1
|
Zubair M, Owais M, Hassan T, Bendechache M, Hussain M, Hussain I, Werghi N. An interpretable framework for gastric cancer classification using multi-channel attention mechanisms and transfer learning approach on histopathology images. Sci Rep 2025; 15:13087. [PMID: 40240457 PMCID: PMC12003787 DOI: 10.1038/s41598-025-97256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
The importance of gastric cancer (GC) and the role of deep learning techniques in categorizing GC histopathology images have recently increased. Identifying the drawbacks of traditional deep learning models, including lack of interpretability, inability to capture complex patterns, lack of adaptability, and sensitivity to noise. A multi-channel attention mechanism-based framework is proposed that can overcome the limitations of conventional deep learning models by dynamically focusing on relevant features, enhancing extraction, and capturing complex relationships in medical data. The proposed framework uses three different attention mechanism channels and convolutional neural networks to extract multichannel features during the classification process. The proposed framework's strong performance is confirmed by competitive experiments conducted on a publicly available Gastric Histopathology Sub-size Image Database, which yielded remarkable classification accuracies of 99.07% and 98.48% on the validation and testing sets, respectively. Additionally, on the HCRF dataset, the framework achieved high classification accuracy of 99.84% and 99.65% on the validation and testing sets, respectively. The effectiveness and interchangeability of the three channels are further confirmed by ablation and interchangeability experiments, highlighting the remarkable performance of the framework in GC histopathological image classification tasks. This offers an advanced and pragmatic artificial intelligence solution that addresses challenges posed by unique medical image characteristics for intricate image analysis. The proposed approach in artificial intelligence medical engineering demonstrates significant potential for enhancing diagnostic precision by achieving high classification accuracy and treatment outcomes.
Collapse
Affiliation(s)
- Muhammad Zubair
- Interdisciplinary Research Center for Finance and Digital Economy, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Muhammad Owais
- Department of Mechanical & Nuclear Engineering, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - Taimur Hassan
- Departement of Electrical and Computer Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Malika Bendechache
- ADAPT Research Centre, School of Computer Science, University of Galway, H91 TK33, Galway, Ireland
| | - Muzammil Hussain
- Department of Software Engineering, Faculty of Information Technology, Al-Ahliyya Amman University, Amman, Jordan
| | - Irfan Hussain
- Department of Mechanical & Nuclear Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Naoufel Werghi
- Department of Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Sun Y, Puspanathan P, Lim T, Lin D. Advances and challenges in gastric cancer testing: the role of biomarkers. Cancer Biol Med 2025; 22:j.issn.2095-3941.2024.0386. [PMID: 40126094 PMCID: PMC11976707 DOI: 10.20892/j.issn.2095-3941.2024.0386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/23/2025] [Indexed: 03/25/2025] Open
Abstract
Advances in the identification of molecular biomarkers and the development of targeted therapies have enhanced the prognosis of patients with advanced gastric cancer. Several established biomarkers have been widely integrated into routine clinical diagnostics of gastric cancer to guide personalized treatment. Human epidermal growth factor receptor 2 (HER2) was the first molecular biomarker to be used in gastric cancer with trastuzumab being the first approved targeted therapy for HER2-positive gastric cancer. Programmed death-ligand 1 positivity and microsatellite instability can guide the use of immunotherapies, such as pembrolizumab and nivolumab. More recently, zolbetuximab has been approved for patients with claudin 18.2-positive diseases in some countries. More targeted therapies, including savolitinib for MET-positive patients, are currently under clinical investigation. However, the clinical application of these diagnostic approaches could be hampered by many existing challenges, including invasive and costly sampling methods, variability in immunohistochemistry interpretation, high costs and long turnaround times for next-generation sequencing, the absence of standardized and clinically validated diagnostic cut-off values for some biomarkers, and tumor heterogeneity. Novel testing and analysis techniques, such as artificial intelligence-assisted image analysis and multiplex immunohistochemistry, and emerging therapeutic strategies, including combination therapies that integrate immune checkpoint inhibitors with targeted therapies, offer potential solutions to some of these challenges. This article reviews recent progress in gastric cancer testing, outlines current challenges, and explores future directions for biomarker testing and targeted therapy for gastric cancer.
Collapse
Affiliation(s)
- Yu Sun
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | | | - Tony Lim
- Division of Pathology, Singapore General Hospital, Singapore 169608, Singapore
| | - Dongmei Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
3
|
Li R, Li J, Wang Y, Liu X, Xu W, Sun R, Xue B, Zhang X, Ai Y, Du Y, Jiang J. The artificial intelligence revolution in gastric cancer management: clinical applications. Cancer Cell Int 2025; 25:111. [PMID: 40119433 PMCID: PMC11929235 DOI: 10.1186/s12935-025-03756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/18/2025] [Indexed: 03/24/2025] Open
Abstract
Nowadays, gastric cancer has become a significant issue in the global cancer burden, and its impact cannot be ignored. The rapid development of artificial intelligence technology is attempting to address this situation, aiming to change the clinical management landscape of gastric cancer fundamentally. In this transformative change, machine learning and deep learning, as two core technologies, play a pivotal role, bringing unprecedented innovations and breakthroughs in the diagnosis, treatment, and prognosis evaluation of gastric cancer. This article comprehensively reviews the latest research status and application of artificial intelligence algorithms in gastric cancer, covering multiple dimensions such as image recognition, pathological analysis, personalized treatment, and prognosis risk assessment. These applications not only significantly improve the sensitivity of gastric cancer risk monitoring, the accuracy of diagnosis, and the precision of survival prognosis but also provide robust data support and a scientific basis for clinical decision-making. The integration of artificial intelligence, from optimizing the diagnosis process and enhancing diagnostic efficiency to promoting the practice of precision medicine, demonstrates its promising prospects for reshaping the treatment model of gastric cancer. Although most of the current AI-based models have not been widely used in clinical practice, with the continuous deepening and expansion of precision medicine, we have reason to believe that a new era of AI-driven gastric cancer care is approaching.
