1
|
Wójtowicz A, Sadowska A, Piotrowska-Tomala K, Szóstek-Mioduchowska A. The effect of amphiregulin on equine endometrial fibroblasts: in vitro responses of fibroblast derived from non-fibrotic and fibrotic endometrium. Reprod Biol 2025; 25:101018. [PMID: 40222068 DOI: 10.1016/j.repbio.2025.101018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
The role of AREG in the development of fibrosis in the progression of endometrosis in mare remains unknown. We aimed to determine the effects of AREG on fibroblast functional characteristics as well as the expression of extracellular matrix (ECM)-associated genes in fibroblast derived from non-fibrotic and fibrotic equine endometria. Our findings suggest that the mechanisms associated with ECM remodeling regulated by AREG in non-fibrotic fibroblasts may be dysregulated in the progression of fibrosis in endometrosis.
Collapse
Affiliation(s)
- Anna Wójtowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn 10-683, Poland
| | - Agnieszka Sadowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn 10-683, Poland
| | - Katarzyna Piotrowska-Tomala
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn 10-683, Poland
| | - Anna Szóstek-Mioduchowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn 10-683, Poland.
| |
Collapse
|
2
|
Ehnold LI, Melderis S, Hagenstein J, Warkotsch MT, Laas V, Feindt FC, Wu H, Huber TB, Grahammer F, Steinmetz OM. Treg derived Amphiregulin protects from murine lupus nephritis via tissue reparative effects. Sci Rep 2025; 15:7776. [PMID: 40044779 PMCID: PMC11882795 DOI: 10.1038/s41598-025-91636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a common autoimmune disease that affects multiple organ systems. Among the most severe manifestations of SLE is lupus nephritis (LN), which causes particularly high morbidity. Recently, we identified amphiregulin (AREG), an epidermal growth factor receptor ligand, as a key mediator of LN via downregulation of pathogenic CD4+ T-cell responses. In human LN, AREG is mainly produced by regulatory T cells (Tregs) and monocytes/macrophages (M/M). Since AREG´s functions have been shown to vary considerably depending on the source, we aimed to clarify the cell-type-specific roles of AREG using the pristane model of LN. Conditional knockout mice lacking Treg- but not M/M-derived AREG showed worse LN outcome at 12 and 15 months with increased glomerular cell proliferation, apoptosis and renal tissue fibrosis. Interestingly, immune responses were not relevantly affected by the lack of AREG from either leukocyte source, indicating a different mechanism. In this respect, in vitro studies demonstrated improved wound healing of murine mesangium and tubulus cells and enhanced regeneration and sprouting of human glomerular endothelial cells after incubation with recombinant AREG. These findings underscore the importance of Treg-derived AREG in tissue regeneration and protection from fibrosis in LN, highlighting AREG as a potential therapeutic target.
Collapse
Affiliation(s)
- Laura-Isabell Ehnold
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Melderis
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Hagenstein
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias T Warkotsch
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viona Laas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederic C Feindt
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hui Wu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver M Steinmetz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
Schmidt IM, Kefalogianni E, Zhao R, Verma A, Sabbisetti V, Rahman M, Pradhan N, Srivastava A, He J, Chen J, Waikar SS, Herrlich A. Associations of Serum Amphiregulin Levels With Kidney Failure and Mortality: The Chronic Renal Insufficiency Cohort (CRIC). Kidney Med 2025; 7:100958. [PMID: 40071064 PMCID: PMC11894294 DOI: 10.1016/j.xkme.2024.100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Affiliation(s)
- Insa M. Schmidt
- Section of Nephrology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA
- Hamburg Center for Kidney Health (HCKH), III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eirini Kefalogianni
- Division of Rheumatology, Department of Medicine, Washington University School ofMedicine, St. Louis, MO
| | - Runqi Zhao
- Section of Nephrology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA
| | - Ashish Verma
- Section of Nephrology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA
| | - Venkata Sabbisetti
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Mahboob Rahman
- Department of Medicine, University Hospitals and Case Western Reserve University School of Medicine, Cleveland, OH
| | - Nishigandha Pradhan
- Department of Medicine, University Hospitals and Case Western Reserve University School of Medicine, Cleveland, OH
| | - Anand Srivastava
- Division of Nephrology, University of Illinois Chicago, Chicago, IL
| | - Jiang He
- Department of Epidemiology and Medicine, Tulane University School of Public Health and Tropical Medicine, and Tulane University School of Medicine, New Orleans, LA
| | - Jing Chen
- Department of Epidemiology and Medicine, Tulane University School of Public Health and Tropical Medicine, and Tulane University School of Medicine, New Orleans, LA
- Department of Internal Medicine, Nephrology, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, O'Donnell School of Public Health, UT Southwestern Medical Center, Dallas, TX
| | - Sushrut S. Waikar
- Section of Nephrology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA
| | - Andreas Herrlich
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- VA Saint Louis Health Care System, John Cochran Division, St. Louis, MO
| |
Collapse
|
4
|
Bowden-Reid E, Moles E, Kelleher A, Ahlenstiel C. Harnessing antiviral RNAi therapeutics for pandemic viruses: SARS-CoV-2 and HIV. Drug Deliv Transl Res 2025:10.1007/s13346-025-01788-x. [PMID: 39833468 DOI: 10.1007/s13346-025-01788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Using the knowledge from decades of research into RNA-based therapies, the COVID-19 pandemic response saw the rapid design, testing and production of the first ever mRNA vaccines approved for human use in the clinic. This breakthrough has been a significant milestone for RNA therapeutics and vaccines, driving an exponential growth of research into the field. The development of novel RNA therapeutics targeting high-threat pathogens, that pose a substantial risk to global health, could transform the future of health delivery. In this review, we provide a detailed overview of the two RNA interference (RNAi) pathways and how antiviral RNAi therapies can be used to treat acute or chronic diseases caused by the pandemic viruses SARS-CoV-2 and HIV, respectively. We also provide insights into short-interfering RNA (siRNA) delivery systems, with a focus on how lipid nanoparticles can be functionalized to achieve targeted delivery to specific sites of disease. This review will provide the current developments of SARS-CoV-2 and HIV targeted siRNAs, highlighting strategies to advance the progression of antiviral siRNA along the clinical development pathway.
