal and iron-deficiency anemia, as well as across different doses. The synbiotic group showed consistent efficacy (I² = 0%), while the prebiotic group did not exhibit significant effects, with extremely high heterogeneity (I² = 99.3%). This indicates that heterogeneity may stem from variations in intervention types, and the results should be interpreted with caution. CONCLUSION There is moderate-quality evidence suggesting that probiotics, prebiotics, and synbiotics may improve anemia management, particularly by enhancing Hb levels. Further high-quality RCTs are required to explore the specific role of synbiotics in anemia management, including their comparative efficacy against probiotics and prebiotics alone, and their impact on gastrointestinal factors such as gut microbiota modulation and inflammation reduction. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42024590073.
Collapse
Affiliation(s)
- Qian Hu
- Department of Hematology, Meishan City People's Hospital, Meishan, China
| | - Ying Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youmei Fei
- Department of Hematology, Meishan City People's Hospital, Meishan, China
| | - Jingping Zhang
- Department of Hematology, Meishan City People's Hospital, Meishan, China
| | - Shao Yin
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Zou
- Department of Acupuncture and Rehabilitation, Renshou County Hospital of Traditional Chinese Medicine, Meishan, China
| | - Fengya Zhu
- Zigong First People's Hospital, Zigong, China.
| |
Collapse
|
4
|
Pedrosa LDF, de Vos P, Fabi JP. From Structure to Function: How Prebiotic Diversity Shapes Gut Integrity and Immune Balance. Nutrients 2024; 16:4286. [PMID: 39770907 PMCID: PMC11678351 DOI: 10.3390/nu16244286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The microbiota stability, diversity, and composition are pillars for an efficient and beneficial symbiotic relationship between its host and itself. Microbial dysbiosis, a condition where a homeostatic bacterial community is disturbed by acute or chronic events, is a predisposition for many diseases, including local and systemic inflammation that leads to metabolic syndrome, diabetes, and some types of cancers. Classical dysbiosis occurs in the large intestine. During this period, pathogenic strains can multiply, taking advantage of the compromised environment. This overgrowth triggers an exaggerated inflammatory response from the human immune system due to the weakened integrity of the intestinal barrier. Such inflammation can also directly influence higher polyp formation and/or tumorigenesis. Prebiotics can be instrumental in preventing or correcting dysbiosis. Prebiotics are molecules capable of serving as substrates for fermentation processes by gut microorganisms. This can promote returning the intestinal environment to homeostasis. Effective prebiotics are generally specific oligo- and polysaccharides, such as FOS or inulin. However, the direct effects of prebiotics on intestinal epithelial and immune cells must also be taken into consideration. This interaction happens with diverse prebiotic nondigestible carbohydrates, and they can inhibit or decrease the inflammatory response. The present work aims to elucidate and describe the different types of prebiotics, their influence, and their functionalities for health, primarily focusing on their ability to reduce and control inflammation in the intestinal epithelial barrier, gut, and systemic environments.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation, and Dissemination Centers), São Paulo 05508-080, SP, Brazil
- Food Research Center (FoRC), CEPIX-USP, University of São Paulo, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
5
|
Saedi S, Derakhshan S, Hasani A, Khoshbaten M, Poortahmasebi V, Milani PG, Sadeghi J. Recent Advances in Gut Microbiome Modulation: Effect of Probiotics, Prebiotics, Synbiotics, and Postbiotics in Inflammatory Bowel Disease Prevention and Treatment. Curr Microbiol 2024; 82:12. [PMID: 39589525 DOI: 10.1007/s00284-024-03997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
The human gastrointestinal tract contains trillions of microbes that affect the body. Dysbiosis in the composition of gut microbiota is one of the leading causes of chronic inflammatory diseases such as inflammatory bowel disease (IBD). IBD is a global public health challenge and millions of people in the world are suffering from this disease. It is a recurring inflammatory disease that affects different parts of the human digestive system. Ulcerative colitis and Crohn's disease are the two main types of IBD with similar clinical symptoms. The increasing incidence and severity of IBD require new treatment methods. The composition of the gut microbiota can be modified using dietary supplements such as prebiotics and bacterial supplements called probiotics. Furthermore, the effects of the microbiome can be improved by using paraprobiotics (non-viable, inactivated bacteria or their components) and/or postbiotics (products of bacterial metabolism).