Collapse
Affiliation(s)
- Runze Li
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Jingfan Li
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Yuman Wang
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Xiaoyu Liu
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Weichao Xu
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
- Hebei Hospital of Traditional Chinese Medicine, Hebei, 050011, China
| | - Runxue Sun
- Hebei Hospital of Traditional Chinese Medicine, Hebei, 050011, China
| | - Binqing Xue
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Xinqian Zhang
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Yikun Ai
- North China University of Science and Technology, Tanshan 063000, China
| | - Yanru Du
- Hebei Hospital of Traditional Chinese Medicine, Hebei, 050011, China.
- Hebei Provincial Key Laboratory of Integrated Traditional and Western Medicine Research on Gastroenterology, Hebei, 050011, China.
- Hebei Key Laboratory of Turbidity and Toxicology, Hebei, 050011, China.
| | - Jianming Jiang
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China.
- Hebei Hospital of Traditional Chinese Medicine, Hebei, 050011, China.
| |
Collapse
|
4
|
Chai X, Zhang Y, Shi Z, Yang R, Liu X, Zhou Y, Li C, Li Z. An Overview of Predictive Biomarkers and Detection Approaches for Immunotherapy Response in GI Malignancies. J Gastroenterol Hepatol 2025. [PMID: 40074558 DOI: 10.1111/jgh.16930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
This review provides an in-depth exploration of the evolving role of immunotherapy in gastrointestinal (GI) cancers, with a particular focus on immune checkpoint inhibitors (ICIs) and their associated predictive biomarkers. We present a detailed analysis of established biomarkers, such as PD-L1, microsatellite instability (MSI), tumor mutational burden (TMB), and the tumor microenvironment (TME), as well as emerging biomarkers, including gut microbiota and Epstein-Barr virus (EBV). The predictive value of these biomarkers in guiding clinical decision-making and optimizing immunotherapy outcomes is thoroughly discussed. Additionally, we highlight recent advancements in biomarker evaluation technologies, including next-generation sequencing (NGS), multiplex immunohistochemistry, and artificial intelligence (AI)-driven models. These technologies are instrumental in advancing precision medicine by enhancing the accuracy and efficiency of biomarker detection and facilitating personalized treatment approaches. The integration of these predictive biomarkers with advanced detection technologies has significantly improved the clinical efficacy of immunotherapy in GI cancers by addressing challenges such as tumor heterogeneity, immune evasion, and variable patient responses. By providing a deeper understanding of tumor biology and patient-specific factors, these tools offer the potential to optimize patient selection, treatment regimens, and, ultimately, clinical outcomes. This review underscores the transformative impact of combining predictive biomarkers with cutting-edge technologies, marking a significant step forward in the field of precision oncology for GI cancer treatment.
Collapse
Affiliation(s)
- Xinyu Chai
- Department of Radiology, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiwen Zhang
- Department of Radiology, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhihui Shi
- Department of Radiology, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruiling Yang
- Department of Radiology, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xumin Liu
- Department of Radiology, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yueting Zhou
- Department of Radiology, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Caiyang Li
- Department of Radiology, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhenhui Li
- Department of Radiology, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
5
|
Liao Y, Chen X, Hu S, Chen B, Zhuo X, Xu H, Wu X, Zeng X, Zeng H, Zhang D, Zhi Y, Zhao L. Artificial Intelligence for Predicting HER2 Status of Gastric Cancer Based on Whole-Slide Histopathology Images: A Retrospective Multicenter Study. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408451. [PMID: 39792693 PMCID: PMC11904990 DOI: 10.1002/advs.202408451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/15/2024] [Indexed: 01/12/2025]
Abstract
Human epidermal growth factor receptor 2 (HER2) positive gastric cancer (GC) shows a robust response to the combined therapy based HER2-targeted therapy. The application of these therapies is highly dependent on the evaluation of tumor HER2 status. However, there are many risks and challenges in HER2 assessment in GC. Therefore, an economically viable and readily available instrument is requisite for distinguishing HER2 status among patients diagnosed with GC. The study has innovatively developed a deep learning model, HER2Net, which can predict the HER2 status by quantitatively calculating the proportion of HER2 high-expression regions. The HER2Net is trained on an internal training set derived from 531 hematoxylin & eosin (H&E) whole slide images (WSI) of 520 patients. Subsequently, the performance of HER2Net is validated on an internal test set from 115 H&E WSI of 111 patients and an external multi-center test set from 102 H&E WSI of 101 patients. The HER2Net achieves an accuracy of 0.9043 on the internal test set, and an accuracy of 0.8922 on an external test set from multiple institutes. This discovery indicates that the HER2Net can potentially offer a novel methodology for the identification of HER2-positive GC.