Collapse
Affiliation(s)
| | - Ernest Moles
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, 2052, Australia.
- Australian Centre for Nanomedicine, Faculty of Engineering, UNSW Sydney, Sydney, 2052, Australia.
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney, 2052, Australia.
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia.
| | - Anthony Kelleher
- The Kirby Institute, UNSW Sydney, Sydney, 2052, Australia
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia
| | - Chantelle Ahlenstiel
- The Kirby Institute, UNSW Sydney, Sydney, 2052, Australia.
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia.
| |
Collapse
|
5
|
Sisto M, Lisi S. Updates on Inflammatory Molecular Pathways Mediated by ADAM17 in Autoimmunity. Cells 2024; 13:2092. [PMID: 39768182 PMCID: PMC11674862 DOI: 10.3390/cells13242092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
ADAM17 is a member of the disintegrin and metalloproteinase (ADAM) family of transmembrane proteases with immunoregulatory activity in multiple signaling pathways. The functional ADAM17 is involved in the shedding of the ectodomain characterizing many substrates belonging to growth factors, cytokines, receptors, and adhesion molecules. The ADAM17-dependent pathways are known to be crucial in tumor development and progression and in the modulation of many pathological and physiological processes. In the last decade, ADAM17 was considered the driver of several autoimmune pathologies, and numerous substrate-mediated signal transduction pathways were identified. However, the discoveries made to date have led researchers to try to clarify the multiple mechanisms in which ADAM17 is involved and to identify any molecular gaps between the different transductional cascades. In this review, we summarize the most recent updates on the multiple regulatory activities of ADAM17, focusing on reported data in the field of autoimmunity.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 1, I-70124 Bari, Italy;
| | | |
Collapse
|
6
|
Suzuki Y, Emoto T, Sato S, Yoshida T, Shoda M, Endoh H, Nagao M, Hamana T, Inoue T, Hayashi T, Nitta E, Konishi H, Kiuchi K, Takami M, Imamura K, Taniguchi M, Inoue M, Nakamura T, Sonoda Y, Takahara H, Nakasone K, Yamamoto K, Tani K, Iwai H, Nakanishi Y, Yonehara S, Murakami A, Toh R, Ohkawa T, Furuyashiki T, Nitta R, Yamashita T, Hirata KI, Fukuzawa K. Left atrial single-cell transcriptomics reveals amphiregulin as a surrogate marker for atrial fibrillation. Commun Biol 2024; 7:1601. [PMID: 39622943 PMCID: PMC11612213 DOI: 10.1038/s42003-024-07308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
Atrial fibrillation (AF) is strongly associated with strokes, heart failure, and increased mortality. This study aims to identify the monocyte-macrophage heterogeneity and interactions of these cells with non-immune cells, and to identify functional biomarkers in patients with AF. Therefore, we assess the single cell landscape of left atria (LA), using a combination of single cell and nucleus RNA-seq. Myeloid cells in LA tissue are categorized into five macrophage clusters, three monocyte clusters, and others. Cell-Chat analysis revealed that monocytes and IL1B+ macrophages send epidermal growth factor (EGF) signals to fibroblasts. Amphiregulin (AREG) is the most upregulated gene in monocytes and IL1B+ macrophages in the AF group, compared with healthy controls from other groups. Serum AREG levels are higher in patients with persistent AF. These data suggested that EGF signaling pathway could be a therapeutic target for AF and serum AREG levels provide an effective biomarker for predicting persistent AF.
Collapse
Affiliation(s)
- Yuya Suzuki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuo Emoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Shunsuke Sato
- Division of Cardiovascular Surgery, Department of Surgery, Yodogawa Christian Hospital, Osaka, Japan
| | - Takeshi Yoshida
- Department of Information and Intelligence Engineering, Kobe University, Kobe, Japan
| | - Mitsuhiko Shoda
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiromi Endoh
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Manabu Nagao
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyo Hamana
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taishi Inoue
- Division of Cardiovascular Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomohiro Hayashi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Eriko Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroki Konishi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Yodogawa Christian Hospital, Osaka, Japan
| | - Kunihiko Kiuchi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mitsuru Takami
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kimitake Imamura
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Section of Arrhythmia, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masayuki Taniguchi
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masatoshi Inoue
- Department of Information and Intelligence Engineering, Kobe University, Kobe, Japan
| | - Toshihiro Nakamura
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yusuke Sonoda
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyuki Takahara
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazutaka Nakasone
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kyoko Yamamoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenichi Tani
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hidehiro Iwai
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yusuke Nakanishi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shogo Yonehara
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsushi Murakami
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryuji Toh
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takenao Ohkawa
- Department of Information and Intelligence Engineering, Kobe University, Kobe, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryo Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoya Yamashita
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Advanced Medical Science, Technology and Innovation, Kobe University Graduate School of Science, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koji Fukuzawa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Section of Arrhythmia, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
7
|
Son SS, Jeong HS, Lee SW, Lee ES, Lee JG, Lee JH, Yi J, Park MJ, Choi MS, Lee D, Choi SY, Ha J, Kang JS, Cho NJ, Park S, Gil HW, Chung CH, Park JS, Kim MH, Park J, Lee EY. EPRS1-mediated fibroblast activation and mitochondrial dysfunction promote kidney fibrosis. Exp Mol Med 2024; 56:2673-2689. [PMID: 39623092 DOI: 10.1038/s12276-024-01360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/30/2024] [Accepted: 09/24/2024] [Indexed: 12/28/2024] Open
Abstract
Kidney fibrosis causes irreversible structural damage in chronic kidney disease and is characterized by aberrant extracellular matrix (ECM) accumulation. Although glutamyl-prolyl-tRNA synthetase 1 (EPRS1) is a crucial enzyme involved in proline-rich protein synthesis, its role in kidney fibrosis remains unclear. The present study revealed that EPRS1 expression levels were increased in the fibrotic kidneys of patients and mice, especially in fibroblasts and proximal tubular epithelial cells, on the basis of single-cell analysis and immunostaining of fibrotic kidneys. Moreover, C57BL/6 EPRS1tm1b heterozygous knockout (Eprs1+/-) and pharmacological EPRS1 inhibition with the first-in-class EPRS1 inhibitor DWN12088 protected against kidney fibrosis and dysfunction by preventing fibroblast activation and proximal tubular injury. Interestingly, in vitro assays demonstrated that EPRS1-mediated nontranslational pathways in addition to translational pathways under transforming growth factor β-treated conditions by phosphorylating SMAD family member 3 in fibroblasts and signal transducers and activators of transcription 3 in injured proximal tubules. EPRS1 knockdown and catalytic inhibition suppressed these pathways, preventing fibroblast activation, proliferation, and subsequent collagen production. Additionally, we revealed that EPRS1 caused mitochondrial damage in proximal tubules but that this damage was attenuated by EPRS1 inhibition. Our findings suggest that the EPRS1-mediated ECM accumulation induces kidney fibrosis via fibroblast activation and mitochondrial dysfunction. Therefore, targeting EPRS1 could be a potential therapeutic target for alleviating fibrotic injury in chronic kidney disease.