Collapse
Affiliation(s)
- Samira Saedi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Reasearch Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safoura Derakhshan
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alka Hasani
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Khoshbaten
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Payam Gonbari Milani
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadeghi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Al-Habsi N, Al-Khalili M, Haque SA, Elias M, Olqi NA, Al Uraimi T. Health Benefits of Prebiotics, Probiotics, Synbiotics, and Postbiotics. Nutrients 2024; 16:3955. [PMID: 39599742 PMCID: PMC11597603 DOI: 10.3390/nu16223955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
The trillions of microbes that constitute the human gut microbiome play a crucial role in digestive health, immune response regulation, and psychological wellness. Maintaining gut microbiota is essential as metabolic diseases are associated with it. Functional food ingredients potentially improving gut health include prebiotics, probiotics, synbiotics, and postbiotics (PPSPs). While probiotics are living bacteria that provide health advantages when ingested sufficiently, prebiotics are non-digestible carbohydrates that support good gut bacteria. Synbiotics work together to improve immunity and intestinal health by combining probiotics and prebiotics. Postbiotics have also demonstrated numerous health advantages, such as bioactive molecules created during probiotic fermentation. According to a recent study, PPSPs can regulate the synthesis of metabolites, improve the integrity of the intestinal barrier, and change the gut microbiota composition to control metabolic illnesses. Additionally, the use of fecal microbiota transplantation (FMT) highlights the potential for restoring gut health through microbiota modulation, reinforcing the benefits of PPSPs in enhancing overall well-being. Research has shown that PPSPs provide several health benefits, such as improved immunological function, alleviation of symptoms associated with irritable bowel disease (IBD), decreased severity of allergies, and antibacterial and anti-inflammatory effects. Despite encouraging results, many unanswered questions remain about the scope of PPSPs' health advantages. Extensive research is required to fully realize the potential of these functional food components in enhancing human health and well-being. Effective therapeutic and prophylactic measures require further investigation into the roles of PPSPs, specifically their immune-system-modulating, cholesterol-lowering, antioxidant, and anti-inflammatory characteristics.
Collapse
Affiliation(s)
- Nasser Al-Habsi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Maha Al-Khalili
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Syed Ariful Haque
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman
- Department of Fisheries, Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University, Melandah, Jamalpur 2012, Bangladesh
| | - Moussa Elias
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Nada Al Olqi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Tasnim Al Uraimi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| |
Collapse
|
7
|
Volkert D, Delzenne N, Demirkan K, Schneider S, Abbasoglu O, Bahat G, Barazzoni R, Bauer J, Cuerda C, de van der Schueren M, Doganay M, Halil M, Lehtisalo J, Piccoli GB, Rolland Y, Sengul Aycicek G, Visser M, Wickramasinghe K, Wirth R, Wunderle C, Zanetti M, Cederholm T. Nutrition for the older adult - Current concepts. Report from an ESPEN symposium. Clin Nutr 2024; 43:1815-1824. [PMID: 38970937 DOI: 10.1016/j.clnu.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND & AIMS In view of the global demographic shift, a scientific symposium was organised by the European Society for Clinical Nutrition and Metabolism (ESPEN) to address nutrition-related challenges of the older population and provide an overview of the current state of knowledge. METHODS Eighteen nutrition-related issues of the ageing global society were presented by international experts during the symposium and summarised in this report. RESULTS Anorexia of ageing, dysphagia, malnutrition, frailty, sarcopenia, sarcopenic obesity, and the metabolic syndrome were highlighted as major nutrition-related geriatric syndromes. Great progress has been made in recent years through standardised definitions of some but not all syndromes. Regarding malnutrition, the GLIM approach has shown to be suitable also in older adults, justifying its continuous implementation. For anorexia of ageing, a consensus definition is still required. Intervention approaches should be integrated and person-centered with the aim of optimizing intrinsic capacity and maintaining functional capacity. Landmark studies like EFFORT and FINGER have impressively documented the potential of individualised and multifactorial interventions for functional and health benefits. Combining nutritional intervention with physical training seems particularly important whereas restrictive diets and drug treatment should generally be used with caution because of undesirable risks. Obesity management in older adults should take into account the risk of promoting sarcopenia. CONCLUSIONS In the future, even more individualised approaches like precision nutrition may enable better nutritional care. Meanwhile all stakeholders should focus on a better implementation of currently available strategies and work closely together to improve nutritional care for older adults.
Collapse
Affiliation(s)
- D Volkert
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany.
| | - N Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium.
| | - K Demirkan
- Department of Clinical Pharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkiye.
| | - S Schneider
- Gastroenterology and Nutrition, CHU de Nice, Université Côte d'Azur, Nice, France.
| | - O Abbasoglu
- Department of Clinical Nutrition, Hacettepe University, Ankara, Turkiye.
| | - G Bahat
- Department of Internal Medicine, Division of Geriatrics, Medical Faculty, Istanbul University, Istanbul, Turkiye.
| | - R Barazzoni
- Department of Medical, Surgical and Health Sciences, University of Trieste, Italy.
| | - J Bauer
- Center for Geriatric Medicine, Heidelberg University Hospital, Agaplesion Bethanien Hospital Heidelberg, Germany.
| | - C Cuerda
- Department of Medicine, Universidad Complutense, Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| | - M de van der Schueren
- Department of Nutrition, Dietetics and Lifestyle, HAN University of Applied Sciences, Nijmegen, The Netherlands; Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands.
| | - M Doganay
- Department of Surgery and Surgical Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkiye.