Collapse
Affiliation(s)
- Yuhan Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xinhua Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shupeng Hu
- School of Computer Science, University of Manchester, Manchester, M13 9PL, UK
| | - Bing Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xinghua Zhuo
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hao Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaojin Wu
- Department of Pathology, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, 528399, China
| | - Xiaofeng Zeng
- Department of Pathology, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, 528399, China
| | - Huimin Zeng
- Department of Pathology, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, 528399, China
| | - Donghui Zhang
- Department of Pathology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Yunfei Zhi
- Department of Gastroenterology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, 528399, China
| |
Collapse
|
6
|
Ying Y, Ju R, Wang J, Li W, Ji Y, Shi Z, Chen J, Chen M. Accuracy of machine learning in diagnosing microsatellite instability in gastric cancer: A systematic review and meta-analysis. Int J Med Inform 2025; 193:105685. [PMID: 39515046 DOI: 10.1016/j.ijmedinf.2024.105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Significant challenges persist in the early identification of microsatellite instability (MSI) within current clinical practice. In recent years, with the growing utilization of machine learning (ML) in the diagnosis and management of gastric cancer (GC), numerous researchers have explored the effectiveness of ML methodologies in detecting MSI. Nevertheless, the predictive value of these approaches still lacks comprehensive evidence. Accordingly, this study was carried out to consolidate the accuracy of ML in the prompt detection of MSI in GC. METHODS PubMed, the Cochrane Library, the Web of Science, and Embase were retrieved up to March 20, 2024. The risk of bias in the encompassed studies was evaluated utilizing a risk assessment tool for predictive models. Models were then subjected to subgroup analysis based on the modeling variables. RESULTS A total of 12 studies, encompassing 11,912 patients with GC, satisfied the predefined inclusion criteria. ML models established in these studies were primarily based on pathological images, clinical features, and radiomics. The results suggested that in the validation sets, the pathological image-based models had a synthesized c-index of 0.86 [95 % CI (0.83-0.89)], with sensitivity and specificity being 0.86 [95 % CI (0.76-0.92)] and 0.83 [95 % CI (0.78-0.87)], respectively; radiomics feature-based models achieved respective values of 0.87 [95 % CI (0.81-0.92)], 0.77 [95 % CI (0.70-0.83)] and 0.81 [95 % CI (0.74-0.87)]; radiomics feature-based models + clinical feature-based models achieved respective values of 0.87 [95 % CI (0.81-0.93)], 0.78 [95 % CI (0.70-0.84)] and 0.79 [95 % CI (0.69-0.86)]. CONCLUSIONS ML has demonstrated optimal performance in detecting MSI in GC and could serve as a prospective early adjunctive detection tool for MSI in GC. Future research should contemplate minimally invasive or non-invasive, readily collectible, and efficient predictors to augment the predictive accuracy of ML.
Collapse
Affiliation(s)
- Yuou Ying
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Ruyi Ju
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Jieyi Wang
- The Basic Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Wenkai Li
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Yuan Ji
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Zhenyu Shi
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Jinhan Chen
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Mingxian Chen
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Street Gucui No. 234, Region Xihu, Hangzhou 310012, Zhejiang Province, China.
| |
Collapse
|
7
|
Wang Z, Chen Y, Wu Y, Xue Y, Lin K, Zhang J, Xiao Y. Enhancing Epstein-Barr virus detection in IBD patients with XAI and clinical data integration. Comput Biol Med 2025; 184:109465. [PMID: 39579664 DOI: 10.1016/j.compbiomed.2024.109465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND There is increasing evidence of a link between Epstein-Barr virus (EBV) and gastrointestinal cancers, particularly in immunocompromised patients and those on thiopurines. Traditional endoscopic techniques have limitations in diagnosing EBV, whereas standard methods for diagnosing EBV have practical challenges in regular clinical settings related to their invasiveness and high costs. METHODS An explainable AI (XAI) model was developed to analyze 1598 endoscopic images from 287 patients with inflammatory bowel disease (IBD), with a focus on detecting EBV infection. Following the application of data augmentation and transfer learning techniques, the model accurately classified the presence of EBV, and its performance was quantified through receiver operating characteristic (ROC) curve analysis, including calculation of the area under the curve (AUC). Furthermore, a combination of the Grad-CAM method and clinical data analysis significantly improved the interpretability and diagnostic accuracy of the model. RESULTS Our model significantly outperformed other models, including those developed with ResNet50, Vision Transformer (ViT), and MobileNet v2 architectures, in detecting EBV on endoscopic images, achieving an accuracy of 73.83 % and an F1-score of 73.70 %. The model showed good performance in distinguishing between EBV-positive and EBV-negative images according to the confusion matrix and ROC curve analysis, with metrics including a true negative rate of 79.76 %, a true positive rate of 67.32 %, and an AUC of 0.74. Additionally, the generated salience maps effectively identified key regions in the images, enhancing lesion detection in patients with EBV infection. Our correlational analysis revealed significant associations between EBV infection and clinical parameters such as age, illness duration, and total bilirubin, and suggested that EBV infection had a notably greater incidence in ulcerative colitis (UC) patients than in Crohn's disease (CD) patients. CONCLUSION Our study successfully created an XAI-assisted system that allows the accurate detection of EBV in endoscopic images and improves the diagnosis of EBV infection through the integration of clinical data.