Collapse
Affiliation(s)
- Seung Seob Son
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Hee Seul Jeong
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Seong-Woo Lee
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Eun Soo Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jeong Geon Lee
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Ji-Hye Lee
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Jawoon Yi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Mi Ju Park
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Min Sun Choi
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Donghyeong Lee
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Sin Young Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Jiheon Ha
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Jeong Suk Kang
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Nam-Jun Cho
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Samel Park
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Hyo-Wook Gil
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Joon Seok Park
- Drug Discovery Center, Daewoong Pharmaceutical Co. Ltd., Yongin, Korea
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Eun Young Lee
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea.
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea.
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea.
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea.
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Korea.
| |
Collapse
|
8
|
Bøgh N, Bertelsen LB, Rasmussen CW, Bech SK, Keller AK, Madsen MG, Harving F, Thorsen TH, Mieritz IK, Hansen ES, Wanders A, Laustsen C. Metabolic MRI With Hyperpolarized 13 C-Pyruvate for Early Detection of Fibrogenic Kidney Metabolism. Invest Radiol 2024; 59:813-822. [PMID: 38913443 DOI: 10.1097/rli.0000000000001094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
OBJECTIVES Fibrosis is the final common pathway for chronic kidney disease and the best predictor for disease progression. Besides invasive biopsies, biomarkers for its detection are lacking. To address this, we used hyperpolarized 13 C-pyruvate MRI to detect the metabolic changes associated with fibrogenic activity of myofibroblasts. MATERIALS AND METHODS Hyperpolarized 13 C-pyruvate MRI was performed in 2 pig models of kidney fibrosis (unilateral ureteral obstruction and ischemia-reperfusion injury). The imaging data were correlated with histology, biochemical, and genetic measures of metabolism and fibrosis. The porcine experiments were supplemented with cell-line experiments to inform the origins of metabolic changes in fibrogenesis. Lastly, healthy and fibrotic human kidneys were analyzed for the metabolic alterations accessible with hyperpolarized 13 C-pyruvate MRI. RESULTS In the 2 large animal models of kidney fibrosis, metabolic imaging revealed alterations in amino acid metabolism and glycolysis. Conversion from hyperpolarized 13 C-pyruvate to 13 C-alanine decreased, whereas conversion to 13 C-lactate increased. These changes were shown to reflect profibrotic activity in cultured epithelial cells, macrophages, and fibroblasts, which are important precursors of myofibroblasts. Importantly, metabolic MRI using hyperpolarized 13 C-pyruvate was able to detect these changes earlier than fibrosis-sensitive structural imaging. Lastly, we found that the same metabolic profile is present in fibrotic tissue from human kidneys. This affirms the translational potential of metabolic MRI as an early indicator of fibrogenesis associated metabolism. CONCLUSIONS Our findings demonstrate the promise of hyperpolarized 13 C-pyruvate MRI for noninvasive detection of fibrosis development, which could enable earlier diagnosis and intervention for patients at risk of kidney fibrosis.
Collapse
Affiliation(s)
- Nikolaj Bøgh
- From the MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (N.B., L.B.B., C.W.R., S.K.B., T.H.T., I.K.M., E.S.S.H., C.L.); Department of Urology, Aarhus University Hospital, Aarhus, Denmark (A.K.K., M.G.M.); and Department of Pathology, Aalborg University Hospital, Aalborg, Denmark (F.H., A.W.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tawengi M, Al-Dali Y, Tawengi A, Benter IF, Akhtar S. Targeting the epidermal growth factor receptor (EGFR/ErbB) for the potential treatment of renal pathologies. Front Pharmacol 2024; 15:1394997. [PMID: 39234105 PMCID: PMC11373609 DOI: 10.3389/fphar.2024.1394997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Epidermal growth factor receptor (EGFR), which is referred to as ErbB1/HER1, is the prototype of the EGFR family of receptor tyrosine kinases which also comprises ErbB2 (Neu, HER2), ErbB3 (HER3), and ErbB4 (HER4). EGFR, along with other ErbBs, is expressed in the kidney tubules and is physiologically involved in nephrogenesis and tissue repair, mainly following acute kidney injury. However, its sustained activation is linked to several kidney pathologies, including diabetic nephropathy, hypertensive nephropathy, glomerulonephritis, chronic kidney disease, and renal fibrosis. This review aims to provide a summary of the recent findings regarding the consequences of EGFR activation in several key renal pathologies. We also discuss the potential interplay between EGFR and the reno-protective angiotensin-(1-7) (Ang-(1-7), a heptapeptide member of the renin-angiotensin-aldosterone system that counter-regulates the actions of angiotensin II. Ang-(1-7)-mediated inhibition of EGFR transactivation might represent a potential mechanism of action for its renoprotection. Our review suggests that there is a significant body of evidence supporting the potential inhibition of EGFR/ErbB, and/or administration of Ang-(1-7), as potential novel therapeutic strategies in the treatment of renal pathologies. Thus, EGFR inhibitors such as Gefitinib and Erlinotib that have an acceptable safety profile and have been clinically used in cancer chemotherapy since their FDA approval in the early 2000s, might be considered for repurposing in the treatment of renal pathologies.