| | - M Halil
- Department of Internal Medicine, Division of Geriatrics, Medical Faculty, Hacettepe University, Ankara, Turkiye.
| | - J Lehtisalo
- Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland.
| | - G B Piccoli
- Nephrologie, Centre Hospitalier Le Mans, Le Mans, France.
| | - Y Rolland
- IHU HealthAge, Centre Hospitalo-Universitaire de Toulouse, France; Centre for Epidemiology and Research in POPulation Health, CERPOP UMR 1295, Toulouse, France.
| | | | - M Visser
- Department of Health Sciences, Faculty of Science, Vrije Universiteit Amsterdam and the Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.
| | - K Wickramasinghe
- Special Initiative on Noncommunicable Diseases and Innovation, WHO Regional Office for Europe, Copenhagen, Denmark.
| | - R Wirth
- Department of Geriatric Medicine, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany.
| | - C Wunderle
- Medical University Department, Division of General Internal and Emergency Medicine, Cantonal Hospital Aarau, Aarau, Switzerland.
| | - M Zanetti
- Geriatric Clinic, Department of Medical Sciences, University of Trieste, Italy.
| | - T Cederholm
- Department of Clinical Nutrition & Metabolism, Uppsala University and Theme Inflammation & Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
8
|
Ashique S, Mohanto S, Ahmed MG, Mishra N, Garg A, Chellappan DK, Omara T, Iqbal S, Kahwa I. Gut-brain axis: A cutting-edge approach to target neurological disorders and potential synbiotic application. Heliyon 2024; 10:e34092. [PMID: 39071627 PMCID: PMC11279763 DOI: 10.1016/j.heliyon.2024.e34092] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
The microbiota-gut-brain axis (MGBA) represents a sophisticated communication network between the brain and the gut, involving immunological, endocrinological, and neural mediators. This bidirectional interaction is facilitated through the vagus nerve, sympathetic and parasympathetic fibers, and is regulated by the hypothalamic-pituitary-adrenal (HPA) axis. Evidence shows that alterations in gut microbiota composition, or dysbiosis, significantly impact neurological disorders (NDs) like anxiety, depression, autism, Parkinson's disease (PD), and Alzheimer's disease (AD). Dysbiosis can affect the central nervous system (CNS) via neuroinflammation and microglial activation, highlighting the importance of the microbiota-gut-brain axis (MGBA) in disease pathogenesis. The microbiota influences the immune system by modulating chemokines and cytokines, impacting neuronal health. Synbiotics have shown promise in treating NDs by enhancing cognitive function and reducing inflammation. The gut microbiota's role in producing neurotransmitters and neuroactive compounds, such as short-chain fatty acids (SCFAs), is critical for CNS homeostasis. Therapeutic interventions targeting the MGBA, including dietary modulation and synbiotic supplementation, offer potential benefits for managing neurodegenerative disorders. However, more in-depth clinical studies are necessary to fully understand and harness the therapeutic potential of the MGBA in neurological health and disease.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, MP, 474005, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Timothy Omara
- Department of Chemistry, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Shabnoor Iqbal
- African Medicines Innovations and Technologies Development, Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Ivan Kahwa
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Uganda
| |
Collapse
|
9
|
Guarente L, Sinclair DA, Kroemer G. Human trials exploring anti-aging medicines. Cell Metab 2024; 36:354-376. [PMID: 38181790 DOI: 10.1016/j.cmet.2023.12.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
Here, we summarize the current knowledge on eight promising drugs and natural compounds that have been tested in the clinic: metformin, NAD+ precursors, glucagon-like peptide-1 receptor agonists, TORC1 inhibitors, spermidine, senolytics, probiotics, and anti-inflammatories. Multiple clinical trials have commenced to evaluate the efficacy of such agents against age-associated diseases including diabetes, cardiovascular disease, cancer, and neurodegenerative diseases. There are reasonable expectations that drugs able to decelerate or reverse aging processes will also exert broad disease-preventing or -attenuating effects. Hence, the outcome of past, ongoing, and future disease-specific trials may pave the way to the development of new anti-aging medicines. Drugs approved for specific disease indications may subsequently be repurposed for the treatment of organism-wide aging consequences.
Collapse
Affiliation(s)
- Leonard Guarente
- Department of Biology, Massachusetts Institute for Technology, Cambridge, MA 02139; Academy for Healthspan and Lifespan Research (AHLR), New York, NY, USA.
