1
|
Iida R, Yasuda T. Overview of M-LP/MPV17L, a novel atypical PDE and possible target for drug development. Eur J Pharmacol 2025; 996:177569. [PMID: 40180270 DOI: 10.1016/j.ejphar.2025.177569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/12/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
M-LP/Mpv17L (Mpv17-like protein) was initially identified as a novel protein during screening of age-dependently expressed genes in mouse kidney. Previous findings suggested that human Mpv17-like protein (M-LP/MPV17L) is involved in the maintenance of mitochondrial DNA (mtDNA), thus playing a role in cell defense against mitochondrial dysfunction, although its molecular mechanism of action has remained unknown. Recently, generation of M-LP/MPV17L-knockout (KO) cells using CRISPR-Cas9 technology has revealed that M-LP/MPV17L exerts cyclic nucleotide phosphodiesterase (PDE) activity despite lacking the conserved catalytic region and other structural motifs characteristic of the PDE family, and is one of the key components of pathways such as cAMP/cAMP-dependent protein kinase A (PKA) signaling. Moreover, generation of M-LP/Mpv17L-KO mice has revealed that deficiency of M-LP/Mpv17L results in development of β-cell hyperplasia and improved glucose tolerance, as well as physiological afferent cardiac hypertrophy. M-LP/MPV17L is a protein of great interest as it is a potential target for drug development. Therefore, in this review, we overview the molecular characteristics, regulation of expression, cellular functions, phenotypes detected in KO mice, and disease relevance of M-LP/MPV17L.
Collapse
Affiliation(s)
- Reiko Iida
- Molecular Neuroscience Unit, School of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan.
| | - Toshihiro Yasuda
- Organization for Life Science Advancement Programs, University of Fukui, Fukui, 910-1193, Japan
| |
Collapse
|
2
|
Ledford DK, Kim TB, Ortega VE, Cardet JC. Asthma and respiratory comorbidities. J Allergy Clin Immunol 2025; 155:316-326. [PMID: 39542142 DOI: 10.1016/j.jaci.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Asthma is a common respiratory condition with various phenotypes, nonspecific symptoms, and variable clinical course. The occurrence of other respiratory conditions with asthma, or respiratory comorbidities (RCs), is not unusual. A literature search of PubMed was performed for asthma and a variety of respiratory comorbidities for the years 2019 to 2024. The 5 conditions with the largest number of references, other than rhinitis and rhinosinusitis (addressed elsewhere), or that are the most problematic in the authors' clinical experience, are summarized. Others are briefly discussed. The diagnosis and treatment of both asthma and RCs are complicated by the overlap of symptoms and signs. Recognizing RCs is especially problematic in adult-onset, non-type 2 asthma because there are no biomarkers to assist in confirming non-type 2 asthma. Treatment decisions in subjects with suspected asthma and RCs are complicated by the potential similarities between the symptoms or signs of the RC and asthma, the absence of a sine quo non for the diagnosis of asthma, the likelihood that many RCs improve with systemic corticosteroid therapy, and the possibility that manifestations of the RCs are misattributed to asthma or vice versa. Recognition of RCs is critical to the effective management of asthma, particularly severe or difficult-to-treat asthma.
Collapse
Affiliation(s)
- Dennis K Ledford
- Department of Internal Medicine, Division of Allergy and Immunology, Morsani College of Medicine, University of South Florida, Tampa, and the James A. Haley VA Hospital, Tampa, Fla.
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Victor E Ortega
- Division of Pulmonary Medicine, Department of Medicine and Division of Epidemiology, Department of Qualitative Health Sciences, Mayo Clinic School of Health Sciences, Phoenix, Ariz
| | - Juan Carlos Cardet
- Department of Internal Medicine, Division of Allergy and Immunology, Morsani College of Medicine, University of South Florida, Tampa, and the James A. Haley VA Hospital, Tampa, Fla
| |
Collapse
|
3
|
Ke J, Huang S, He Z, Lei S, Lin S, Duan M. TIGIT Regulates T Cell Inflammation in Airway Inflammatory Diseases. Inflammation 2025; 48:15-24. [PMID: 38780694 DOI: 10.1007/s10753-024-02045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
TIGIT, a co-inhibitory receptor found on T cells and NK cells, transmits inhibitory signals upon binding to its ligand. This interaction suppresses the activation of various signaling pathways, leading to functional exhaustion of cells, ultimately dampening excessive inflammatory responses or facilitating immune evasion in tumors. Dysregulated TIGIT expression has been noted in T cells across different inflammatory conditions, exhibiting varying effects based on T cell subsets. TIGIT predominantly restrains the effector function of pro-inflammatory T cells, upholds the suppressive function of regulatory T cells, and influences Tfh maturation. Mechanistically, the IL27-induced transcription factors c-Maf and Blimp-1 are believed to be key regulators of TIGIT expression in T cells. Notably, TIGIT expression in T cells is implicated in lung diseases, particularly airway inflammatory conditions such as lung cancer, obstructive pulmonary disease, interstitial lung disease, sarcoidosis, and COVID-19. This review emphasizes the significance of TIGIT in the context of T cell immunity and airway inflammatory diseases.