Collapse
Affiliation(s)
- Zheng Wang
- School of Computer Science, Hunan First Normal University, Changsha, 410205, China
| | - Yiqian Chen
- Gastroenterology Department of Xiangya Hospital, Central South University, Changsha, 410008, China; Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, 410011, China
| | - Yi Wu
- School of Computer Science, Hunan First Normal University, Changsha, 410205, China
| | - Yang Xue
- School of Computer Science, Hunan First Normal University, Changsha, 410205, China
| | - Kaibin Lin
- School of Computer Science, Hunan First Normal University, Changsha, 410205, China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China; Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, 518020, Guangdong, China; Department of Geriatrics, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Ying Xiao
- Gastroenterology Department of Xiangya Hospital, Central South University, Changsha, 410008, China; Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, 410011, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Komura D, Ochi M, Ishikawa S. Machine learning methods for histopathological image analysis: Updates in 2024. Comput Struct Biotechnol J 2024; 27:383-400. [PMID: 39897057 PMCID: PMC11786909 DOI: 10.1016/j.csbj.2024.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
The combination of artificial intelligence and digital pathology has emerged as a transformative force in healthcare and biomedical research. As an update to our 2018 review, this review presents comprehensive analysis of machine learning applications in histopathological image analysis, with focus on the developments since 2018. We highlight significant advances that have expanded the technical capabilities and practical applications of computational pathology. The review examines progress in addressing key challenges in the field as follows: processing of gigapixel whole slide images, insufficient labeled data, multidimensional analysis, domain shifts across institutions, and interpretability of machine learning models. We evaluate emerging trends, such as foundation models and multimodal integration, that are reshaping the field. Overall, our review highlights the potential of machine learning in enhancing both routine pathological analysis and scientific discovery in pathology. By providing this comprehensive overview, this review aims to guide researchers and clinicians in understanding the current state of the pathology image analysis field and its future trajectory.
Collapse
Affiliation(s)
- Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mieko Ochi
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Zhao W, Guo Z, Fan Y, Jiang Y, Yeung MCF, Yu L. Aligning knowledge concepts to whole slide images for precise histopathology image analysis. NPJ Digit Med 2024; 7:383. [PMID: 39738468 DOI: 10.1038/s41746-024-01411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025] Open
Abstract
Due to the large size and lack of fine-grained annotation, Whole Slide Images (WSIs) analysis is commonly approached as a Multiple Instance Learning (MIL) problem. However, previous studies only learn from training data, posing a stark contrast to how human clinicians teach each other and reason about histopathologic entities and factors. Here, we present a novel knowledge concept-based MIL framework, named ConcepPath, to fill this gap. Specifically, ConcepPath utilizes GPT-4 to induce reliable disease-specific human expert concepts from medical literature and incorporate them with a group of purely learnable concepts to extract complementary knowledge from training data. In ConcepPath, WSIs are aligned to these linguistic knowledge concepts by utilizing the pathology vision-language model as the basic building component. In the application of lung cancer subtyping, breast cancer HER2 scoring, and gastric cancer immunotherapy-sensitive subtyping tasks, ConcepPath significantly outperformed previous SOTA methods, which lacked the guidance of human expert knowledge.
Collapse
Affiliation(s)
- Weiqin Zhao
- School of Computing and Data Science, The University of Hong Kong, Hong Kong SAR, China
| | - Ziyu Guo
- School of Computing and Data Science, The University of Hong Kong, Hong Kong SAR, China
| | - Yinshuang Fan
- School of Computing and Data Science, The University of Hong Kong, Hong Kong SAR, China
| | - Yuming Jiang
- School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Maximus C F Yeung
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, China.
| | - Lequan Yu
- School of Computing and Data Science, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
10
|
Huang J, Saw SN, He T, Yang R, Qin Y, Chen Y, Kiong LC. DCNNLFS: A Dilated Convolutional Neural Network With Late Fusion Strategy for Intelligent Classification of Gastric Histopathology Images. IEEE J Biomed Health Inform 2024; 28:4534-4543. [PMID: 37983160 DOI: 10.1109/jbhi.2023.3334709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Gastric cancer has a high incidence rate, significantly threatening patients' health. Gastric histopathology images can reliably diagnose related diseases. Still, the data volume of histopathology images is too large, making misdiagnosis or missed diagnosis easy. The classification model based on deep learning has made some progress on gastric histopathology images. However, traditional convolutional neural networks (CNNs) generally use pooling operations, which will reduce the spatial resolution of the image, resulting in poor prediction results. The image feature in previous CNN has a poor perception of details. Therefore, we design a dilated CNN with a late fusion strategy (DCNNLFS) for gastric histopathology image classification. The DCNNLFS model utilizes dilated convolutions, enabling it to expand the receptive field. The dilated convolutions can learn the different contextual information by adjusting the dilation rate. The DCNNLFS model uses a late fusion strategy to enhance the classification ability of DCNNLFS. We run related experiments on a gastric histopathology image dataset to verify the excellence of the DCNNLFS model, where the three metrics Precision, Accuracy, and F1-Score are 0.938, 0.935, and 0.959.