| | - David A Sinclair
- Academy for Healthspan and Lifespan Research (AHLR), New York, NY, USA; Blavatnik Institute, Genetics Department, Harvard Medical School, Boston, MA 02115, USA
| | - Guido Kroemer
- Academy for Healthspan and Lifespan Research (AHLR), New York, NY, USA; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
10
|
Cheong KL, Chen S, Teng B, Veeraperumal S, Zhong S, Tan K. Oligosaccharides as Potential Regulators of Gut Microbiota and Intestinal Health in Post-COVID-19 Management. Pharmaceuticals (Basel) 2023; 16:860. [PMID: 37375807 DOI: 10.3390/ph16060860] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The COVID-19 pandemic has had a profound impact worldwide, resulting in long-term health effects for many individuals. Recently, as more and more people recover from COVID-19, there is an increasing need to identify effective management strategies for post-COVID-19 syndrome, which may include diarrhea, fatigue, and chronic inflammation. Oligosaccharides derived from natural resources have been shown to have prebiotic effects, and emerging evidence suggests that they may also have immunomodulatory and anti-inflammatory effects, which could be particularly relevant in mitigating the long-term effects of COVID-19. In this review, we explore the potential of oligosaccharides as regulators of gut microbiota and intestinal health in post-COVID-19 management. We discuss the complex interactions between the gut microbiota, their functional metabolites, such as short-chain fatty acids, and the immune system, highlighting the potential of oligosaccharides to improve gut health and manage post-COVID-19 syndrome. Furthermore, we review evidence of gut microbiota with angiotensin-converting enzyme 2 expression for alleviating post-COVID-19 syndrome. Therefore, oligosaccharides offer a safe, natural, and effective approach to potentially improving gut microbiota, intestinal health, and overall health outcomes in post-COVID-19 management.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shutong Chen
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Bo Teng
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Suresh Veeraperumal
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou 535000, China
| |
Collapse
|
11
|
Ahangari Maleki M, Malek Mahdavi A, Soltani-Zangbar MS, Yousefi M, Khabbazi A. Randomized double-blinded controlled trial on the effect of synbiotic supplementation on IL-17/IL-23 pathway and disease activity in patients with axial spondyloarthritis. Immunopharmacol Immunotoxicol 2023; 45:43-51. [PMID: 35947039 DOI: 10.1080/08923973.2022.2112220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Interleukin 17 (IL17)-expressing CD4+ T cells and IL-17/IL-23 pathway play a key role in the pathogenesis of axial spondyloarthritis (axSpA). Synbiotics have been suggested due to their immunomodulatory effects in the treatment of autoimmune diseases. This randomized double-blind, placebo-controlled trial was designed to assess the effects of synbiotic supplement on IL-17/IL-23 pathway and disease activity in patients with axSpA. METHODS Forty-eight axSpA patients were randomly allocated to use one synbiotic capsule or placebo daily for 12 weeks. Disease activity was assessed using the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and ASAS-endorsed disease activity score-C-reactive protein (ASDAS-CRP). The secondary outcome was proportion of IL17-expressing CD4+ T cells, IL-17 and IL-23 gene expression, and supernatant levels of IL-17 and IL-23, which were measured at the baseline and end of the trial. RESULTS A total of 48 patients were randomized into the synbiotic and placebo groups. Thirty-eight patients completed the study. Synbiotic supplementation significantly reduced the proportion of IL17-expressing CD4+ T cells (4.88 ± 2.47 vs. 2.16 ± 1.25), gene expression of IL-17 (1.03 ± 0.24 vs. 0.65 ± 0.26) and IL-23 (1.01 ± 0.13 vs. 0.68 ± 0.24) and serum IL-17 (38.22 ± 14.40 vs. 24.38 ± 11.68) and IL-23 (51.77 ± 17.40 vs. 32.16 ± 12.46) compared with baseline. Significant differences between groups were noticed only in the proportion of IL17-expressing CD4+ T cells, and IL-17 and IL-23 gene expression. Synbiotic supplementation did not significantly alter BASDAI and ASDAS-CRP compared with baseline and placebo group at the end of trial. CONCLUSION Present study indicated beneficial effect of synbiotic supplement on IL-17/IL-23 pathway without improving disease activity in axSpApatients.HighlightsSynbiotic supplementation reduced IL17-expressing CD4+ T cells proportion in axSpA.Synbiotic supplementation decreased IL-17 and IL-23 gene expression in axSpA.Synbiotic supplementation did not change disease activity score in axSpA.
Collapse
Affiliation(s)
- Masoud Ahangari Maleki
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aida Malek Mahdavi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Rahat Breath and Sleep Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Mullish BH, Michael DR, Webberley TS, John D, Ramanathan G, Plummer SF, Wang D, Marchesi JR. The gastrointestinal status of healthy adults: a post hoc assessment of the impact of three distinct probiotics. Benef Microbes 2023; 14:183-195. [PMID: 37026364 DOI: 10.3920/bm2022.0092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
There is a growing awareness that supplementation with probiotic bacteria can impart beneficial effects during gastrointestinal disease, but less is known about the impact of probiotics on healthy subjects. Here, we report the outcomes of a post hoc analysis of recorded daily gastrointestinal events and bowel habits completed by healthy adults participating in a placebo-controlled, single-centre, randomised, double-blind, quadruple-arm probiotic tolerability study. Extensive screening ensured the healthy status of subjects entering the study and during a 2-week pre-intervention run-in period, a burden of gastrointestinal events (stomach pains, indigestion, acid reflux, stomach tightening, nausea and vomiting, stomach rumbling, bloating, belching and flatulence) was identified suggesting GI discomfort within the population. In the subsequent 12-week intervention period with 3 distinct probiotic formulations and a matched-placebo, reductions in the incidence rates of bloating, borborygmus, stomach pains, slow faecal transit and incomplete defecations were observed in the probiotic groups compared to the placebo. These results highlighted differing responses among the probiotic formulations tested and indicated potential anti-constipation effects. Product specific modulations in circulating interleukin-6 levels and in the composition of the gut microbiota were also detected. Together, these data suggest a role for probiotic supplementation to exert beneficial effects on the gastrointestinal functioning of healthy subjects and highlight the need for further longer-term studies in healthy populations to gain a greater understanding of the impact of probiotics.