Collapse
Affiliation(s)
- Junyi Ke
- Guangxi Medical University, Nanning, China
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shu Huang
- Wuming Hospital of Guangxi Medical University, Nanning, China
| | | | - Siyu Lei
- Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Shiya Lin
- Guangxi Medical University, Nanning, China
| | - Minchao Duan
- Wuming Hospital of Guangxi Medical University, Nanning, China.
- Department of Respiratory Medicine, Wuming Hospital of Guangxi Medical University, No.26 Yongning Road, Wuming District, Nanning, 530100, China.
| |
Collapse
|
4
|
Li CL, Liu SF. Exploring Molecular Mechanisms and Biomarkers in COPD: An Overview of Current Advancements and Perspectives. Int J Mol Sci 2024; 25:7347. [PMID: 39000454 PMCID: PMC11242201 DOI: 10.3390/ijms25137347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) plays a significant role in global morbidity and mortality rates, typified by progressive airflow restriction and lingering respiratory symptoms. Recent explorations in molecular biology have illuminated the complex mechanisms underpinning COPD pathogenesis, providing critical insights into disease progression, exacerbations, and potential therapeutic interventions. This review delivers a thorough examination of the latest progress in molecular research related to COPD, involving fundamental molecular pathways, biomarkers, therapeutic targets, and cutting-edge technologies. Key areas of focus include the roles of inflammation, oxidative stress, and protease-antiprotease imbalances, alongside genetic and epigenetic factors contributing to COPD susceptibility and heterogeneity. Additionally, advancements in omics technologies-such as genomics, transcriptomics, proteomics, and metabolomics-offer new avenues for comprehensive molecular profiling, aiding in the discovery of novel biomarkers and therapeutic targets. Comprehending the molecular foundation of COPD carries substantial potential for the creation of tailored treatment strategies and the enhancement of patient outcomes. By integrating molecular insights into clinical practice, there is a promising pathway towards personalized medicine approaches that can improve the diagnosis, treatment, and overall management of COPD, ultimately reducing its global burden.
Collapse
Affiliation(s)
- Chin-Ling Li
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Shih-Feng Liu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
5
|
Listyoko AS, Okazaki R, Harada T, Inui G, Yamasaki A. Impact of obesity on airway remodeling in asthma: pathophysiological insights and clinical implications. FRONTIERS IN ALLERGY 2024; 5:1365801. [PMID: 38562155 PMCID: PMC10982419 DOI: 10.3389/falgy.2024.1365801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
The prevalence of obesity among asthma patients has surged in recent years, posing a significant risk factor for uncontrolled asthma. Beyond its impact on asthma severity and patients' quality of life, obesity is associated with reduced lung function, increased asthma exacerbations, hospitalizations, heightened airway hyperresponsiveness, and elevated asthma-related mortality. Obesity may lead to metabolic dysfunction and immune dysregulation, fostering chronic inflammation characterized by increased pro-inflammatory mediators and adipocytokines, elevated reactive oxygen species, and reduced antioxidant activity. This chronic inflammation holds the potential to induce airway remodeling in individuals with asthma and obesity. Airway remodeling encompasses structural and pathological changes, involving alterations in the airway's epithelial and subepithelial layers, hyperplasia and hypertrophy of airway smooth muscle, and changes in airway vascularity. In individuals with asthma and obesity, airway remodeling may underlie heightened airway hyperresponsiveness and increased asthma severity, ultimately contributing to the development of persistent airflow limitation, declining lung function, and a potential increase in asthma-related mortality. Despite efforts to address the impact of obesity on asthma outcomes, the intricate mechanisms linking obesity to asthma pathophysiology, particularly concerning airway remodeling, remain incompletely understood. This comprehensive review discusses current research investigating the influence of obesity on airway remodeling, to enhance our understanding of obesity's role in the context of asthma airway remodeling.
