1
|
Bezvoda R, Landeo‐Ríos YM, Kubátová Z, Kollárová E, Kulich I, Busch W, Žárský V, Cvrčková F. A Genome-Wide Association Screen for Genes Affecting Leaf Trichome Development and Epidermal Metal Accumulation in Arabidopsis. PLANT, CELL & ENVIRONMENT 2025; 48:3708-3734. [PMID: 39812181 PMCID: PMC11963502 DOI: 10.1111/pce.15357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
To identify novel genes engaged in plant epidermal development, we characterized the phenotypic variability of rosette leaf epidermis of 310 sequenced Arabidopsis thaliana accessions, focusing on trichome shape and distribution, compositional characteristics of the trichome cell wall, and histologically detectable metal ion distribution. Some of these traits correlated with cLimate parameters of our accession's locations of origin, suggesting environmental selection. A novel metal deposition pattern in stomatal guard cells was observed in some accessions. Subsequent GWAS analysis identified 1546 loci with protein sequence-altering SNPs associated with one or more traits, including 5 genes with previously reported relevant mutant phenotypes and 80 additional genes with known or predicted roles in relevant developmental and cellular processes. Some candidates, including GFS9/TT9, exhibited environmentally correlated allele distribution. Several large gene famiLies, namely DUF674, DUF784, DUF1262, DUF1985, DUF3741, cytochrome P450, receptor-Like kinases, Cys/His-rich C1 domain proteins and formins were overrepresented among the candidates for various traits, suggesting epidermal development-related functions. A possible participation of formins in guard cell metal deposition was supported by observations in available loss of function mutants. Screening of candidate gene lists against the STRING interactome database uncovered several predominantly nuclear protein interaction networks with possible novel roles in epidermal development.
Collapse
Affiliation(s)
- Radek Bezvoda
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| | | | - Zdeňka Kubátová
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| | - Eva Kollárová
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| | - Ivan Kulich
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, and Integrative Biology LaboratorySalk Institute for Biological StudiesLa JollaCaliforniaUSA
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesVienna Biocenter (VBC)ViennaAustria
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
- Institute of Experimental BotanyCzech Academy of SciencesPragueCzechia
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| |
Collapse
|
2
|
Asare MO, Pellegrini E, Száková J, Najmanová J, Tlustoš P, Contin M. Abilities of herbaceous plant species to phytoextract Cd, Pb, and Zn from arable soils after poly-metallic mining and smelting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:8834-8849. [PMID: 40097695 PMCID: PMC11968566 DOI: 10.1007/s11356-025-36241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Potentially toxic element (PTE) contamination deteriorates agricultural land. This study explored the accumulation of excess PTEs (Cd, Pb, and Zn) in soils by shoots of herbaceous plants growing on alluvial sediments of an abandoned mining/smelting site near the Litavka River, Czech Republic, as a means of soil remediation. Determination of total Cd, Pb, and Zn, contents in soil and plant samples decomposed with HNO3 + HCl + HF, HNO3, and H2O2, respectively, were carried out by inductively coupled optical emission spectrometry. The soil Cd, Pb, and Zn contents in the studied site ranged from 40 to 65, 3183 to 3897, and 5108 to 6553 mg kg-1, respectively, indicating serious soil contamination compared to the limits allowed by the FAO/WHO and the Czech Republic. Slightly acidic soil reactions and negative correlations between the pH, C, and N supported the assumption of relative solubility, mobility, and accumulation of studied PTEs by herbaceous species. Shoot accumulation of Cd, Pb, and Zn varied in 22 of 23 species recording a Cd content above the permissible limit. The Zn content in all plants was above the WHO limit. Except for Arabidopsis halleri, with a bioaccumulation factor (BAFshoot) > 1 for Cd and Zn, Equisetum arvense recorded a comparatively higher Cd content (10.3-28 mg kg-1) than all other species. Silene vulgaris (Moench), Leucanthemum vulgare, E. arvense, Achillea millefolium, Carex sp., Dianthus deltoides, Campanula patula, Plantago lanceolata, and Rumex acetosa accumulated more Zn than many plants (> 300 mg kg-1). Although E. arvense had a BAF < 1, it accumulated > 1000 mg Zn kg-1 and supported the phytoextraction of Zn. Only 10 species accumulated Pb above the limit permissible in plants, with L. vulgare recording the highest concentration (40 mg kg-1) among all species. Therefore, the shoots of several plant species showed promising PTE accumulation abilities and deserve more detailed studies concerning their potential use for phytoremediation of Cd-, Pb-, or Zn-contaminated soils.