Collapse
Affiliation(s)
- B H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - D R Michael
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot, United Kingdom
| | - T S Webberley
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot, United Kingdom
| | - D John
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot, United Kingdom
| | - G Ramanathan
- Pharmacology based Clinical Trials, Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA 70808, USA
| | - S F Plummer
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot, United Kingdom
| | - D Wang
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - J R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Bauer-Estrada K, Sandoval-Cuellar C, Rojas-Muñoz Y, Quintanilla-Carvajal MX. The modulatory effect of encapsulated bioactives and probiotics on gut microbiota: improving health status through functional food. Food Funct 2023; 14:32-55. [PMID: 36515144 DOI: 10.1039/d2fo02723b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The gut microbiota can be a determining factor of the health status of the host by its association with some diseases. It is known that dietary intake can modulate this microbiota through the consumption of compounds like essential oils, unsaturated fatty acids, non-digestible fiber, and probiotics, among others. However, these kinds of compounds can be damaged in the gastrointestinal tract as they pass through it to reach the intestine. This is due to the aggressive and changing conditions of this tract. For this reason, to guarantee that compounds arrive in the intestine at an adequate concentration to exert a modulatory effect on the gut microbiota, encapsulation should be sought. In this paper, we review the current research on compounds that modulate the gut microbiota, the encapsulation techniques used to protect the compounds through the gastrointestinal tract, in vitro models of this tract, and how these encapsulates interact with the gut microbiota. Finally, an overview of the regulatory status of these encapsulates is presented. The key findings are that prebiotics are the best modulators of gut microbiota fermentation metabolites. Also, probiotics promote an increase of beneficial gut microorganisms, which in some cases promotes their fermentation metabolites as well. Spray drying, freeze drying, and electrodynamics are notable encapsulation techniques that permit high encapsulation efficiency, high viability, and, together with wall materials, a high degree of protection against gastrointestinal conditions, allowing controlled release in the intestine and exerting a modulatory effect on gut microbiota.
Collapse
|
14
|
van der Schoot A, Helander C, Whelan K, Dimidi E. Probiotics and synbiotics in chronic constipation in adults: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr 2022; 41:2759-2777. [PMID: 36372047 DOI: 10.1016/j.clnu.2022.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND & AIMS Probiotics and synbiotics have been increasingly investigated for the management of chronic constipation. We aimed to investigate the effect of probiotics and synbiotics on stool output, gut transit time, symptoms and quality of life in adults with chronic constipation via a systematic review and meta-analysis of randomized controlled trials (RCTs). METHODS Studies were identified using electronic databases, backward citation and hand-searching abstracts. The search date was 10 July 2022. RCTs reporting administration of probiotics or synbiotics in adults with chronic constipation were included. Risk of bias (RoB) was assessed with the Cochrane RoB 2.0 tool. Meta-analysis was conducted separately for probiotics and synbiotics. Results were synthesized using risk ratios (RRs), mean differences or standardized mean differences (SMDs) and 95% confidence intervals (CIs) using a random-effects model. RESULTS Thirty RCTs investigating probiotics and four RCTs investigating synbiotics were included. Overall, 369/647 (57%) responded to probiotic treatment and 252/567 (44%) to control (RR 1.28, 95% CI 1.07, 1.52, p = 0.007). Probiotics increased stool frequency (SMD 0.71, 95% CI 0.37, 1.04, p < 0.00001), with Bifidobacterium lactis having a significant effect, but not mixtures of probiotics, Bacillus coagulans Unique IS2 or Lactobacillus casei Shirota. Probiotics did not impact stool consistency (SMD 0.26, 95% CI -0.03, 0.54, p = 0.08). Probiotics improved integrative symptom scores compared to control (SMD -0.46, 95% CI -0.89, -0.04). Synbiotics did not impact stool output or integrative symptom scores compared to control. CONCLUSIONS Certain probiotics may improve response to treatment, stool frequency and integrative constipation symptoms, providing cautious optimism for their use as a dietary management option. There is currently insufficient evidence to recommend synbiotics in the management of chronic constipation. Caution is needed when interpreting these results due to high heterogeneity and risk of bias amongst the studies.