Collapse
|
11
|
Han Z, Zhang Z, Yang X, Li Z, Sang S, Islam MT, Guo AA, Li Z, Wang X, Wang J, Zhang T, Sun Z, Yu L, Wang W, Xiong W, Li G, Jiang Y. Development and interpretation of a pathomics-driven ensemble model for predicting the response to immunotherapy in gastric cancer. J Immunother Cancer 2024; 12:e008927. [PMID: 38749538 PMCID: PMC11097892 DOI: 10.1136/jitc-2024-008927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Only a subset of patients with gastric cancer experience long-term benefits from immune checkpoint inhibitors (ICIs). Currently, there is a deficiency in precise predictive biomarkers for ICI efficacy. The aim of this study was to develop and validate a pathomics-driven ensemble model for predicting the response to ICIs in gastric cancer, using H&E-stained whole slide images (WSI). METHODS This multicenter study retrospectively collected and analyzed H&E-stained WSIs and clinical data from 584 patients with gastric cancer. An ensemble model, integrating four classifiers: least absolute shrinkage and selection operator, k-nearest neighbors, decision trees, and random forests, was developed and validated using pathomics features, with the objective of predicting the therapeutic efficacy of immune checkpoint inhibition. Model performance was evaluated using metrics including the area under the curve (AUC), sensitivity, and specificity. Additionally, SHAP (SHapley Additive exPlanations) analysis was used to explain the model's predicted values as the sum of the attribution values for each input feature. Pathogenomics analysis was employed to explain the molecular mechanisms underlying the model's predictions. RESULTS Our pathomics-driven ensemble model effectively stratified the response to ICIs in training cohort (AUC 0.985 (95% CI 0.971 to 0.999)), which was further validated in internal validation cohort (AUC 0.921 (95% CI 0.839 to 0.999)), as well as in external validation cohort 1 (AUC 0.914 (95% CI 0.837 to 0.990)), and external validation cohort 2 (0.927 (95% CI 0.802 to 0.999)). The univariate Cox regression analysis revealed that the prediction signature of pathomics-driven ensemble model was a prognostic factor for progression-free survival in patients with gastric cancer who underwent immunotherapy (p<0.001, HR 0.35 (95% CI 0.24 to 0.50)), and remained an independent predictor after multivariable Cox regression adjusted for clinicopathological variables, (including sex, age, carcinoembryonic antigen, carbohydrate antigen 19-9, therapy regime, line of therapy, differentiation, location and programmed death ligand 1 (PD-L1) expression in all patients (p<0.001, HR 0.34 (95% CI 0.24 to 0.50)). Pathogenomics analysis suggested that the ensemble model is driven by molecular-level immune, cancer, metabolism-related pathways, and was correlated with the immune-related characteristics, including immune score, Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data score, and tumor purity. CONCLUSIONS Our pathomics-driven ensemble model exhibited high accuracy and robustness in predicting the response to ICIs using WSIs. Therefore, it could serve as a novel and valuable tool to facilitate precision immunotherapy.
Collapse
Affiliation(s)
- Zhen Han
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine,Southern Medical University, Guangzhou, Guangdong, China
| | - Zhicheng Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin, China
- JancsiLab, JancsiTech, Hongkong, China
| | - Xianqi Yang
- Department of Gastric Surgery, and State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhe Li
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Shengtian Sang
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Md Tauhidul Islam
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Alyssa A Guo
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Zihan Li
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Xiaoyan Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Taojun Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine,Southern Medical University, Guangzhou, Guangdong, China
| | - Zepang Sun
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine,Southern Medical University, Guangzhou, Guangdong, China
| | - Lequan Yu
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wei Wang
- Department of Gastric Surgery, and State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wenjun Xiong
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine,Southern Medical University, Guangzhou, Guangdong, China
- School of Clinical Medicine, Tsinghua University, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Yuming Jiang
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
12
|
Farzan R. Artificial intelligence in Immuno-genetics. Bioinformation 2024; 20:29-35. [PMID: 38352901 PMCID: PMC10859949 DOI: 10.6026/973206300200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Rapid advancements in the field of artificial intelligence (AI) have opened up unprecedented opportunities to revolutionize various scientific domains, including immunology and genetics. Therefore, it is of interest to explore the emerging applications of AI in immunology and genetics, with the objective of enhancing our understanding of the dynamic intricacies of the immune system, disease etiology, and genetic variations. Hence, the use of AI methodologies in immunological and genetic datasets, thereby facilitating the development of innovative approaches in the realms of diagnosis, treatment, and personalized medicine is reviewed.
Collapse
Affiliation(s)
- Raed Farzan
- Department of Clinical Laboratory Sciences, College of Applied Medical Scienecs, King Saud University, Riyadh - 11433, Saudi Arabia
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh - 11433, Saudi Arabia
- Medical and Molecular Genetics Research, King Saud University, Riyadh-11433, Saudi Arabia
| |
Collapse
|
13
|
Lee J, Cha S, Kim J, Kim JJ, Kim N, Jae Gal SG, Kim JH, Lee JH, Choi YD, Kang SR, Song GY, Yang DH, Lee JH, Lee KH, Ahn S, Moon KM, Noh MG. Ensemble Deep Learning Model to Predict Lymphovascular Invasion in Gastric Cancer. Cancers (Basel) 2024; 16:430. [PMID: 38275871 PMCID: PMC10814827 DOI: 10.3390/cancers16020430] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Lymphovascular invasion (LVI) is one of the most important prognostic factors in gastric cancer as it indicates a higher likelihood of lymph node metastasis and poorer overall outcome for the patient. Despite its importance, the detection of LVI(+) in histopathology specimens of gastric cancer can be a challenging task for pathologists as invasion can be subtle and difficult to discern. Herein, we propose a deep learning-based LVI(+) detection method using H&E-stained whole-slide images. The ConViT model showed the best performance in terms of both AUROC and AURPC among the classification models (AUROC: 0.9796; AUPRC: 0.9648). The AUROC and AUPRC of YOLOX computed based on the augmented patch-level confidence score were slightly lower (AUROC: -0.0094; AUPRC: -0.0225) than those of the ConViT classification model. With weighted averaging of the patch-level confidence scores, the ensemble model exhibited the best AUROC, AUPRC, and F1 scores of 0.9880, 0.9769, and 0.9280, respectively. The proposed model is expected to contribute to precision medicine by potentially saving examination-related time and labor and reducing disagreements among pathologists.
