1
|
Carvalho G, Nguyen TVH, Repolês B, Forslund JME, Wijethunga WMRR, Ranjbarian F, Mendes IC, Gorospe CM, Chaudhari N, Falabella M, Doimo M, Wanrooij S, Pitceathly RDS, Hofer A, Wanrooij PH. Activating AMPK improves pathological phenotypes due to mtDNA depletion. FEBS J 2025; 292:2359-2380. [PMID: 39918244 PMCID: PMC12062783 DOI: 10.1111/febs.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 05/11/2025]
Abstract
AMP-activated protein kinase (AMPK) is a master regulator of cellular energy homeostasis that also plays a role in preserving mitochondrial function and integrity. Upon a disturbance in the cellular energy state that increases AMP levels, AMPK activity promotes a switch from anabolic to catabolic metabolism to restore energy homeostasis. However, the level of severity of mitochondrial dysfunction required to trigger AMPK activation is currently unclear, as is whether stimulation of AMPK using specific agonists can improve the cellular phenotype following mitochondrial dysfunction. Using a cellular model of mitochondrial disease characterized by progressive mitochondrial DNA (mtDNA) depletion and deteriorating mitochondrial metabolism, we show that mitochondria-associated AMPK becomes activated early in the course of the advancing mitochondrial dysfunction, before any quantifiable decrease in the ATP/(AMP + ADP) ratio or respiratory chain activity. Moreover, stimulation of AMPK activity using the specific small-molecule agonist A-769662 alleviated the mitochondrial phenotypes caused by the mtDNA depletion and restored normal mitochondrial membrane potential. Notably, the agonist treatment was able to partially restore mtDNA levels in cells with severe mtDNA depletion, while it had no impact on mtDNA levels of control cells. The beneficial impact of the agonist on mitochondrial membrane potential was also observed in cells from patients suffering from mtDNA depletion. These findings improve our understanding of the effects of specific small-molecule activators of AMPK on mitochondrial and cellular function and suggest a potential application for these compounds in disease states involving mtDNA depletion.
Collapse
Affiliation(s)
- Gustavo Carvalho
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
| | - Tran V. H. Nguyen
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
| | - Bruno Repolês
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
| | | | | | | | - Isabela C. Mendes
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
| | | | - Namrata Chaudhari
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
| | - Micol Falabella
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
| | - Mara Doimo
- Clinical Genetics Unit, Department of Women and Children's HealthPadua UniversityPaduaItaly
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
| | - Robert D. S. Pitceathly
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular DiseasesThe National Hospital for Neurology and NeurosurgeryLondonUK
| | - Anders Hofer
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
| | | |
Collapse
|
2
|
Holm E, Vermeulen I, Parween S, López-Pérez A, Cillero-Pastor B, Vandenbosch M, Remeseiro S, Hörnblad A. AMPK activator ATX-304 reduces oxidative stress and improves MASLD via metabolic switching. JCI Insight 2025; 10:e179990. [PMID: 40197369 PMCID: PMC11981618 DOI: 10.1172/jci.insight.179990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/25/2025] [Indexed: 04/10/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide for which there is only one approved treatment. Adenosine monophosphate-activated protein kinase (AMPK) is an interesting therapeutic target since it acts as a central regulator of cellular metabolism. Despite efforts to target AMPK, no direct activators have yet been approved for treatment of this disease. This study investigated the effect of the AMPK activator ATX-304 in a preclinical mouse model of progressive fatty liver disease. The data demonstrated that ATX-304 diminishes body fat mass, lowers blood cholesterol levels, and mitigates general liver steatosis and the development of liver fibrosis, but with pronounced local heterogeneities. The beneficial effects of ATX-304 treatment were accompanied by a shift in the liver metabolic program, including increased fatty acid oxidation, reduced lipid synthesis, as well as remodeling of cholesterol and lipid transport. We also observed variations in lipid distribution among liver lobes in response to ATX-304, and a shift in the zonal distribution of lipid droplets upon treatment. Taken together, our data suggested that ATX-304 holds promise as a potential treatment for MASLD.