Collapse
Affiliation(s)
- Alice van der Schoot
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom.
| | - Carina Helander
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom.
| | - Kevin Whelan
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom.
| | - Eirini Dimidi
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom.
| |
Collapse
|
15
|
Tarapatzi G, Filidou E, Kandilogiannakis L, Spathakis M, Gaitanidou M, Arvanitidis K, Drygiannakis I, Valatas V, Kotzampassi K, Manolopoulos VG, Kolios G, Vradelis S. The Probiotic Strains Bifidοbacterium lactis, Lactobacillus acidophilus, Lactiplantibacillus plantarum and Saccharomyces boulardii Regulate Wound Healing and Chemokine Responses in Human Intestinal Subepithelial Myofibroblasts. Pharmaceuticals (Basel) 2022; 15:1293. [PMID: 36297405 PMCID: PMC9611312 DOI: 10.3390/ph15101293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Bifidobacterium lactis, Lactobacillus acidophilus, Lactiplantibacillus plantarum and Saccharomyces boulardii are common probiotic supplements. Colonic subepithelial myofibroblasts (cSEMFs) are actively involved in mucosal wound healing and inflammation. cSEMFs, isolated from healthy individuals, were stimulated with 102 or 104 cfu/mL of these probiotic strains alone and in combination, and their effect on chemokine and wound healing factor expression was assessed by qRT-PCR, ELISA and Sircol Assay, and on cSEMFs migration, by Wound Healing Assay. These strains remained viable and altered cSEMFs’ inflammatory and wound healing behavior, depending on the strain and concentration. cSEMFs treated with a combination of the four probiotics had a moderate, but statistically significant, increase in the mRNA and/or protein expression of chemokines CXCL1, CXCL2, CXCL4, CXCL8, CXCL10, CCL2 and CCL5, and healing factors, collagen type I and III, fibronectin and tissue factor. In contrast, when each strain was administered alone, different effects were observed, with greater increase or decrease in chemokine and healing factor expression, which was balanced by the mixture. Overall, this study highlights that the use of multiple probiotic strains can potentially alert the gut mucosal immune system and promote wound healing, having a better effect on mucosal immunity than the use of single probiotics.
Collapse
Affiliation(s)
- Gesthimani Tarapatzi
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Leonidas Kandilogiannakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Michail Spathakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Maria Gaitanidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Konstantinos Arvanitidis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Ioannis Drygiannakis
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vassilis Valatas
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Stergios Vradelis
- Second Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
16
|
Onaolapo AY, Ojo FO, Olofinnade AT, Falade J, Lawal IA, Onaolapo OJ. Microbiome-Based Therapies in Parkinson's Disease: Can Tuning the Microbiota Become a Viable Therapeutic Strategy? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-126136. [PMID: 36056826 DOI: 10.2174/1871527321666220903114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/20/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Progressive neurodegenerative disorders such as Parkinson's disease (PD) have continued to baffle medical science, despite strides in the understanding of their pathology. The inability of currently available therapies to halt disease progression is a testament to an incomplete understanding of pathways crucial to disease initiation, progression and management. Science has continued to link the activities and equilibrium of the gut microbiome to the health and proper functioning of brain neurons. They also continue to stir interest in the potential applications of technologies that may shift the balance of the gut microbiome towards achieving a favourable outcome in PD management. There have been suggestions that an improved understanding of the roles of the gut microbiota is likely to lead to the emergence of an era where their manipulation becomes a recognized strategy for PD management. This review examines the current state of our journey in the quest to understand how the gut microbiota can influence several aspects of PD. We highlight the relationship between the gut microbiome/microbiota and PD pathogenesis, as well as preclinical and clinical evidence evaluating the effect of postbiotics, probiotics and prebiotics in PD management. This is with a view to ascertaining if we are at the threshold of discovering the application of a usable tool in our quest for disease modifying therapies in PD.
Collapse
Affiliation(s)
- Adejoke Y Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Folusho O Ojo
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Anthony T Olofinnade
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, College of Medicine, Lagos State University, Lagos State
| | - Joshua Falade
- Department of Mental Health, Afe-Babalola University Ado-Ekiti Ekiti State Nigeria
| | - Ismail A Lawal
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Anatomy, Faculty of Health Sciences. Alhikmah University Ilorin, Kwara State, Nigeria
| | - Olakunle J Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
17
|
Gomez Quintero DF, Kok CR, Hutkins R. The Future of Synbiotics: Rational Formulation and Design. Front Microbiol 2022; 13:919725. [PMID: 35935226 PMCID: PMC9354465 DOI: 10.3389/fmicb.2022.919725] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Synbiotics, mixtures of live microbes and substrates selectively utilized by host organisms, are of considerable interest due to their ability to improve gastrointestinal health. However, formulating synbiotics remains challenging, due in part, to the absence of rational strategies to assess these products for synbiotic activities prior to clinical trials. Currently, synbiotics are formulated as either complementary or synergistic. Complementary synbiotics are made by combining probiotics and prebiotics, with each component acting independently and with the combination shown to provide a clinical health benefit. Most commercial synbiotics as well as those used in clinical trials have been of the complementary type. In contrast, synergistic synbiotics require that the added microbe is specifically stimulated or it’s persistence or activity are enhanced by the cognate substrate. Although several innovative examples have been described in the past few years based on this principle, in practice, relatively few synbiotic studies have tested for synergism. In this review, selected recent examples of complementary and synergistic synbiotics and the rationale for their formulation will be described. In addition, pre-clinical experimental approaches for identifying combinations that provide a basis for satisfying the requirements for synergism will be discussed.