Collapse
Affiliation(s)
- Aditya Sri Listyoko
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
- Pulmonology and Respiratory Medicine Department, Faculty of Medicine, Brawijaya University-Dr. Saiful Anwar General Hospital, Malang, Indonesia
| | - Ryota Okazaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Tomoya Harada
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Genki Inui
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Akira Yamasaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
6
|
Cardenas A, Fadadu RP, Koppelman GH. Epigenome-wide association studies of allergic disease and the environment. J Allergy Clin Immunol 2023; 152:582-590. [PMID: 37295475 PMCID: PMC10564109 DOI: 10.1016/j.jaci.2023.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
The epigenome is at the intersection of the environment, genotype, and cellular response. DNA methylation of cytosine nucleotides, the most studied epigenetic modification, has been systematically evaluated in human studies by using untargeted epigenome-wide association studies (EWASs) and shown to be both sensitive to environmental exposures and associated with allergic diseases. In this narrative review, we summarize findings from key EWASs previously conducted on this topic; interpret results from recent studies; and discuss the strengths, challenges, and opportunities regarding epigenetics research on the environment-allergy relationship. The majority of these EWASs have systematically investigated select environmental exposures during the prenatal and early childhood periods and allergy-associated epigenetic changes in leukocyte-isolated DNA and more recently in nasal cells. Overall, many studies have found consistent DNA methylation associations across cohorts for certain exposures, such as smoking (eg, aryl hydrocarbon receptor repressor gene [AHRR] gene), and allergic diseases (eg, EPX gene). We recommend the integration of both environmental exposures and allergy or asthma within long-term prospective designs to strengthen causality as well as biomarker development. Future studies should collect paired target tissues to examine compartment-specific epigenetic responses, incorporate genetic influences in DNA methylation (methylation quantitative trait locus), replicate findings across diverse populations, and carefully interpret epigenetic signatures from bulk, target tissue or isolated cells.
Collapse
Affiliation(s)
- Andres Cardenas
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford University, Stanford, Calif
| | - Raj P Fadadu
- School of Medicine, University of California, San Francisco, Calif
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, Groningen, The Netherlands; Groningen Research Institute of Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
7
|
Falcon RMG, Caoili SEC. Immunologic, genetic, and ecological interplay of factors involved in allergic diseases. FRONTIERS IN ALLERGY 2023; 4:1215616. [PMID: 37601647 PMCID: PMC10435091 DOI: 10.3389/falgy.2023.1215616] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
An allergic or type I hypersensitivity reaction involves a misdirected immune overreaction to innocuous environmental and dietary antigens called allergens. The genetic predisposition to allergic disease, referred to as atopy, can be expressed as a variety of manifestations-e.g., allergic rhinitis, allergic conjunctivitis, atopic dermatitis, allergic asthma, anaphylaxis. Globally, allergic diseases are one the most common types of chronic conditions. Several factors have been identified to contribute to the pathogenesis and progression of the disease, leading to distinctively variable clinical symptoms. The factors which can attenuate or exacerbate allergic reactions can range from genetic heterozygosity, the prominence of various comorbid infections, and other factors such as pollution, climate, and interactions with other organisms and organism-derived products, and the surrounding environment. As a result, the effective prevention and control of allergies remains to be one of the most prominent public health problems. Therefore, to contextualize the current knowledge about allergic reactions, this review paper attempts to synthesize different aspects of an allergic response to describe its significance in the global health scheme. Specifically, the review shall characterize the biomolecular mechanisms of the pathophysiology of the disease based on underlying disease theories and current findings on ecologic interactions and describe prevention and control strategies being utilized. An integrated perspective that considers the underlying genetic, immunologic, and ecologic aspects of the disease would enable the development of more effective and targeted diagnostic tools and therapeutic strategies for the management and control of allergic diseases.