Collapse
Affiliation(s)
- Emanuel Holm
- Department of Medical and Translational Biology, Umeå University, Umeå Sweden
| | - Isabeau Vermeulen
- Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, Limburg, Netherlands
| | - Saba Parween
- Department of Medical and Translational Biology, Umeå University, Umeå Sweden
| | - Ana López-Pérez
- Department of Medical and Translational Biology, Umeå University, Umeå Sweden
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, Limburg, Netherlands
- The MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, Limburg, Netherlands
| | - Michiel Vandenbosch
- Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, Limburg, Netherlands
| | - Silvia Remeseiro
- Department of Medical and Translational Biology, Umeå University, Umeå Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Andreas Hörnblad
- Department of Medical and Translational Biology, Umeå University, Umeå Sweden
| |
Collapse
|
4
|
Qu Q, Chen Y, Wang Y, Long S, Wang W, Yang HY, Li M, Tian X, Wei X, Liu YH, Xu S, Zhang C, Zhu M, Lam SM, Wu J, Yun C, Chen J, Xue S, Zhang B, Zheng ZZ, Piao HL, Jiang C, Guo H, Shui G, Deng X, Zhang CS, Lin SC. Lithocholic acid phenocopies anti-ageing effects of calorie restriction. Nature 2024:10.1038/s41586-024-08329-5. [PMID: 39695227 DOI: 10.1038/s41586-024-08329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 10/31/2024] [Indexed: 12/20/2024]
Abstract
Calorie restriction (CR) is a dietary intervention used to promote health and longevity1,2. CR causes various metabolic changes in both the production and the circulation of metabolites1; however, it remains unclear which altered metabolites account for the physiological benefits of CR. Here we use metabolomics to analyse metabolites that exhibit changes in abundance during CR and perform subsequent functional validation. We show that lithocholic acid (LCA) is one of the metabolites that alone can recapitulate the effects of CR in mice. These effects include activation of AMP-activated protein kinase (AMPK), enhancement of muscle regeneration and rejuvenation of grip strength and running capacity. LCA also activates AMPK and induces life-extending and health-extending effects in Caenorhabditis elegans and Drosophila melanogaster. As C. elegans and D. melanogaster are not able to synthesize LCA, these results indicate that these animals are able to transmit the signalling effects of LCA once administered. Knockout of AMPK abrogates LCA-induced phenotypes in all the three animal models. Together, we identify that administration of the CR-mediated upregulated metabolite LCA alone can confer anti-ageing benefits to metazoans in an AMPK-dependent manner.
Collapse
Affiliation(s)
- Qi Qu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Shating Long
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Weiche Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Heng-Ye Yang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Shengrong Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | | | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Fujian, China
| | - Chuyu Yun
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
| | - Junjie Chen
- Analysis and Measurement Centre, School of Pharmaceutical Sciences, Xiamen University, Fujian, China
| | - Shengye Xue
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Baoding Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Zhong-Zheng Zheng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, Department of Immunology, School of Basic Medical Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodelling, Peking University, Beijing, China
| | - Hao Guo
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
- Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Guanghou Shui
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, China
| | - Xianming Deng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China.
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China.