Collapse
Affiliation(s)
- Jonghyun Lee
- Department of Medical and Digital Engineering, Hanyang University College of Engineering, Seoul 04763, Republic of Korea;
| | - Seunghyun Cha
- Department of Pre-Medicine, Chonnam National University Medical School, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Gwangju 58128, Republic of Korea;
| | - Jiwon Kim
- NetTargets, 495 Sinseong-dong, Yuseong, Daejeon 34109, Republic of Korea
| | - Jung Joo Kim
- AMGINE, Inc., Jeongui-ro 8-gil 13, Seoul 05836, Republic of Korea;
| | - Namkug Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 25440, Republic of Korea; (N.K.); (S.G.J.G.)
| | - Seong Gyu Jae Gal
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 25440, Republic of Korea; (N.K.); (S.G.J.G.)
| | - Ju Han Kim
- Division of Biomedical Informatics, Seoul National University Biomedical Informatics (SNUBI), Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Jeong Hoon Lee
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA;
| | - Yoo-Duk Choi
- Department of Pathology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea;
| | - Sae-Ryung Kang
- Department of Nuclear Medicine, Clinical Medicine Research Center, Chonnam National University Hospital, 671 Jebongno, Gwangju 61469, Republic of Korea;
| | - Ga-Young Song
- Departments of Hematology-Oncology, Chonnam National University Hwasun Hospital, 322 Seoyangro, Hwasun 58128, Republic of Korea; (G.-Y.S.); (D.-H.Y.)
| | - Deok-Hwan Yang
- Departments of Hematology-Oncology, Chonnam National University Hwasun Hospital, 322 Seoyangro, Hwasun 58128, Republic of Korea; (G.-Y.S.); (D.-H.Y.)
| | - Jae-Hyuk Lee
- Department of Pathology, Chonnam National University Hwasun Hospital and Medical School, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Hwasun 58128, Republic of Korea (K.-H.L.)
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Hwasun Hospital and Medical School, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Hwasun 58128, Republic of Korea (K.-H.L.)
| | - Sangjeong Ahn
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
| | - Kyoung Min Moon
- Division of Pulmonary and Allergy Medicine, Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea
- Artificial Intelligence, ZIOVISION Co., Ltd., Chuncheon 24341, Republic of Korea
| | - Myung-Giun Noh
- Department of Pathology, Chonnam National University Hwasun Hospital and Medical School, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Hwasun 58128, Republic of Korea (K.-H.L.)
| |
Collapse
|
14
|
Yang Y, Sun K, Gao Y, Wang K, Yu G. Preparing Data for Artificial Intelligence in Pathology with Clinical-Grade Performance. Diagnostics (Basel) 2023; 13:3115. [PMID: 37835858 PMCID: PMC10572440 DOI: 10.3390/diagnostics13193115] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The pathology is decisive for disease diagnosis but relies heavily on experienced pathologists. In recent years, there has been growing interest in the use of artificial intelligence in pathology (AIP) to enhance diagnostic accuracy and efficiency. However, the impressive performance of deep learning-based AIP in laboratory settings often proves challenging to replicate in clinical practice. As the data preparation is important for AIP, the paper has reviewed AIP-related studies in the PubMed database published from January 2017 to February 2022, and 118 studies were included. An in-depth analysis of data preparation methods is conducted, encompassing the acquisition of pathological tissue slides, data cleaning, screening, and subsequent digitization. Expert review, image annotation, dataset division for model training and validation are also discussed. Furthermore, we delve into the reasons behind the challenges in reproducing the high performance of AIP in clinical settings and present effective strategies to enhance AIP's clinical performance. The robustness of AIP depends on a randomized collection of representative disease slides, incorporating rigorous quality control and screening, correction of digital discrepancies, reasonable annotation, and sufficient data volume. Digital pathology is fundamental in clinical-grade AIP, and the techniques of data standardization and weakly supervised learning methods based on whole slide image (WSI) are effective ways to overcome obstacles of performance reproduction. The key to performance reproducibility lies in having representative data, an adequate amount of labeling, and ensuring consistency across multiple centers. Digital pathology for clinical diagnosis, data standardization and the technique of WSI-based weakly supervised learning will hopefully build clinical-grade AIP.
Collapse
Affiliation(s)
- Yuanqing Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (Y.Y.); (K.S.)
- Department of Biomedical Engineering, School of Medical, Tsinghua University, Beijing 100084, China
| | - Kai Sun
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (Y.Y.); (K.S.)
- Furong Laboratory, Changsha 410013, China
| | - Yanhua Gao
- Department of Ultrasound, Shaanxi Provincial People’s Hospital, Xi’an 710068, China;
| | - Kuansong Wang
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha 410013, China;
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Gang Yu
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (Y.Y.); (K.S.)
| |
Collapse
|
15
|
Yavuz A, Alpsoy A, Gedik EO, Celik MY, Bassorgun CI, Unal B, Elpek GO. Artificial intelligence applications in predicting the behavior of gastrointestinal cancers in pathology. Artif Intell Gastroenterol 2022; 3:142-162. [DOI: 10.35712/aig.v3.i5.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/25/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Recent research has provided a wealth of data supporting the application of artificial intelligence (AI)-based applications in routine pathology practice. Indeed, it is clear that these methods can significantly support an accurate and rapid diagnosis by eliminating errors, increasing reliability, and improving workflow. In addition, the effectiveness of AI in the pathological evaluation of prognostic parameters associated with behavior, course, and treatment in many types of tumors has also been noted. Regarding gastrointestinal system (GIS) cancers, the contribution of AI methods to pathological diagnosis has been investigated in many studies. On the other hand, studies focusing on AI applications in evaluating parameters to determine tumor behavior are relatively few. For this purpose, the potential of AI models has been studied over a broad spectrum, from tumor subtyping to the identification of new digital biomarkers. The capacity of AI to infer genetic alterations of cancer tissues from digital slides has been demonstrated. Although current data suggest the merit of AI-based approaches in assessing tumor behavior in GIS cancers, a wide range of challenges still need to be solved, from laboratory infrastructure to improving the robustness of algorithms, before incorporating AI applications into real-life GIS pathology practice. This review aims to present data from AI applications in evaluating pathological parameters related to the behavior of GIS cancer with an overview of the opportunities and challenges encountered in implementing AI in pathology.