Collapse
Affiliation(s)
- Robbi Miguel G. Falcon
- Biomedical Innovations Research for Translational Health Science Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | | |
Collapse
|
8
|
Beri P, Plunkett C, Barbara J, Shih CC, Barnes SW, Ross O, Choconta P, Trinh T, Gomez D, Litvin B, Walker J, Qiu M, Hammack S, Toyama EQ. A high-throughput 3D cantilever array to model airway smooth muscle hypercontractility in asthma. APL Bioeng 2023; 7:026104. [PMID: 37206658 PMCID: PMC10191677 DOI: 10.1063/5.0132516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Asthma is often characterized by tissue-level mechanical phenotypes that include remodeling of the airway and an increase in airway tightening, driven by the underlying smooth muscle. Existing therapies only provide symptom relief and do not improve the baseline narrowing of the airway or halt progression of the disease. To investigate such targeted therapeutics, there is a need for models that can recapitulate the 3D environment present in this tissue, provide phenotypic readouts of contractility, and be easily integrated into existing assay plate designs and laboratory automation used in drug discovery campaigns. To address this, we have developed DEFLCT, a high-throughput plate insert that can be paired with standard labware to easily generate high quantities of microscale tissues in vitro for screening applications. Using this platform, we exposed primary human airway smooth muscle cell-derived microtissues to a panel of six inflammatory cytokines present in the asthmatic niche, identifying TGF-β1 and IL-13 as inducers of a hypercontractile phenotype. RNAseq analysis further demonstrated enrichment of contractile and remodeling-relevant pathways in TGF-β1 and IL-13 treated tissues as well as pathways generally associated with asthma. Screening of 78 kinase inhibitors on TGF-β1 treated tissues suggests that inhibition of protein kinase C and mTOR/Akt signaling can prevent this hypercontractile phenotype from emerging, while direct inhibition of myosin light chain kinase does not. Taken together, these data establish a disease-relevant 3D tissue model for the asthmatic airway, which combines niche specific inflammatory cues and complex mechanical readouts that can be utilized in drug discovery efforts.
Collapse
Affiliation(s)
- Pranjali Beri
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | | | - Joshua Barbara
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Chien-Cheng Shih
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - S. Whitney Barnes
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Olivia Ross
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Paula Choconta
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Ton Trinh
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Datzael Gomez
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Bella Litvin
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - John Walker
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Minhua Qiu
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Scott Hammack
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Erin Quan Toyama
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| |
Collapse
|
9
|
He BF, Wu YX, Hu WP, Hua JL, Han Y, Zhang J. ROS induced the Rab26 promoter hypermethylation to promote cigarette smoking-induced airway epithelial inflammation of COPD through activation of MAPK signaling. Free Radic Biol Med 2023; 195:359-370. [PMID: 36610560 DOI: 10.1016/j.freeradbiomed.2023.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Cigarette smoking (CS) exposure-induced airway inflammatory responses drive the occurrence and development of emphysema and chronic obstructive pulmonary disease (COPD). However, its precise mechanisms have not been fully elucidated. In this study, we explore the role of Rab26 in CS exposure modulating the inflammatory response of airway epithelium and the novel mechanism of CS exposure regulation Rab26. These data showed that CS exposure and H2O2 (a type of ROS) suppressed the expression of Rab26 and increased the expression of DNMT3b in vivo and in vitro. GEO data analysis found the level of Rab26 was decreased in the lung tissue of COPD patients. CSE-induced ROS promoted DNA methylation of the Rab26 promoter and inhibited its promoter activity by elevating the DNMT3b level. Antioxidants N-Acetyl-l-cysteine (NAC), 5-Aza-2'-deoxycytidine (5-AZA) (DNA methylation inhibitor) and DNMT3B siRNA alleviated CSE's inhibitory effect on Rab26 expression in vitro. Importantly, NAC alleviated the improved expression of Rab26 and reduced DNMT3B expression, in the airway of smoking exposure as well as attenuated the inflammatory response in vivo. Overexpression of Rab26 attenuated CSE-induced production of inflammatory mediators through part inactivation of p38 and JNK MAPK. On the contrary, silencing Rab26 enhanced p38 and JNK activation and aggravated inflammatory response. These findings suggest that ROS-mediated Rab26 promoter hypermethylation is a critical step in cigarette smoking-induced airway epithelial inflammatory response. Restoring Rab26 in the airway epithelium might be a potential strategy for treating airway inflammation and COPD.
Collapse
Affiliation(s)
- Bin-Feng He
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Xing Wu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei-Ping Hu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jian-Lan Hua
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yaoping Han
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Nakwan N, Kunhapan P, Chaiyasung T, Satproedprai N, Singkhamanan K, Mahasirimongkol S, Charalsawadi C. Genome-wide association study identifies WWC2 as a possible locus associated with persistent pulmonary hypertension of the newborn in the Thai population. Transl Pediatr 2023; 12:1-12. [PMID: 36798934 PMCID: PMC9926135 DOI: 10.21037/tp-22-280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/22/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND There is known to be significant genetic involvement in persistent pulmonary hypertension of the newborn (PPHN), but to date there is not a clear understanding of this situation, and clarifying that involvement would be of considerable assistance in devising effective treatments for the disease. This case-control study was undertaken to search for genetic variants associated with PPHN in the Thai population using a genome-wide association study (GWAS). METHODS A 659,184 single nucleotide polymorphisms from 387 participants (54 PPHN cases and 333 healthy participants) were genotyped across the human genome using an Illumina Asian Screening Array-24 v1.0 BeadChip Array. After quality control, we obtained 443,063 autosomal SNPs for the GWAS analysis. The FaST-LMM and R packages were used for all statistical analyses. RESULTS For the case-control analysis, the genomic inflation factor (λ) was 1.016, rs149768622 T>C in the first intron of WWC2 gene showed the strongest association with a P value of 3.76E-08 and odds ratio (OR) of 13.24 (95% CI: 3.91-44.78). The variants at the LOC102723906/LOC105377599, CADM4, GPM6A, CIT, RIMBP2, LOC105374510, LOC105375193, PTPRN2, CDK14, and LCORL loci showed suggestive evidence of associations with PPHN (P<1E-05). CONCLUSIONS This GWAS found that rs149768622 T>C in the WWC2 gene was possibly associated with PPHN. However, replication and functional studies are needed to validate this association and further explore the role(s) of the WWC2 gene in PPHN.