Collapse
Affiliation(s)
- Mohamed Tawengi
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Yazan Al-Dali
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Ibrahim F Benter
- Faculty of Pharmacy, Final International University, Kyrenia, Cyprus
| | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
10
|
Kaneko T, Iwamura C, Kiuchi M, Kurosugi A, Onoue M, Matsumura T, Chiba T, Nakayama T, Kato N, Hirahara K. Amphiregulin-producing T H2 cells facilitate esophageal fibrosis of eosinophilic esophagitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100287. [PMID: 39040657 PMCID: PMC11260569 DOI: 10.1016/j.jacig.2024.100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 07/24/2024]
Abstract
Background Massive eosinophil infiltration into the esophagus is associated with subepithelial fibrosis and esophageal stricture in patients with eosinophilic esophagitis (EoE). However, the pathogenesis of esophageal fibrosis remains unclear. Objective We sought to elucidate the cellular and molecular mechanisms underlying the induction of esophageal fibrosis. Methods We established a murine model of EoE accompanied by fibrotic responses following long-term intranasal administration of house dust mite antigen. Using this murine model, we investigated the characteristics of immune cells infiltrating the fibrotic region of the inflamed esophagus using flow cytometry and histological analyses. We also analyzed the local inflammatory sites in the esophagus of patients with EoE using single-cell RNA sequencing, flow cytometry, and immunohistochemistry. Results Enhanced infiltration of both amphiregulin-producing and IL-5-producing TH2 cells was detected in the fibrotic area of the esophagus in mice subjected to repeated house dust mite exposure. Deletion of amphiregulin in CD4+ T cells ameliorates esophageal fibrosis. An analysis of human esophageal biopsy samples showed that the infiltration of amphiregulin-producing CD4+ T cells was higher in patients with EoE than in control patients. Furthermore, the number of infiltrated amphiregulin-producing CD4+ T cells was associated with the degree of esophageal fibrosis in patients with EoE. Conclusions Amphiregulin, produced by TH2 cells, contributes to esophageal fibrosis in EoE and may be a therapeutic target.
Collapse
Affiliation(s)
- Tatsuya Kaneko
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Chiaki Iwamura
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akane Kurosugi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Miki Onoue
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoaki Matsumura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- AMED-CREST, AMED, 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
- AMED-CREST, AMED, 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| |
Collapse
|
11
|
Huang S, Lu H, Chen J, Jiang C, Jiang G, Maduraiveeran G, Pan Y, Liu J, Deng LE. Advances in drug delivery-based therapeutic strategies for renal fibrosis treatment. J Mater Chem B 2024; 12:6532-6549. [PMID: 38913013 DOI: 10.1039/d4tb00737a] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Renal fibrosis is the result of all chronic kidney diseases and is becoming a major global health hazard. Currently, traditional treatments for renal fibrosis are difficult to meet clinical needs due to shortcomings such as poor efficacy or highly toxic side effects. Therefore, therapeutic strategies that target the kidneys are needed to overcome these shortcomings. Drug delivery can be attained by improving drug stability and addressing controlled release and targeted delivery of drugs in the delivery category. By combining drug delivery technology with nanosystems, controlled drug release and biodistribution can be achieved, enhancing therapeutic efficacy and reducing toxic cross-wise effects. This review discusses nanomaterial drug delivery strategies reported in recent years. Firstly, the present review describes the mechanisms of renal fibrosis and anti-renal fibrosis drug delivery. Secondly, different nanomaterial drug delivery strategies for the treatment of renal injury and fibrosis are highlighted. Finally, the limitations of these strategies are also discussed. Investigating various anti-renal fibrosis drug delivery strategies reveals the characteristics and therapeutic effects of various novel nanosystem-derived drug delivery approaches. This will serve as a reference for future research on drug delivery strategies for renal fibrosis treatment.
Collapse
Affiliation(s)
- Sida Huang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Hanqi Lu
- Department of Nephrology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, Guangdong 523000, China.
| | - Jin Chen
- Department of Nephrology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, Guangdong 523000, China.
| | - Chengyi Jiang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Guanmin Jiang
- Department of Oncology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan people's hospital), 78 Wandao Road South, Dongguan, 523059 Guangdong, China.