Collapse
Affiliation(s)
- Michael O Asare
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czechia.
| | - Elisa Pellegrini
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100, Udine, Italy
| | - Jiřina Száková
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czechia
| | - Jana Najmanová
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czechia
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czechia
| | - Marco Contin
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100, Udine, Italy
| |
Collapse
|
3
|
Tibbett M, Lardner T, De Oliveira VH. Discriminating foliar adhered from metabolised Pb when monitoring vegetation exposed to windborne contamination. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136807. [PMID: 39647332 DOI: 10.1016/j.jhazmat.2024.136807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Monitoring heavy metals in vegetation near mining or industrial sites is crucial for detecting plant contamination; requiring discrimination between metals adhered to foliar surfaces from the internal concentrations. We investigated key factors that might contribute to lead (Pb) accumulation in leaves of local vegetation near a Pb mine: (i) distance from the pollutant source, (ii) morphological characteristics of leaf surfaces, (iii) their susceptibility to Pb loss by washing, and (iv) the effect of contrasting washing reagents in Pb removal. Native plant species were sampled at three field locations, possessing different leaf surface morphologies: glabrous (smooth), resinous (waxy) and hirsute (hairy). After washing with Citranox, EDTA or deionised water, Pb contents were assessed by ICP-OES and SEM-EDX. We observed an order of Pb (and other metals) retention from hirsute > resinous > glabrous, and found: i) greater Pb accumulation in leaves near the mine due to particulate matter (PM) deposition; ii) hirsute leaves retain the highest PM-Pb; iii) higher Pb removal (10-fold) by Citranox and EDTA compared to water; and iv) hirsute leaves retained considerable PM-Pb underneath trichomes despite washing, leading to Pb overestimation. Therefore, for accurate Pb monitoring, washed glabrous leaves are best indicated due to their negligible PM retention.
Collapse
Affiliation(s)
- Mark Tibbett
- Department of Sustainable Land Management & Soil Research Centre, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, UK; School of Biological Sciences, The University of Western Australia, Perth, WA, Australia.
| | - Tim Lardner
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Vinicius H De Oliveira
- Department of Sustainable Land Management & Soil Research Centre, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, UK
| |
Collapse
|
4
|
Rodríguez-Sánchez V, Tapia-Maruri D, Márquez-Guzmán J, Vázquez-Santana S, Cruz-Ortega R. Role of cotyledons in aluminium accumulation as a tolerance strategy in Fagopyrum esculentum Moench (Polygonaceae) seedlings. PHYSIOLOGIA PLANTARUM 2024; 176:e14554. [PMID: 39363679 DOI: 10.1111/ppl.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/07/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
Acidic soils have increased due to agricultural practices, climate factors, and the excessive use of nitrogen fertilizers to meet food demand. In these soils, aluminium (Al) is soluble and can be taken up by roots, but it is toxic to most plant species. Fagopyrum esculentum is able to adapt to acidic toxic aluminium conditions. Anatomical studies identifying novel potential cellular structures as sites of Al accumulation are currently lacking. This study provides an anatomical description of the cotyledons, revealing the presence of papillae and glandular trichomes at their margins. In seedlings treated with 100 μM Al, energy-dispersive x-ray spectroscopy (ESEM-EDS) analysis of the cotyledons revealed that the margin has the highest concentration of Al. The margin containing the epidermal papillae was subjected to laser microdissection, and Al was quantified using mass spectrometry with an inductively coupled plasma source ICP-MS and compared with the Al in the remaining leaf blades. The concentration of Al in the microdissected papillae was 3,460 mg Al kg-1 Dry Weight (DW), whereas the blades contained only 1,390 mg Al kg-1 DW. Moreover, histochemical tests for Al and total phenols in the epidermal papillae revealed that Al may be bound to phenolic compounds. Thus, this study demonstrated that the cotyledons of F. esculentum have epidermal papillae that can accumulate Al.