Collapse
Affiliation(s)
- Narongsak Nakwan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.,Department of Pediatrics, Hat Yai Medical Education Center, Hat Yai Hospital, Songkhla, Thailand
| | - Punna Kunhapan
- Medical Genetics Center, Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Tassamonwan Chaiyasung
- Medical Genetics Center, Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Nusara Satproedprai
- Medical Genetics Center, Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Surakameth Mahasirimongkol
- Medical Genetics Center, Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Chariyawan Charalsawadi
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.,Genomic Medicine Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
11
|
Akuthota P. Asthma Exacerbations: Patient Features and Potential Long-Term Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:253-263. [PMID: 37464125 DOI: 10.1007/978-3-031-32259-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Asthma exacerbations occur in the context of a complex interplay between external exposures and host factors. Respiratory tract viral infections, in particular rhinovirus, are dominant initiators of exacerbations, with allergens and other inhalation exposures as additional key contributors. The presence of underlying type II inflammation, with associated biomarker elevations, is a major driver of exacerbation risk and mechanism, as evidenced by the consistent reduction of exacerbations seen with biologics targeting these pathways. Several genetic polymorphisms are associated with exacerbations, and while they may individually have small effects, they are cumulatively important and magnified by environmental exposures. A history of exacerbations predicts future exacerbations with potentially negative implications on long-term lung health.
Collapse
Affiliation(s)
- Praveen Akuthota
- Division of Pulmonary, Critical Care, Sleep Medicine, & Physiology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Peng J, Wang M, Wu Y, Shen Y, Chen L. Clinical Indicators for Asthma-COPD Overlap: A Systematic Review and Meta-Analysis. Int J Chron Obstruct Pulmon Dis 2022; 17:2567-2575. [PMID: 36259043 PMCID: PMC9572492 DOI: 10.2147/copd.s374079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/24/2022] [Indexed: 11/05/2022] Open
Abstract
Background Some clinical indicators have been reported to be useful in differentiating asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO) from pure asthma/COPD, but the results were inconsistent. This study aims to evaluate the diagnostic value of these indicators for ACO. Methods Databases of PubMed, EMBASE, Ovid and Web of Science were retrieved. Pooled standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated in random-effects models. Results 48 eligible studies were included. The pooled results indicated, compared with pure asthma, ACO patients had lower levels of forced expiratory volume in the first second (FEV1)% predicted (pred) (SMD=−1.09, 95% CI −1.3 to −0.87), diffusion lung capacity for carbon monoxide (DLCO)% pred (SMD=−0.83, 95% CI −1.24 to −0.42), fractional exhaled nitric oxide (FeNO) (SMD=−0.23, 95% CI −0.36 to −0.11), and higher levels of induced sputum neutrophil (SMD = 0.51, 95% CI 0.21 to 0.81), circulating YKL-40 (SMD = 0.96, 95% CI 0.27 to 1.64). However, relative to COPD alone, ACO patients had higher levels of FEV1% pred (SMD = 0.15, 95% CI 0.05 to 0.26), DLCO% pred (SMD = 0.38, 95% CI 0.16 to 0.6), FeNO (SMD = 0.59, 95% CI 0.40 to 0.78), serum total immunoglobulin (Ig)E (SMD = 0.42, 95% CI 0.1 to 0.75), blood eosinophil (SMD = 0.44, 95% CI 0.29 to 0.59), induced sputum eosinophil (SMD = 0.62, 95% CI 0.42 to 0.83), and lower levels of induced sputum neutrophil (SMD=−0.48, 95% CI −0.7 to −0.27), circulating YKL-40 (SMD=−1.09, 95% CI −1.92 to −0.26). Conclusion Compared with pure asthma/COPD, ACO patients have different levels of FEV1% pred, DLCO% pred, FeNO, serum total IgE, blood eosinophil, induced sputum eosinophil/neutrophil, and circulating YKL-40, which could be helpful to establish a clinical diagnosis of ACO.