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu, Tamil Nadu, India.
| | - Ying Pan
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Li-Er Deng
- Department of Nephrology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, Guangdong 523000, China.
| |
Collapse
|
12
|
Osakabe Y, Taniguchi Y, Hamada Ode K, Shimamura Y, Inotani S, Nishikawa H, Matsumoto T, Horino T, Fujimoto S, Terada Y. Clinical significance of amphiregulin in patients with chronic kidney disease. Clin Exp Nephrol 2024; 28:421-430. [PMID: 38402497 DOI: 10.1007/s10157-023-02445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/02/2023] [Indexed: 02/26/2024]
Abstract
BACKGROUND Amphiregulin (AREG) is a ligand of epidermal growth factor receptor (EGFR), which plays an important role in injury-induced kidney fibrosis. However, the clinical significance of serum soluble AREG in chronic kidney disease (CKD) is unclear. In this study, we elucidated the clinical significance of serum soluble AREG in CKD by analyzing the association of serum soluble AREG levels with renal function and other clinical parameters in patients with CKD. METHODS In total, 418 Japanese patients with CKD were enrolled, and serum samples were collected for the determination of soluble AREG and creatinine (Cr) levels, and other clinical parameters. Additionally, these parameters were evaluated after 2 and 3 years. Moreover, immunohistochemical assay was performed ate AREG expression in the kidney tissues of patients with CKD. RESULTS Soluble AREG levels were positively correlated with serum Cr (p < 0.0001). Notably, initial AREG levels were positively correlated with changes in renal function (ΔCr) after 2 (p < 0.0001) and 3 years (P = 0.048). Additionally, soluble AREG levels were significantly higher (p < 0.05) in patients with diabetic nephropathy or primary hypertension. Moreover, AREG was highly expressed in renal tubular cells in patients with advanced CKD, but only weakly expressed in patients with preserved renal function. CONCLUSION Serum soluble AREG levels were significantly correlated with renal function, and changes in renal function after 2 and 3 years, indicating that serum soluble AREG levels might serve as a biomarker of renal function and renal prognosis in CKD.
Collapse
Affiliation(s)
- Yuki Osakabe
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan.
| | - Yoshinori Taniguchi
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Kazu Hamada Ode
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Yoshiko Shimamura
- Department of Dialysis, Kochi Memorial Hospital, Shiromi-cho, Kochi, Kochi, 780-0824, Japan
| | - Satoshi Inotani
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Hirofumi Nishikawa
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Tatsuki Matsumoto
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Taro Horino
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Shimpei Fujimoto
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Yoshio Terada
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
13
|
Kang C, Yun D, Yoon H, Hong M, Hwang J, Shin HM, Park S, Cheon S, Han D, Moon KC, Kim HY, Choi EY, Lee EY, Kim MH, Jeong CW, Kwak C, Kim DK, Oh KH, Joo KW, Lee DS, Kim YS, Han SS. Glutamyl-prolyl-tRNA synthetase (EPRS1) drives tubulointerstitial nephritis-induced fibrosis by enhancing T cell proliferation and activity. Kidney Int 2024; 105:997-1019. [PMID: 38320721 DOI: 10.1016/j.kint.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 02/27/2024]
Abstract
Toxin- and drug-induced tubulointerstitial nephritis (TIN), characterized by interstitial infiltration of immune cells, frequently necessitates dialysis for patients due to irreversible fibrosis. However, agents modulating interstitial immune cells are lacking. Here, we addressed whether the housekeeping enzyme glutamyl-prolyl-transfer RNA synthetase 1 (EPRS1), responsible for attaching glutamic acid and proline to transfer RNA, modulates immune cell activity during TIN and whether its pharmacological inhibition abrogates fibrotic transformation. The immunological feature following TIN induction by means of an adenine-mixed diet was infiltration of EPRS1high T cells, particularly proliferating T and γδ T cells. The proliferation capacity of both CD4+ and CD8+ T cells, along with interleukin-17 production of γδ T cells, was higher in the kidneys of TIN-induced Eprs1+/+ mice than in the kidneys of TIN-induced Eprs1+/- mice. This discrepancy contributed to the fibrotic amelioration observed in kidneys of Eprs1+/- mice. TIN-induced fibrosis was also reduced in Rag1-/- mice adoptively transferred with Eprs1+/- T cells compared to the Rag1-/- mice transferred with Eprs1+/+ T cells. The use of an EPRS1-targeting small molecule inhibitor (bersiporocin) under clinical trials to evaluate its therapeutic potential against idiopathic pulmonary fibrosis alleviated immunofibrotic aggravation in TIN. EPRS1 expression was also observed in human kidney tissues and blood-derived T cells, and high expression was associated with worse patient outcomes. Thus, EPRS1 may emerge as a therapeutic target in toxin- and drug-induced TIN, modulating the proliferation and activity of infiltrated T cells.
Collapse
Affiliation(s)
- Chaelin Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Donghwan Yun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Haein Yoon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Minki Hong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Juhyeon Hwang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seokwoo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seongmin Cheon
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea; Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Korea
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Eun-Young Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kwon Wook Joo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Yon Su Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
14
|
Heo YJ, Lee N, Choi SE, Jeon JY, Han SJ, Kim DJ, Kang Y, Lee KW, Kim HJ. Amphiregulin Induces iNOS and COX-2 Expression through NF- κB and MAPK Signaling in Hepatic Inflammation. Mediators Inflamm 2023; 2023:2364121. [PMID: 37868614 PMCID: PMC10586434 DOI: 10.1155/2023/2364121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/09/2023] [Accepted: 09/16/2023] [Indexed: 10/24/2023] Open
Abstract
Background Inflammation is a major cause of hepatic tissue damage and accelerates the progression of nonalcoholic fatty liver disease (NAFLD). Amphiregulin (AREG), an epidermal growth factor receptor ligand, is associated with human liver cirrhosis and hepatocellular carcinoma. We aimed to investigate the effects of AREG on hepatic inflammation during NAFLD progression, in vivo and in vitro. Methods AREG gene expression was measured in the liver of mice fed a methionine choline-deficient (MCD) diet for 2 weeks. We evaluated inflammatory mediators and signaling pathways in HepG2 cells after stimulation with AREG. Nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were analyzed using an enzyme-linked immunosorbent assay and western blotting. Nuclear transcription factor kappa-B (NF-κB) and mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase, were analyzed using western blotting. Results Proinflammatory cytokines (interleukin (IL)-6, IL-1β, and IL-8) and immune cell recruitment (as indicated by L3T4, F4/80, and ly6G mRNA expression) increased, and expression of AREG increased in the liver of mice fed the MCD diet. AREG significantly increased the expression of IL-6 and IL-1β and the production of NO, PGE2, and IL-8 in HepG2 cells. It also activated the protein expression of iNOS and COX-2. AREG-activated NF-κB and MAPKs signaling, and together with NF-κB and MAPKs inhibitors, AREG significantly reduced the protein expression of iNOS and COX-2. Conclusion AREG plays a role in hepatic inflammation by increasing iNOS and COX-2 expression via NF-κB and MAPKs signaling.