Collapse
Affiliation(s)
- David F. Gomez Quintero
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Car Reen Kok
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
- Complex Biosystems, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Robert Hutkins
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
- *Correspondence: Robert Hutkins,
| |
Collapse
|
18
|
Kumari R, Yadav Y, Misra R, Das U, Das Adhikari U, Malakar P, Dubey GP. Emerging frontiers of antibiotics use and their impacts on the human gut microbiome. Microbiol Res 2022; 263:127127. [PMID: 35914416 DOI: 10.1016/j.micres.2022.127127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/17/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023]
Abstract
Antibiotics, the primary drugs used to cure bacterial diseases, are increasingly becoming ineffective due to the emergence of multiple drug resistance (MDR) leading to recurrence of previously sensitive pathogens. Human gut microbiome (GM), known to play an important role in various physiological processes, consists of pool of diverse microbes. Indiscriminate use of antibiotics during the life span of an individual may lead to development of resistant microbes e.g. Vibrio, Acinetobacter, Escherichia, Klebsiella, Clostridia, etc. in the human GM. Transmission of antibiotic resistant genes (ARGs) between pathogenic and commensal bacteria occurs more frequently in microbiome communities wherein bacteria communicate and exchange cellular constituents both among themselves and with the host. Additionally, co-factors like 'early vs. late' exposure, type of antibiotics and duration of treatment modulate the adverse effects of antibiotics on GM maturation. Furthermore, factors like mode of birth, ethnicity, malnutrition, demography, diet, lifestyle, etc., which influence GM composition, can also indirectly alter the host response to antibiotics. Currently, advanced 'omics' and culturomics approaches are revealing novel avenues to study the interplay between antibiotics and the microbiome and to identify resistant genes in these bacterial communities. Here, we discuss the recent developments that have given insights into the effects of antibiotics on the homeostatic balance of the gut microbiome and thus on human health.
Collapse
Affiliation(s)
- Rekha Kumari
- Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India.
| | - Yasha Yadav
- Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India
| | - Richa Misra
- Department of Zoology, Sri Venkateswara College, University of Delhi, Delhi 1100021, India
| | - Utpal Das
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Upasana Das Adhikari
- The Ragon Institute of MGH, MIT and Harvard, 400 Technology Square Cambridge, MA 02139, USA
| | - Pushkar Malakar
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gyanendra P Dubey
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, 28 rue du Docteur Roux, 75724 Cedex 15 Paris, France.
| |
Collapse
|
19
|
Nguyen TT, Nguyen PT, Pham MN, Razafindralambo H, Hoang QK, Nguyen HT. Synbiotics: a New Route of Self-production and Applications to Human and Animal Health. Probiotics Antimicrob Proteins 2022; 14:980-993. [PMID: 35650337 DOI: 10.1007/s12602-022-09960-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 01/17/2023]
Abstract
Synbiotics are preparations in which prebiotics are added to probiotics to achieve superior performance and benefits on the host. A new route of their formation is to induce the prebiotic biosynthesis within the probiotic for synbiotic self-production or autologous synbiotics. The aim of this review paper is first to overview the basic concept and (updated) definitions of synergistic synbiotics, and then to focus particularly on the prebiotic properties of probiotic wall components while describing the environmental factors/stresses that stimulate autologous synbiotics, that is, the biosynthesis of prebiotic-forming microcapsule by probiotic bacteria, and finally to present some of their applications to human and animal health.
Collapse
Affiliation(s)
- Thi-Tho Nguyen
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam
| | - Phu-Tho Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Minh-Nhut Pham
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam
| | | | - Quoc-Khanh Hoang
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Huu-Thanh Nguyen
- An Giang University, An Giang, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
20
|
Prebiotics and the Human Gut Microbiota: From Breakdown Mechanisms to the Impact on Metabolic Health. Nutrients 2022; 14:nu14102096. [PMID: 35631237 PMCID: PMC9147914 DOI: 10.3390/nu14102096] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 12/13/2022] Open
Abstract
The colon harbours a dynamic and complex community of microorganisms, collectively known as the gut microbiota, which constitutes the densest microbial ecosystem in the human body. These commensal gut microbes play a key role in human health and diseases, revealing the strong potential of fine-tuning the gut microbiota to confer health benefits. In this context, dietary strategies targeting gut microbes to modulate the composition and metabolic function of microbial communities are of increasing interest. One such dietary strategy is the use of prebiotics, which are defined as substrates that are selectively utilised by host microorganisms to confer a health benefit. A better understanding of the metabolic pathways involved in the breakdown of prebiotics is essential to improve these nutritional strategies. In this review, we will present the concept of prebiotics, and focus on the main sources and nature of these components, which are mainly non-digestible polysaccharides. We will review the breakdown mechanisms of complex carbohydrates by the intestinal microbiota and present short-chain fatty acids (SCFAs) as key molecules mediating the dialogue between the intestinal microbiota and the host. Finally, we will review human studies exploring the potential of prebiotics in metabolic diseases, revealing the personalised responses to prebiotic ingestion. In conclusion, we hope that this review will be of interest to identify mechanistic factors for the optimization of prebiotic-based strategies.