Collapse
Affiliation(s)
- Junjie Peng
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Min Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Yanqiu Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China,Correspondence: Lei Chen; Yongchun Shen, Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China, Email ;
| |
Collapse
|
13
|
Saferali A, Hersh CP. Genetic Determinants in Airways Obstructive Diseases: The Case of Asthma Chronic Obstructive Pulmonary Disease Overlap. Immunol Allergy Clin North Am 2022; 42:559-573. [PMID: 35965045 PMCID: PMC9379112 DOI: 10.1016/j.iac.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Genome-wide association studies (GWAS) of asthma and chronic obstructive pulmonary disease (COPD) with ever-increasing sample sizes have found multiple genetic loci associated with either disease. However, there are few intersecting loci between asthma and COPD. GWAS specifically focused on asthma-COPD overlap (ACO) have been limited by smaller sample sizes and the lack of a consistent definition of ACO that has also hampered clinical and epidemiologic studies. Other genomic techniques, such as gene expression profiling, are feasible with smaller sample sizes. Genetic analyses of objective measures of airway reactivity and allergy/T2 inflammation biomarkers in COPD studies may be another strategy to overcome limitations in ACO definitions.
Collapse
Affiliation(s)
- Aabida Saferali
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
14
|
Chen YC, Chang YP, Huang KT, Hsu PY, Hsiao CC, Lin MC. Unraveling the Pathogenesis of Asthma and Chronic Obstructive Pulmonary Disease Overlap: Focusing on Epigenetic Mechanisms. Cells 2022; 11:cells11111728. [PMID: 35681424 PMCID: PMC9179497 DOI: 10.3390/cells11111728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/05/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
Asthma and COPD overlap (ACO) is characterized by patients presenting with persistent airflow limitation and features of both asthma and COPD. It is associated with a higher frequency and severity of exacerbations, a faster lung function decline, and a higher healthcare cost. Systemic inflammation in COPD and asthma is driven by type 1 T helper (Th1) and Th2 immune responses, respectively, both of which may contribute to airway remodeling in ACO. ACO-related biomarkers can be classified into four categories: neutrophil-mediated inflammation, Th2 cell responses, arachidonic acid-eicosanoids pathway, and metabolites. Gene–environment interactions are key contributors to the complexity of ACO and are regulated by epigenetic mechanisms, including DNA methylation, histone modifications, and non-coding RNAs. Thus, this review focuses on the link between epigenetics and ACO, and outlines the following: (I) inheriting epigenotypes without change with environmental stimuli, or epigenetic changes in response to long-term exposure to inhaled particles plus intermittent exposure to specific allergens; (II) epigenetic markers distinguishing ACO from COPD and asthma; (III) potential epigenetic drugs that can reverse oxidative stress, glucocorticoid insensitivity, and cell injury. Improved understanding of the epigenetic regulations holds great value to give deeper insight into the mechanisms, and clarify their implications for biomedical research in ACO.
Collapse
Affiliation(s)
- Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (Y.-C.C.); (C.-C.H.); (M.-C.L.); Tel.: +886-7-731-7123 (ext. 8199) (Y.-C.C. & M.-C.L.); +886-7-731-7123 (ext. 8979) (C.-C.H.)
| | - Yu-Ping Chang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
| | - Kuo-Tung Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
| | - Po-Yuan Hsu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
| | - Chang-Chun Hsiao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (Y.-C.C.); (C.-C.H.); (M.-C.L.); Tel.: +886-7-731-7123 (ext. 8199) (Y.-C.C. & M.-C.L.); +886-7-731-7123 (ext. 8979) (C.-C.H.)