Collapse
Affiliation(s)
- Yu Jung Heo
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
- Institute of Medical Science, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Nami Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Sung-E. Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Seung Jin Han
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Dae Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kwan Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| |
Collapse
|
15
|
Sholokh A, Walter S, Markó L, McMurray BJ, Sunaga-Franze DY, Xu M, Zühlke K, Russwurm M, Bartolomaeus TUP, Langanki R, Qadri F, Heuser A, Patzak A, Forslund SK, Bähring S, Borodina T, Persson PB, Maass PG, Bader M, Klussmann E. Mutant phosphodiesterase 3A protects the kidney from hypertension-induced damage. Kidney Int 2023:S0085-2538(23)00389-7. [PMID: 37244472 DOI: 10.1016/j.kint.2023.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/29/2023]
Affiliation(s)
- Anastasiia Sholokh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Germany
| | - Stephan Walter
- MVZ Nierenzentrum Limburg, Im Großen Rohr 14, 65549 Limburg, Germany
| | - Lajos Markó
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Germany; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Germany
| | - Brandon J McMurray
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, Canada M5G 0A4, Canada
| | | | - Minze Xu
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Germany
| | - Kerstin Zühlke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Michael Russwurm
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät MA N1, Ruhr-Universität Bochum, Bochum, Germany
| | - Theda U P Bartolomaeus
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Germany; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Germany
| | - Reika Langanki
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Fatimunnisa Qadri
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Arnd Heuser
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Andreas Patzak
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Germany
| | - Sofia K Forslund
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Germany; Berlin Institute of Health (BIH), Berlin, Germany; European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Sylvia Bähring
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Germany; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Germany
| | - Tatiana Borodina
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Pontus B Persson
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Germany
| | - Philipp G Maass
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, Canada M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Germany; Institute for Biology, University of Lübeck, Germany
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.
| |
Collapse
|
16
|
Feng L, Chen Y, Li N, Yang X, Zhou L, Li H, Wang T, Xie M, Liu H. Dapagliflozin delays renal fibrosis in diabetic kidney disease by inhibiting YAP/TAZ activation. Life Sci 2023; 322:121671. [PMID: 37023953 DOI: 10.1016/j.lfs.2023.121671] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
In diabetic kidney disease (DKD), the long-term hyperactivation of yes-associated protein (YAP)/transcriptional coactivator PDZ-binding motif (TAZ) in renal proximal tubule epithelial cells (RPTCs) plays an important role in progressive tubulointerstitial fibrosis. Sodium-glucose cotransporter 2 (SGLT2) is highly expressed in RPTCs, but its relationship with YAP/TAZ in tubulointerstitial fibrosis in DKD is still unknown. The purpose of this study was to clarify whether the SGLT2 inhibitor (SGLT2i) dapagliflozin could alleviate renal tubulointerstitial fibrosis in DKD by regulating YAP/TAZ. We examined 58 patients with DKD confirmed by renal biopsy and found that the expression and nuclear translocation of YAP/TAZ increased with the exacerbation of chronic kidney disease classification. In models of DKD, dapagliflozin showed similar effects to verteporfin, an inhibitor of YAP/TAZ, in reducing the activation of YAP/TAZ and downregulating the expression of their target genes, connective tissue growth factor (CTGF) and amphiregulin in vivo and in vitro. Silencing SGLT2 also confirmed this effect. Importantly, dapagliflozin showed a better effect than verteporfin in inhibiting inflammation, oxidative stress and fibrosis in the kidney in DKD rats. Taken together, this study proved for the first time that dapagliflozin delayed tubulointerstitial fibrosis at least partly by inhibiting YAP/TAZ activation, which further enriched the antifibrotic effect of SGLT2i.
Collapse
Affiliation(s)
- Lan Feng
- Department of Nephrology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China; Department of Aerospace Medicine, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Yang Chen
- Department of Nephrology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Ni Li
- Department of Nephrology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Xiaojuan Yang
- Department of Nephrology, Yan'an University Affiliated Hospital, Yan'an, China
| | - Lu Zhou
- Department of Nephrology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Huirong Li
- Department of Nephrology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Tingting Wang
- Department of Nephrology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Manjiang Xie
- Department of Aerospace Medicine, Air Force Medical University (Fourth Military Medical University), Xi'an, China.
| | - Hongbao Liu
- Department of Nephrology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China.
| |
Collapse
|
17
|
Welz L, Aden K. Fibrosis and Inflammation in Inflammatory Bowel Disease-More Than 2 Sides of the Same Coin? Gastroenterology 2023; 164:19-21. [PMID: 36341736 DOI: 10.1053/j.gastro.2022.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 02/03/2023]
Affiliation(s)
- Lina Welz
- Institute of Clinical Molecular Biology and, Department of Internal Medicine I, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology and, Department of Internal Medicine I, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
18
|
Yang J, Vamvini M, Nigro P, Ho LL, Galani K, Alvarez M, Tanigawa Y, Renfro A, Carbone NP, Laakso M, Agudelo LZ, Pajukanta P, Hirshman MF, Middelbeek RJW, Grove K, Goodyear LJ, Kellis M. Single-cell dissection of the obesity-exercise axis in adipose-muscle tissues implies a critical role for mesenchymal stem cells. Cell Metab 2022; 34:1578-1593.e6. [PMID: 36198295 PMCID: PMC9558082 DOI: 10.1016/j.cmet.2022.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/29/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022]
Abstract
Exercise training is critical for the prevention and treatment of obesity, but its underlying mechanisms remain incompletely understood given the challenge of profiling heterogeneous effects across multiple tissues and cell types. Here, we address this challenge and opposing effects of exercise and high-fat diet (HFD)-induced obesity at single-cell resolution in subcutaneous and visceral white adipose tissue and skeletal muscle in mice with diet and exercise training interventions. We identify a prominent role of mesenchymal stem cells (MSCs) in obesity and exercise-induced tissue adaptation. Among the pathways regulated by exercise and HFD in MSCs across the three tissues, extracellular matrix remodeling and circadian rhythm are the most prominent. Inferred cell-cell interactions implicate within- and multi-tissue crosstalk centered around MSCs. Overall, our work reveals the intricacies and diversity of multi-tissue molecular responses to exercise and obesity and uncovers a previously underappreciated role of MSCs in tissue-specific and multi-tissue beneficial effects of exercise.