| |
Collapse
|
5
|
Norlin S, Axelsson J, Ericsson M, Edlund H. O304 ameliorates hyperglycemia in mice by dually promoting muscle glucose effectiveness and preserving β-cell function. Commun Biol 2023; 6:877. [PMID: 37626210 PMCID: PMC10457357 DOI: 10.1038/s42003-023-05255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Although insulin mediated glucose uptake in skeletal muscle is a major mechanism ensuring glucose disposal in humans, glucose effectiveness, i.e., the ability of glucose itself to stimulate its own uptake independent of insulin, accounts for roughly half of the glucose disposed during an oral glucose tolerance test. Both insulin dependent and insulin independent skeletal muscle glucose uptake are however reduced in individuals with diabetes. We here show that AMPK activator O304 stimulates insulin independent glucose uptake and utilization in skeletal muscle and heart in vivo, while preventing glycogen accumulation. Combined glucose uptake and utilization requires an increased metabolic demand and we show that O304 acts as a mitochondrial uncoupler, i.e., generates a metabolic demand. O304 averts gene expression changes associated with metabolic inflexibility in skeletal muscle and heart of diabetic mice and reverts diabetic cardiomyopathy. In Type 2 diabetes, insulin resistance elicits compensatory insulin hypersecretion, provoking β-cell stress and eventually compensatory failure. In db/db mice O304 preserves β-cell function by preventing decline in insulin secretion, β-cell mass, and pancreatic insulin content. Thus, as a dual AMPK activator and mitochondrial uncoupler O304 mitigates two central defects of T2D; impaired glucose uptake/utilization and β-cell failure, which today lack effective treatment.
Collapse
Affiliation(s)
- Stefan Norlin
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Jan Axelsson
- Department of Radiation Sciences, Radiation Physics, Umeå University, SE-901 87, Umeå, Sweden
| | - Madelene Ericsson
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Helena Edlund
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
6
|
The Expanding Role of Cancer Stem Cell Marker ALDH1A3 in Cancer and Beyond. Cancers (Basel) 2023; 15:cancers15020492. [PMID: 36672441 PMCID: PMC9857290 DOI: 10.3390/cancers15020492] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Aldehyde dehydrogenase 1A3 (ALDH1A3) is one of 19 ALDH enzymes expressed in humans, and it is critical in the production of hormone receptor ligand retinoic acid (RA). We review the role of ALDH1A3 in normal physiology, its identification as a cancer stem cell marker, and its modes of action in cancer and other diseases. ALDH1A3 is often over-expressed in cancer and promotes tumor growth, metastasis, and chemoresistance by altering gene expression, cell signaling pathways, and glycometabolism. The increased levels of ALDH1A3 in cancer occur due to genetic amplification, epigenetic modifications, post-transcriptional regulation, and post-translational modification. Finally, we review the potential of targeting ALDH1A3, with both general ALDH inhibitors and small molecules specifically designed to inhibit ALDH1A3 activity.
Collapse
|
7
|
Brown MR, Matveyenko AV. It's What and When You Eat: An Overview of Transcriptional and Epigenetic Responses to Dietary Perturbations in Pancreatic Islets. Front Endocrinol (Lausanne) 2022; 13:842603. [PMID: 35355560 PMCID: PMC8960041 DOI: 10.3389/fendo.2022.842603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/07/2022] [Indexed: 01/07/2023] Open
Abstract
Our ever-changing modern environment is a significant contributor to the increased prevalence of many chronic diseases, and particularly, type 2 diabetes mellitus (T2DM). Although the modern era has ushered in numerous changes to our daily living conditions, changes in "what" and "when" we eat appear to disproportionately fuel the rise of T2DM. The pancreatic islet is a key biological controller of an organism's glucose homeostasis and thus plays an outsized role to coordinate the response to environmental factors to preserve euglycemia through a delicate balance of endocrine outputs. Both successful and failed adaptation to dynamic environmental stimuli has been postulated to occur due to changes in the transcriptional and epigenetic regulation of pathways associated with islet secretory function and survival. Therefore, in this review we examined and evaluated the current evidence elucidating the key epigenetic mechanisms and transcriptional programs underlying the islet's coordinated response to the interaction between the timing and the composition of dietary nutrients common to modern lifestyles. With the explosion of next generation sequencing, along with the development of novel informatic and -omic approaches, future work will continue to unravel the environmental-epigenetic relationship in islet biology with the goal of identifying transcriptional and epigenetic targets associated with islet perturbations in T2DM.
Collapse
Affiliation(s)
- Matthew R. Brown
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Aleksey V. Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Division of Endocrinology, Metabolism, Diabetes, and Nutrition, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|