Collapse
Affiliation(s)
- Verónica Rodríguez-Sánchez
- Laboratorio de Alelopatía, Instituto de Ecología, Departamento de Ecología Funcional, Universidad Nacional Autónoma de México, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Daniel Tapia-Maruri
- Laboratorio de Microscopia Avanzada, Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos (CEPROBI), Instituto Politécnico Nacional, Yautepec, Morelos, México
| | - Judith Márquez-Guzmán
- Laboratorio de Desarrollo en Plantas, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Sonia Vázquez-Santana
- Laboratorio de Desarrollo en Plantas, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Rocío Cruz-Ortega
- Laboratorio de Alelopatía, Instituto de Ecología, Departamento de Ecología Funcional, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
5
|
Chang HF, Tseng SC, Tang MT, Hsiao SSY, Lee DC, Wang SL, Yeh KC. Physiology and molecular basis of thallium toxicity and accumulation in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116290. [PMID: 38599154 DOI: 10.1016/j.ecoenv.2024.116290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Thallium (Tl) is a non-essential metal mobilized through industrial processes which can lead to it entering the environment and exerting toxic effects. Plants are fundamental components of all ecosystems. Therefore, understanding the impact of Tl on plant growth and development is of great importance for assessing the potential environmental risks of Tl. Here, the responses of Arabidopsis thaliana to Tl were elucidated using physiological, genetic, and transcriptome analyses. Thallium can be absorbed by plant roots and translocated to the aerial parts, accumulating at comparable concentrations throughout plant parts. Genetic evidence supported the regulation of Tl uptake and movement by different molecular compartments within plants. Thallium primarily caused growth inhibition, oxidative stress, leaf chlorosis, and the impairment of K homeostasis. The disturbance of redox balance toward oxidative stress was supported by significant differences in the expression of genes involved in oxidative stress and antioxidant defense under Tl exposure. Reduced GSH levels in cad2-1 mutant rendered plants highly sensitive to Tl, suggesting that GSH has a prominent role in alleviating Tl-triggered oxidative responses. Thallium down-regulation of the expression of LCHII-related genes is believed to be responsible for leaf chlorosis. These findings illuminate some of the mechanisms underlying Tl toxicity at the physiological and molecular levels in plants with an eye toward the future environment management of this heavy metal.
Collapse
Affiliation(s)
- Hsin-Fang Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Shao-Chin Tseng
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, Republic of China
| | - Mau-Tsu Tang
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, Republic of China
| | - Silver Sung-Yun Hsiao
- Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Der-Chuen Lee
- Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China; Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan, Republic of China.
| |
Collapse
|
6
|
Huebbers JW, Caldarescu GA, Kubátová Z, Sabol P, Levecque SCJ, Kuhn H, Kulich I, Reinstädler A, Büttgen K, Manga-Robles A, Mélida H, Pauly M, Panstruga R, Žárský V. Interplay of EXO70 and MLO proteins modulates trichome cell wall composition and susceptibility to powdery mildew. THE PLANT CELL 2024; 36:1007-1035. [PMID: 38124479 PMCID: PMC10980356 DOI: 10.1093/plcell/koad319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Exocyst component of 70-kDa (EXO70) proteins are constituents of the exocyst complex implicated in vesicle tethering during exocytosis. MILDEW RESISTANCE LOCUS O (MLO) proteins are plant-specific calcium channels and some MLO isoforms enable fungal powdery mildew pathogenesis. We here detected an unexpected phenotypic overlap of Arabidopsis thaliana exo70H4 and mlo2 mlo6 mlo12 triple mutant plants regarding the biogenesis of leaf trichome secondary cell walls. Biochemical and Fourier transform infrared spectroscopic analyses corroborated deficiencies in the composition of trichome cell walls in these mutants. Transgenic lines expressing fluorophore-tagged EXO70H4 and MLO exhibited extensive colocalization of these proteins. Furthermore, mCherry-EXO70H4 mislocalized in trichomes of the mlo triple mutant and, vice versa, MLO6-GFP mislocalized in trichomes of the exo70H4 mutant. Expression of GFP-marked PMR4 callose synthase, a known cargo of EXO70H4-dependent exocytosis, revealed reduced cell wall delivery of GFP-PMR4 in trichomes of mlo triple mutant plants. In vivo protein-protein interaction assays in plant and yeast cells uncovered isoform-preferential interactions between EXO70.2 subfamily members and MLO proteins. Finally, exo70H4 and mlo6 mutants, when combined, showed synergistically enhanced resistance to powdery mildew attack. Taken together, our data point to an isoform-specific interplay of EXO70 and MLO proteins in the modulation of trichome cell wall biogenesis and powdery mildew susceptibility.