Collapse
Affiliation(s)
- Jiekun Yang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maria Vamvini
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Pasquale Nigro
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Li-Lun Ho
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kyriakitsa Galani
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yosuke Tanigawa
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashley Renfro
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas P Carbone
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Leandro Z Agudelo
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Roeland J W Middelbeek
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Kevin Grove
- Novo Nordisk Research Center, Seattle, WA, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
19
|
Son B, Kim TR, Park JH, Yun SI, Choi H, Choi JW, Jeon C, Park HO. SAMiRNA Targeting Amphiregulin Alleviate Total-Body-Irradiation-Induced Renal Fibrosis. Radiat Res 2022; 197:471-479. [PMID: 35148406 DOI: 10.1667/rade-21-00220.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/05/2022] [Indexed: 11/12/2022]
Abstract
Fibrosis is a serious unintended side effect of radiation therapy. In this study, we aimed to investigate whether amphiregulin (AREG) plays a critical role in fibrosis development after total-body irradiation (TBI). We found that the expression of AREG and fibrotic markers, such as α-smooth muscle actin (α-SMA) and collagen type I alpha 1 (COL1α1), was elevated in the kidneys of 6 Gy TBI mice. Expression of AREG and α-SMA was mainly elevated in the proximal and distal tubules of the kidney in response to TBI, which was confirmed by immunofluorescence staining. Knockdown of Areg mRNA using self-assembled-micelle inhibitory RNA (SAMiRNA) significantly reduced the expression of fibrotic markers, including α-SMA and COL1α1, and inflammatory regulators. Finally, intravenous injections of SAMiRNA targeting mouse Areg mRNA (SAMiRNA-mAREG) diminished radiation-induced collagen accumulation in the renal cortex and medulla. Taken together, the results of the present study suggest that blocking of AREG signaling via SAMiRNA-mAREG treatment could be a promising therapeutic approach to alleviate radiation-induced kidney fibrosis.
Collapse
Affiliation(s)
- Beomseok Son
- siRNAgen Therapeutics, Daejeon 34302, Republic of Korea
| | - Tae Rim Kim
- siRNAgen Therapeutics, Daejeon 34302, Republic of Korea
| | - Jun Hong Park
- siRNAgen Therapeutics, Daejeon 34302, Republic of Korea
| | - Sung-Il Yun
- siRNAgen Therapeutics, Daejeon 34302, Republic of Korea
| | - Hanjoo Choi
- siRNAgen Therapeutics, Daejeon 34302, Republic of Korea
| | - Ji Woo Choi
- siRNAgen Therapeutics, Daejeon 34302, Republic of Korea
| | | | - Han-Oh Park
- siRNAgen Therapeutics, Daejeon 34302, Republic of Korea
| |
Collapse
|
20
|
Yun SI, Lee SK, Goh EA, Kwon OS, Choi W, Kim J, Lee MS, Choi SJ, Lim SS, Moon TK, Kim SH, Kyong K, Nam G, Park HO. Weekly treatment with SAMiRNA targeting the androgen receptor ameliorates androgenetic alopecia. Sci Rep 2022; 12:1607. [PMID: 35102171 PMCID: PMC8803970 DOI: 10.1038/s41598-022-05544-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Androgenetic alopecia (AGA) is the most common type of hair loss in men and women. Dihydrotestosterone (DHT) and androgen receptor (AR) levels are increased in patients with AGA, and DHT-AR signaling correlates strongly with AGA pathogenesis. In this study, treatment with self-assembled micelle inhibitory RNA (SAMiRNA) nanoparticle-type siRNA selectively suppressed AR expression in vitro. Clinical studies with application of SAMiRNA to the scalp and massaging to deliver it to the hair follicle confirmed its efficacy in AGA. For identification of a potent SAMiRNA for AR silencing, 547 SAMiRNA candidates were synthesized and screened. SAMiRNA-AR68 (AR68) was the most potent and could be efficiently delivered to human follicle dermal papilla cells (HFDPCs) and hair follicles, and this treatment decreased the AR mRNA and protein levels. We confirmed that 10 µM AR68 elicits no innate immune response in human PBMCs and no cytotoxicity up to 20 µM with HFDP and HaCaT cells. Clinical studies were performed in a randomized and double-blind manner with two different doses and frequencies. In the low-dose (0.5 mg/ml) clinical study, AR68 was applied three times per week for 24 weeks, and through quantitative analysis using a phototrichogram, we confirmed increases in total hair counts. In the high-dose (5 mg/ml) clinical study, AR68 was given once per week for 24 weeks and showed 83% efficacy in increasing hair counts compared with finasteride. No side effects were observed. Therefore, SAMiRNA targeting AR mRNA is a potential novel topical treatment for AGA.