Collapse
Affiliation(s)
- Aysen Yavuz
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Anil Alpsoy
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Elif Ocak Gedik
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | | | | | - Betul Unal
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| |
Collapse
|
16
|
Deep learning model to predict Epstein-Barr virus associated gastric cancer in histology. Sci Rep 2022; 12:18466. [PMID: 36323712 PMCID: PMC9630260 DOI: 10.1038/s41598-022-22731-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/18/2022] [Indexed: 11/20/2022] Open
Abstract
The detection of Epstein-Barr virus (EBV) in gastric cancer patients is crucial for clinical decision making, as it is related with specific treatment responses and prognoses. Despite its importance, the limited medical resources preclude universal EBV testing. Herein, we propose a deep learning-based EBV prediction method from H&E-stained whole-slide images (WSI). Our model was developed using 319 H&E stained WSI (26 EBV positive; TCGA dataset) from the Cancer Genome Atlas, and 108 WSI (8 EBV positive; ISH dataset) from an independent institution. Our deep learning model, EBVNet consists of two sequential components: a tumor classifier and an EBV classifier. We visualized the learned representation by the classifiers using UMAP. We externally validated the model using 60 additional WSI (7 being EBV positive; HGH dataset). We compared the model's performance with those of four pathologists. EBVNet achieved an AUPRC of 0.65, whereas the four pathologists yielded a mean AUPRC of 0.41. Moreover, EBVNet achieved an negative predictive value, sensitivity, specificity, precision, and F1-score of 0.98, 0.86, 0.92, 0.60, and 0.71, respectively. Our proposed model is expected to contribute to prescreen patients for confirmatory testing, potentially to save test-related cost and labor.
Collapse
|
17
|
Vuong TTL, Song B, Kwak JT, Kim K. Prediction of Epstein-Barr Virus Status in Gastric Cancer Biopsy Specimens Using a Deep Learning Algorithm. JAMA Netw Open 2022; 5:e2236408. [PMID: 36205993 PMCID: PMC9547324 DOI: 10.1001/jamanetworkopen.2022.36408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IMPORTANCE Epstein-Barr virus (EBV)-associated gastric cancer (EBV-GC) is 1 of 4 molecular subtypes of GC and is confirmed by an expensive molecular test, EBV-encoded small RNA in situ hybridization. EBV-GC has 2 histologic characteristics, lymphoid stroma and lace-like tumor pattern, but projecting EBV-GC at biopsy is difficult even for experienced pathologists. OBJECTIVE To develop and validate a deep learning algorithm to predict EBV status from pathology images of GC biopsy. DESIGN, SETTING, AND PARTICIPANTS This diagnostic study developed a deep learning classifier to predict EBV-GC using image patches of tissue microarray (TMA) and whole slide images (WSIs) of GC and applied it to GC biopsy specimens from GCs diagnosed at Kangbuk Samsung Hospital between 2011 and 2020. For a quantitative evaluation and EBV-GC prediction on biopsy specimens, the area of each class and the fraction in total tissue or tumor area were calculated. Data were analyzed from March 5, 2021, to February 10, 2022. MAIN OUTCOMES AND MEASURES Evaluation metrics of predictive model performance were assessed on accuracy, recall, precision, F1 score, area under the receiver operating characteristic curve (AUC), and κ coefficient. RESULTS This study included 137 184 image patches from 16 TMAs (708 tissue cores), 24 WSIs, and 286 biopsy images of GC. The classifier was able to classify EBV-GC image patches from TMAs and WSIs with 94.70% accuracy, 0.936 recall, 0.938 precision, 0.937 F1 score, and 0.909 κ coefficient. The classifier was used for predicting and measuring the area and fraction of EBV-GC on biopsy tissue specimens. A 10% cutoff value for the predicted fraction of EBV-GC to tissue (EBV-GC/tissue area) produced the best prediction results in EBV-GC biopsy specimens and showed the highest AUC value (0.8723; 95% CI, 0.7560-0.9501). That cutoff also obtained high sensitivity (0.895) and moderate specificity (0.745) compared with experienced pathologist sensitivity (0.842) and specificity (0.854) when using the presence of lymphoid stroma and a lace-like pattern as diagnostic criteria. On prediction maps, EBV-GCs with lace-like pattern and lymphoid stroma showed the same prediction results as EBV-GC, but cases lacking these histologic features revealed heterogeneous prediction results of EBV-GC and non-EBV-GC areas. CONCLUSIONS AND RELEVANCE This study showed the feasibility of EBV-GC prediction using a deep learning algorithm, even in biopsy samples. Use of such an image-based classifier before a confirmatory molecular test will reduce costs and tissue waste.
Collapse
Affiliation(s)
- Trinh Thi Le Vuong
- School of Electrical Engineering, Korea University, Seoul, Republic of Korea
| | - Boram Song
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin T. Kwak
- School of Electrical Engineering, Korea University, Seoul, Republic of Korea
| | - Kyungeun Kim
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
18
|
Abstract
Gastric cancer (GC) is one of the most common lethal malignant neoplasms worldwide, with limited treatment options for both locally advanced and/or metastatic conditions, resulting in a dismal prognosis. Although the widely used morphological classifications may be helpful for endoscopic or surgical treatment choices, they are still insufficient to guide precise and/or personalized therapy for individual patients. Recent advances in genomic technology and high-throughput analysis may improve the understanding of molecular pathways associated with GC pathogenesis and aid in the classification of GC at the molecular level. Advances in next-generation sequencing have enabled the identification of several genetic alterations through single experiments. Thus, understanding the driver alterations involved in gastric carcinogenesis has become increasingly important because it can aid in the discovery of potential biomarkers and therapeutic targets. In this article, we review the molecular classifications of GC, focusing on The Cancer Genome Atlas (TCGA) classification. We further describe the currently available biomarker-targeted therapies and potential biomarker-guided therapies. This review will help clinicians by providing an inclusive understanding of the molecular pathology of GC and may assist in selecting the best treatment approaches for patients with GC.