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
- Correspondence: (Y.-C.C.); (C.-C.H.); (M.-C.L.); Tel.: +886-7-731-7123 (ext. 8199) (Y.-C.C. & M.-C.L.); +886-7-731-7123 (ext. 8979) (C.-C.H.)
| |
Collapse
|
15
|
Alfahad AJ, Alzaydi MM, Aldossary AM, Alshehri AA, Almughem FA, Zaidan NM, Tawfik EA. Current views in chronic obstructive pulmonary disease pathogenesis and management. Saudi Pharm J 2022; 29:1361-1373. [PMID: 35002373 PMCID: PMC8720819 DOI: 10.1016/j.jsps.2021.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/22/2021] [Indexed: 01/11/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung dysfunction caused mainly by inhaling toxic particles and cigarette smoking (CS). The continuous exposure to ruinous molecules can lead to abnormal inflammatory responses, permanent damages to the respiratory system, and irreversible pathological changes. Other factors, such as genetics and aging, influence the development of COPD. In the last decade, accumulating evidence suggested that mitochondrial alteration, including mitochondrial DNA damage, increased mitochondrial reactive oxygen species (ROS), abnormal autophagy, and apoptosis, have been implicated in the pathogenesis of COPD. The alteration can also extend to epigenetics, namely DNA methylation, histone modification, and non-coding RNA. This review will discuss the recent progressions in COPD pathology, pathophysiology, and molecular pathways. More focus will be shed on mitochondrial and epigenetic variations related to COPD development and the role of nanomedicine as a potential tool for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Ahmed J Alfahad
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Mai M Alzaydi
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Ahmad M Aldossary
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Abdullah A Alshehri
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Fahad A Almughem
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Nada M Zaidan
- Center of Excellence in Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Essam A Tawfik
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia.,Center of Excellence in Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| |
Collapse
|
16
|
Shi B, Li W, Hao Y, Dong H, Cao W, Guo J, Gao P. Characteristics of inflammatory phenotypes among patients with asthma: relationships of blood count parameters with sputum cellular phenotypes. Allergy Asthma Clin Immunol 2021; 17:47. [PMID: 33975625 PMCID: PMC8111745 DOI: 10.1186/s13223-021-00548-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND There is a need to identify the asthma inflammatory phenotypes of patients to facilitate personalized asthma treatment. Sputum induction is time-consuming and requires expert clinical technique. This study aimed to assess the distribution and characteristics of asthma inflammatory phenotypes in Jilin Province, China; it also aimed to identify an easier method for characterization of an asthma phenotype, rather than sputum cellular analysis. METHODS In this study, 232 asthma patients underwent sputum induction following clinical assessment and blood collection. Inflammatory cell counts in sputum were used to classify asthma inflammatory phenotypes. Receiver operating characteristic curve and Spearman correlation coefficient analyses were used to identify correlations between clinical parameters. RESULTS Among the included patients, there had 52.1% paucigranulocytic, 38.4% eosinophilic, 4.3% neutrophilic, and 5.2% mixed granulocytic asthma phenotypes, respectively. In total, 129 (55.6%) patients had asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO); these patients had higher proportion of smokers, higher sputum neutrophil count, worse lung function, and worse asthma control, compared with patients who had asthma alone (p < 0.05). Sputum eosinophil/neutrophil counts were positively correlated with blood eosinophil/neutrophil counts (p < 0.01). To identify the presence of sputum eosinophil proportion ≥ 3%, optimal cut-off values for blood eosinophil count and fractional exhaled nitric oxide (FeNO) were 0.2 × 109/L and 30.25 ppd (area under the curve (AUC) = 0.744; AUC = 0.653, p < 0.001). AUCs did not significantly differ between FeNO and blood eosinophil count (p = 0.162), but both exhibited poor specificity (57% and 49%, respectively). To identify the presence of sputum neutrophil proportion ≥ 61%, the optimal cut-off value for blood neutrophil proportion was 69.3% (AUC = 0.691, p = 0.0003); however, this exhibited poor sensitivity (50%). CONCLUSIONS Paucigranulocytic asthma was the most common phenotype, followed by eosinophilic asthma. Higher proportion of smokers, poor patient compliance, insufficient treatment, and poor asthma control may have been the main causes of high ACO proportion among patients in this study. Blood eosinophil/neutrophil counts exhibited poor specificity and sensitivity for prediction of airway eosinophilic/neutrophilic inflammation.
Collapse
Affiliation(s)
- Bingqing Shi
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Wei Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yuqiu Hao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Hongna Dong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Wenjing Cao
- Department of Science and Education, Changchun Central Hospital, Changchun, Jilin, China
| | - Jie Guo
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China.