Collapse
Affiliation(s)
- Sung-Il Yun
- Bioneer Corporation, 8-11 Munpyeongseo-ro, Daedeok-gu, Daejeon, 34302, Republic of Korea
| | - Sang-Kyu Lee
- siRNAgen Therapeutics, Daejeon, 34302, Republic of Korea
| | - Eun-Ah Goh
- siRNAgen Therapeutics, Daejeon, 34302, Republic of Korea
| | - Oh Seung Kwon
- siRNAgen Therapeutics, Daejeon, 34302, Republic of Korea
| | - Woorim Choi
- siRNAgen Therapeutics, Daejeon, 34302, Republic of Korea
| | - Jangseon Kim
- siRNAgen Therapeutics, Daejeon, 34302, Republic of Korea
| | - Mi Sun Lee
- siRNAgen Therapeutics, Daejeon, 34302, Republic of Korea
| | - Soon Ja Choi
- siRNAgen Therapeutics, Daejeon, 34302, Republic of Korea
| | - Seung Sik Lim
- Bioneer Corporation, 8-11 Munpyeongseo-ro, Daedeok-gu, Daejeon, 34302, Republic of Korea
| | - Tae Kee Moon
- Ellead Skin Research Center, Ellead, Seongnam, 13590, Republic of Korea
| | - Sin Hae Kim
- Ellead Skin Research Center, Ellead, Seongnam, 13590, Republic of Korea
| | - Keeyeol Kyong
- Department of Bio-Cosmetics, Seowon University, 377-3 Musimseoro, Seowon-gu, Cheongju, 28674, Republic of Korea
| | - Gaewon Nam
- Department of Bio-Cosmetics, Seowon University, 377-3 Musimseoro, Seowon-gu, Cheongju, 28674, Republic of Korea.
| | - Han-Oh Park
- Bioneer Corporation, 8-11 Munpyeongseo-ro, Daedeok-gu, Daejeon, 34302, Republic of Korea.
- siRNAgen Therapeutics, Daejeon, 34302, Republic of Korea.
| |
Collapse
|
21
|
Kim HY, Kim TR, Kim SH, Kim IH, Lim JO, Park JH, Yun S, Lee IC, Park HO, Kim JC. Four-Week Repeated Intravenous Dose Toxicity of Self-Assembled-Micelle Inhibitory RNA-Targeting Amphiregulin in Mice. Int J Toxicol 2021; 40:453-465. [PMID: 34286615 DOI: 10.1177/10915818211031241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study investigated the potential subchronic toxicity of self-assembled-micelle inhibitory RNA-targeting amphiregulin (SAMiRNA-AREG) in mice. The test reagent was administered once-daily by intravenous injection for 4 weeks at 0, 100, 200, or 300 mg/kg/day doses. Additional recovery groups (vehicle control and high dose groups) were observed for a 2-week recovery period. During the test period, mortality, clinical signs, body weight, food consumption, ophthalmology, urinalysis, hematology, serum biochemistry, gross pathology, organ weight, and histopathology were examined. An increase in the percentages of basophil and large unstained cells was observed in the 200 and 300 mg/kg/day groups of both sexes. In addition, the absolute and relative weights of the spleen were higher in males given 300 mg/kg/day relative to the concurrent controls. However, these findings were considered of no toxicological significance because the changes were minimal, were not accompanied by other relevant results (eg, correlating microscopic changes), and were not observed at the end of the 2-week recovery period indicating recovery of the findings. Based on the results, SAMiRNA-AREG did not cause treatment-related adverse effects at dose levels of up to 300 mg/kg/day in mice after 4-week repeated intravenous doses. Under these conditions, the no-observed-adverse-effect level of the SAMiRNA-AREG was ≥300 mg/kg/day in both sexes and no target organs were identified.
Collapse
Affiliation(s)
- Hyeon-Young Kim
- Jeonbuk Branch Institute, 443298Korea Institute of Toxicology, Jeongeup, Republic of Korea
- College of Veterinary Medicine, 34931Chonnam National University, Gwangju, Republic of Korea
| | - Tae Rim Kim
- 65404siRNAgen Therapeutics and Bioneer Corporation, Daejeon, Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Branch Institute, 443298Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - In-Hyeon Kim
- Jeonbuk Branch Institute, 443298Korea Institute of Toxicology, Jeongeup, Republic of Korea
- College of Veterinary Medicine, 34931Chonnam National University, Gwangju, Republic of Korea
| | - Je-Oh Lim
- College of Veterinary Medicine, 34931Chonnam National University, Gwangju, Republic of Korea
| | - Jun Hong Park
- 65404siRNAgen Therapeutics and Bioneer Corporation, Daejeon, Republic of Korea
| | - Sungil Yun
- 65404siRNAgen Therapeutics and Bioneer Corporation, Daejeon, Republic of Korea
| | - In-Chul Lee
- Functional Biomaterial Research Center, 54679Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Han-Oh Park
- 65404siRNAgen Therapeutics and Bioneer Corporation, Daejeon, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine, 34931Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
22
|
Nagashima R, Iyoda M. The Roles of Kidney-Resident ILC2 in Renal Inflammation and Fibrosis. Front Immunol 2021; 12:688647. [PMID: 34381446 PMCID: PMC8350317 DOI: 10.3389/fimmu.2021.688647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a recently discovered lymphocyte population with high cytokine productive capacity. Type-2 ILCs (ILC2s) are the most studied, and they exert a rapid type-2 immune response to eliminate helminth infections. Massive and sustainable ILC2 activation induces allergic tissue inflammation, so it is important to maintain correct ILC2 activity for immune homeostasis. The ILC2-activating cytokine IL-33 is released from epithelial cells upon tissue damage, and it is upregulated in various kidney disease mouse models and in kidney disease patients. Various kidney diseases eventually lead to renal fibrosis, which is a common pathway leading to end-stage renal disease and is a chronic kidney disease symptom. The progression of renal fibrosis is affected by the innate immune system, including renal-resident ILC2s; however, the roles of ILC2s in renal fibrosis are not well understood. In this review, we summarize renal ILC2 function and characterization in various kidney diseases and highlight the known and potential contributions of ILC2s to kidney fibrosis.
Collapse
Affiliation(s)
- Ryuichi Nagashima
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Iyoda
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|