Collapse
Affiliation(s)
- Moonsik Kim
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - An Na Seo
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea.
| |
Collapse
|
19
|
Wong ANN, He Z, Leung KL, To CCK, Wong CY, Wong SCC, Yoo JS, Chan CKR, Chan AZ, Lacambra MD, Yeung MHY. Current Developments of Artificial Intelligence in Digital Pathology and Its Future Clinical Applications in Gastrointestinal Cancers. Cancers (Basel) 2022; 14:3780. [PMID: 35954443 PMCID: PMC9367360 DOI: 10.3390/cancers14153780] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
The implementation of DP will revolutionize current practice by providing pathologists with additional tools and algorithms to improve workflow. Furthermore, DP will open up opportunities for development of AI-based tools for more precise and reproducible diagnosis through computational pathology. One of the key features of AI is its capability to generate perceptions and recognize patterns beyond the human senses. Thus, the incorporation of AI into DP can reveal additional morphological features and information. At the current rate of AI development and adoption of DP, the interest in computational pathology is expected to rise in tandem. There have already been promising developments related to AI-based solutions in prostate cancer detection; however, in the GI tract, development of more sophisticated algorithms is required to facilitate histological assessment of GI specimens for early and accurate diagnosis. In this review, we aim to provide an overview of the current histological practices in AP laboratories with respect to challenges faced in image preprocessing, present the existing AI-based algorithms, discuss their limitations and present clinical insight with respect to the application of AI in early detection and diagnosis of GI cancer.
Collapse
Affiliation(s)
- Alex Ngai Nick Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; (A.N.N.W.); (Z.H.); (K.L.L.); (C.Y.W.); (S.C.C.W.); (J.S.Y.)
| | - Zebang He
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; (A.N.N.W.); (Z.H.); (K.L.L.); (C.Y.W.); (S.C.C.W.); (J.S.Y.)
| | - Ka Long Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; (A.N.N.W.); (Z.H.); (K.L.L.); (C.Y.W.); (S.C.C.W.); (J.S.Y.)
| | - Curtis Chun Kit To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China; (C.C.K.T.); (C.K.R.C.); (M.D.L.)
| | - Chun Yin Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; (A.N.N.W.); (Z.H.); (K.L.L.); (C.Y.W.); (S.C.C.W.); (J.S.Y.)
| | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; (A.N.N.W.); (Z.H.); (K.L.L.); (C.Y.W.); (S.C.C.W.); (J.S.Y.)
| | - Jung Sun Yoo
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; (A.N.N.W.); (Z.H.); (K.L.L.); (C.Y.W.); (S.C.C.W.); (J.S.Y.)
| | - Cheong Kin Ronald Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China; (C.C.K.T.); (C.K.R.C.); (M.D.L.)
| | - Angela Zaneta Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, Shatin, Hong Kong SAR, China;
| | - Maribel D. Lacambra
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China; (C.C.K.T.); (C.K.R.C.); (M.D.L.)
| | - Martin Ho Yin Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; (A.N.N.W.); (Z.H.); (K.L.L.); (C.Y.W.); (S.C.C.W.); (J.S.Y.)
| |
Collapse
|
20
|
Interpretable tumor differentiation grade and microsatellite instability recognition in gastric cancer using deep learning. J Transl Med 2022; 102:641-649. [PMID: 35177797 DOI: 10.1038/s41374-022-00742-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer possesses great histological and molecular diversity, which creates obstacles for rapid and efficient diagnoses. Classic diagnoses either depend on the pathologist's judgment, which relies heavily on subjective experience, or time-consuming molecular assays for subtype diagnosis. Here, we present a deep learning (DL) system to achieve interpretable tumor differentiation grade and microsatellite instability (MSI) recognition in gastric cancer directly using hematoxylin-eosin (HE) staining whole-slide images (WSIs). WSIs from 467 patients were divided into three cohorts: the training cohort with 348 annotated WSIs, the testing cohort with 88 annotated WSIs, and the integration testing cohort with 31 original WSIs without tumor contour annotation. First, the DL models comprehensibly achieved tumor differentiation recognition with an F1 values of 0.8615 and 0.8977 for poorly differentiated adenocarcinoma (PDA) and well-differentiated adenocarcinoma (WDA) classes. Its ability to extract pathological features about the glandular structure formation, which is the key to distinguishing between PDA and WDA, increased the interpretability of the DL models. Second, the DL models achieved MSI status recognition with a patient-level accuracy of 86.36% directly from HE-stained WSIs in the testing cohort. Finally, the integrated end-to-end system achieved patient-level MSI recognition from original HE staining WSIs with an accuracy of 83.87% in the integration testing cohort with no tumor contour annotation. The proposed system, therefore, demonstrated high accuracy and interpretability, which can potentially promote the implementation of artificial intelligence healthcare.
Collapse
|
21
|
Laleh NG, Muti HS, Loeffler CML, Echle A, Saldanha OL, Mahmood F, Lu MY, Trautwein C, Langer R, Dislich B, Buelow RD, Grabsch HI, Brenner H, Chang-Claude J, Alwers E, Brinker TJ, Khader F, Truhn D, Gaisa NT, Boor P, Hoffmeister M, Schulz V, Kather JN. Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology. Med Image Anal 2022; 79:102474. [DOI: 10.1016/j.media.2022.102474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
|