| |
Collapse
|
17
|
Castro de Moura M, Davalos V, Planas-Serra L, Alvarez-Errico D, Arribas C, Ruiz M, Aguilera-Albesa S, Troya J, Valencia-Ramos J, Vélez-Santamaria V, Rodríguez-Palmero A, Villar-Garcia J, Horcajada JP, Albu S, Casasnovas C, Rull A, Reverte L, Dietl B, Dalmau D, Arranz MJ, Llucià-Carol L, Planas AM, Pérez-Tur J, Fernandez-Cadenas I, Villares P, Tenorio J, Colobran R, Martin-Nalda A, Soler-Palacin P, Vidal F, Pujol A, Esteller M. Epigenome-wide association study of COVID-19 severity with respiratory failure. EBioMedicine 2021; 66:103339. [PMID: 33867313 PMCID: PMC8047083 DOI: 10.1016/j.ebiom.2021.103339] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the coronavirus disease 2019 (COVID-19), exhibit a wide spectrum of disease behaviour. Since DNA methylation has been implicated in the regulation of viral infections and the immune system, we performed an epigenome-wide association study (EWAS) to identify candidate loci regulated by this epigenetic mark that could be involved in the onset of COVID-19 in patients without comorbidities. METHODS Peripheral blood samples were obtained from 407 confirmed COVID-19 patients ≤ 61 years of age and without comorbidities, 194 (47.7%) of whom had mild symptomatology that did not involve hospitalization and 213 (52.3%) had a severe clinical course that required respiratory support. The set of cases was divided into discovery (n = 207) and validation (n = 200) cohorts, balanced for age and sex of individuals. We analysed the DNA methylation status of 850,000 CpG sites in these patients. FINDINGS The DNA methylation status of 44 CpG sites was associated with the clinical severity of COVID-19. Of these loci, 23 (52.3%) were located in 20 annotated coding genes. These genes, such as the inflammasome component Absent in Melanoma 2 (AIM2) and the Major Histocompatibility Complex, class I C (HLA-C) candidates, were mainly involved in the response of interferon to viral infection. We used the EWAS-identified sites to establish a DNA methylation signature (EPICOVID) that is associated with the severity of the disease. INTERPRETATION We identified DNA methylation sites as epigenetic susceptibility loci for respiratory failure in COVID-19 patients. These candidate biomarkers, combined with other clinical, cellular and genetic factors, could be useful in the clinical stratification and management of patients infected with the SARS-CoV-2. FUNDING The Unstoppable campaign of the Josep Carreras Leukaemia Foundation, the Cellex Foundation and the CERCA Programme/Generalitat de Catalunya.
Collapse
Affiliation(s)
- Manuel Castro de Moura
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Veronica Davalos
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Laura Planas-Serra
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Damiana Alvarez-Errico
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Carles Arribas
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | | | - Jesús Troya
- Infanta Leonor University Hospital, Madrid, Spain
| | | | - Valentina Vélez-Santamaria
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain; Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Agustí Rodríguez-Palmero
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain; University Hospital Germans Trias i Pujol, Badalona, Barcelona, Catalonia, Spain
| | - Judit Villar-Garcia
- Hospital del Mar - IMIM Biomedical Research Institute, Barcelona, Catalonia, Spain
| | - Juan P Horcajada
- Hospital del Mar - IMIM Biomedical Research Institute, Barcelona, Catalonia, Spain
| | - Sergiu Albu
- Institut Guttmann Foundation, Badalona, Barcelona, Catalonia, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain; Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Anna Rull
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Laia Reverte
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Beatriz Dietl
- Servei de malalties infeccioses Hospital Universitari MutuaTerrassa, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - David Dalmau
- MutuaTerrassa Research and Innovation Foundation, HIV/AIDS Unit Hospital Universitari MutuaTerrassa, University of Barcelona, Barcelona, Catalonia, Spain
| | - Maria J Arranz
- Fundaciò Docència i Recerca Mutua Terrassa i Hospital Universitari Mutua Terrassa, Barcelona, Catalonia, Spain
| | - Laia Llucià-Carol
- Stroke Pharmacogenomics and Genetics Group, Sant Pau Institute of Research, Sant Pau Hospital, Barcelona, Catalonia, Spain
| | - Anna M Planas
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Area of Neurosciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Jordi Pérez-Tur
- Institut de Biomedicina de València-CSIC, CIBERNED, Unitat Mixta de Neurologia i Genètica, IIS La Fe, Vallencia, Spain
| | - Israel Fernandez-Cadenas
- Stroke Pharmacogenomics and Genetics Group, Sant Pau Institute of Research, Sant Pau Hospital, Barcelona, Catalonia, Spain
| | - Paula Villares
- Internal Medicine Department, Hospital HM Sanchinarro, HM Hospitales, Madrid, Spain
| | - Jair Tenorio
- INGEMM-Instituto de Genética Médica y Molecular, Hospital Universitario La Paz, Madrid, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Roger Colobran
- Immunology Division, Genetics Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, UAB, Barcelona, Catalonia, Spain
| | - Andrea Martin-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Francesc Vidal
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Catalonia, Spain.
| |
Collapse
|