Collapse
|
21
|
Bozzetti V, Senger S. Organoid technologies for the study of intestinal microbiota–host interactions. Trends Mol Med 2022; 28:290-303. [PMID: 35232671 PMCID: PMC8957533 DOI: 10.1016/j.molmed.2022.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
Postbiotics have recently emerged as critical effectors of the activity of probiotics and, because of their safety profile, they are considered potential therapeutics for the treatment of fragile patients. Here, we present recent studies on probiotics and postbiotics in the context of novel discovery tools, such as organoids and organoid-based platforms, and nontransformed preclinical models, that can be generated from intestinal stem cells. The implementation of organoid-related techniques is the next gold standard for unraveling the effect of microbial communities on homeostasis, inflammation, idiopathic diseases, and cancer in the gut. We also summarize recent studies on biotics in organoid-based models and offer our perspective on future directions.
Collapse
|
22
|
Requena T, Pérez Martínez G. Probiotics, Prebiotics, Synbiotics, Postbiotics and Other Biotics. What's Next? COMPREHENSIVE GUT MICROBIOTA 2022:197-210. [DOI: 10.1016/b978-0-12-819265-8.00094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Li HY, Zhou DD, Gan RY, Huang SY, Zhao CN, Shang A, Xu XY, Li HB. Effects and Mechanisms of Probiotics, Prebiotics, Synbiotics, and Postbiotics on Metabolic Diseases Targeting Gut Microbiota: A Narrative Review. Nutrients 2021; 13:nu13093211. [PMID: 34579087 PMCID: PMC8470858 DOI: 10.3390/nu13093211] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic diseases are serious threats to public health and related to gut microbiota. Probiotics, prebiotics, synbiotics, and postbiotics (PPSP) are powerful regulators of gut microbiota, thus possessing prospects for preventing metabolic diseases. Therefore, the effects and mechanisms of PPSP on metabolic diseases targeting gut microbiota are worth discussing and clarifying. Generally, PPSP benefit metabolic diseases management, especially obesity and type 2 diabetes mellitus. The underlying gut microbial-related mechanisms are mainly the modulation of gut microbiota composition, regulation of gut microbial metabolites, and improvement of intestinal barrier function. Moreover, clinical trials showed the benefits of PPSP on patients with metabolic diseases, while the clinical strategies for gestational diabetes mellitus, optimal formula of synbiotics and health benefits of postbiotics need further study. This review fully summarizes the relationship between probiotics, prebiotics, synbiotics, postbiotics, and metabolic diseases, presents promising results and the one in dispute, and especially attention is paid to illustrates potential mechanisms and clinical effects, which could contribute to the next research and development of PPSP.
Collapse
Affiliation(s)
- Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
| | - Cai-Ning Zhao
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China;
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
- Correspondence: ; Tel.: +86-20-8733-2391
| |
Collapse
|
24
|
Co-Encapsulated Synbiotics and Immobilized Probiotics in Human Health and Gut Microbiota Modulation. Foods 2021; 10:foods10061297. [PMID: 34200108 PMCID: PMC8230215 DOI: 10.3390/foods10061297] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Growing interest in the development of innovative functional products as ideal carriers for synbiotics, e.g., nutrient bars, yogurt, chocolate, juice, ice cream, and cheese, to ensure the daily intake of probiotics and prebiotics, which are needed to maintain a healthy gut microbiota and overall well-being, is undeniable and inevitable. This review focuses on the modern approaches that are currently being developed to modulate the gut microbiota, with an emphasis on the health benefits mediated by co-encapsulated synbiotics and immobilized probiotics. The impact of processing, storage, and simulated gastrointestinal conditions on the viability and bioactivity of probiotics together with prebiotics such as omega-3 polyunsaturated fatty acids, phytochemicals, and dietary fibers using various delivery systems are considered. Despite the proven biological properties of synbiotics, research in this area needs to be focused on the proper selection of probiotic strains, their prebiotic counterparts, and delivery systems to avoid suppression of their synergistic or complementary effect on human health. Future directions should lead to the development of functional food products containing stable synbiotics tailored for different age groups or specifically designed to fulfill the needs of adjuvant therapy.
Collapse
|