Collapse
Affiliation(s)
- Jan W Huebbers
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - George A Caldarescu
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Zdeňka Kubátová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Peter Sabol
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Sophie C J Levecque
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Hannah Kuhn
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Ivan Kulich
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Anja Reinstädler
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Kim Büttgen
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Alba Manga-Robles
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, 24071 León, Spain
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, 24071 León, Spain
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
- Institute of Experimental Botany of the Czech Academy of Sciences, Laboratory of Cell Biology, Rozvojová 263, 165 02 Prague 6 Lysolaje, Czech Republic
| |
Collapse
|
7
|
Becker P, Nauser T, Wiggenhauser M, Aeschlimann B, Frossard E, Günther D. In Vitro Fossilization for High Spatial Resolution Quantification of Elements in Plant-Tissue Using LA-ICP-TOFMS. Anal Chem 2024; 96:4952-4959. [PMID: 38482755 PMCID: PMC10975018 DOI: 10.1021/acs.analchem.3c05849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Laser ablation in combination with an inductively coupled plasma time-of-flight mass spectrometer (LA-ICP-TOFMS) is an upcoming method for rapid quantitative element mapping of various samples. While widespread in geological applications, quantification of elements in biotissues remains challenging. In this study, a proof-of-concept sample preparation method is presented in which plant-tissues are fossilized in order to solidify the complex biotissue matrix into a mineral-like matrix. This process enables quantification of elements by using silicone as an internal standard for normalization while also providing consistent ablation processes similar to minerals to reduce image blurring. Furthermore, it allows us to generate a quantitative image of the element composition at high spatial resolution. The feasibility of the approach is demonstrated on leaves of sunflowers (Helianthus annuus), soy beans (Glycine max), and corn (Zea mays) as representatives for common crops, which were grown on both nonspiked and cadmium-spiked agricultural soil. The quantitative results achieved during imaging were validated with digestion of whole leaves followed by ICP-OES analysis. LA-ICP-TOFMS element mapping of conventionally dried samples can provide misleading trends due to the irregular ablation behavior of biotissue because high signals caused by high ablation rates are falsely interpreted as enrichment of elements. Fossilization provides the opportunity to correct such phenomena by standardization with Si as an internal standard. The method demonstrated here allows for quantitative image acquisition without time-consuming sample preparation steps by using comparatively safe chemicals. The diversity of tested samples suggests that this sample preparation method is well-suited to achieve reproducible and quantitative element maps of various plant samples.
Collapse
Affiliation(s)
- Pascal Becker
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Thomas Nauser
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Matthias Wiggenhauser
- Institute of Agricultural Sciences, ETH Zurich, Eschikon 33, Lindau CH-8315, Switzerland
| | - Beat Aeschlimann
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Emmanuel Frossard
- Institute of Agricultural Sciences, ETH Zurich, Eschikon 33, Lindau CH-8315, Switzerland
| | - Detlef Günther
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
8
|
Tausta SL, Fontaine K, Hillmer AT, Strobel SA. Fluoride transport in Arabidopsis thaliana plants is impaired in Fluoride EXporter (FEX) mutants. PLANT MOLECULAR BIOLOGY 2024; 114:17. [PMID: 38342783 PMCID: PMC10859346 DOI: 10.1007/s11103-023-01413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/20/2023] [Indexed: 02/13/2024]
Abstract
Fluoride is an environmental toxin prevalent in water, soil, and air. A fluoride transporter called Fluoride EXporter (FEX) has been discovered across all domains of life, including bacteria, single cell eukaryotes, and all plants, that is required for fluoride tolerance. How FEX functions to protect multicellular plants is unknown. In order to distinguish between different models, the dynamic movement of fluoride in wildtype (WT) and fex mutant plants was monitored using [18F]fluoride with positron emission tomography. Significant differences were observed in the washout behavior following initial fluoride uptake between plants with and without a functioning FEX. [18F]Fluoride traveled quickly up the floral stem and into terminal tissues in WT plants. In contrast, the fluoride did not move out of the lower regions of the stem in mutant plants resulting in clearance rates near zero. The roots were not the primary locus of FEX action, nor did FEX direct fluoride to a specific tissue. Fluoride efflux by WT plants was saturated at high fluoride concentrations resulting in a pattern like the fex mutant. The kinetics of fluoride movement suggested that FEX mediates a fluoride transport mechanism throughout the plant where each individual cell benefits from FEX expression.
Collapse
Affiliation(s)
- S Lori Tausta
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06510, USA
- Institute of Biomolecular Design and Discovery, Yale University West Campus, West Haven, CT, 06516, USA
| | - Kathryn Fontaine
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar Street, New Haven, CT, 06519, USA
- Yale PET Center, Yale University, 801 Howard Avenue, New Haven, CT, 06510, USA
| | - Ansel T Hillmer
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar Street, New Haven, CT, 06519, USA
- Yale PET Center, Yale University, 801 Howard Avenue, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, Yale University, 17 Hillhouse Avenue, New Haven, CT, 06511, USA
- Department of Psychiatry, Yale School of Medicine, 300 George Street, New Haven, CT, 06510, USA
| | - Scott A Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06510, USA.
- Institute of Biomolecular Design and Discovery, Yale University West Campus, West Haven, CT, 06516, USA.
| |
Collapse
|
9
|
Mathew IE, Rhein HS, Yang J, Gradogna A, Carpaneto A, Guo Q, Tappero R, Scholz-Starke J, Barkla BJ, Hirschi KD, Punshon T. Sequential removal of cation/H + exchangers reveals their additive role in elemental distribution, calcium depletion and anoxia tolerance. PLANT, CELL & ENVIRONMENT 2024; 47:557-573. [PMID: 37916653 DOI: 10.1111/pce.14756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/21/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Multiple Arabidopsis H+ /Cation exchangers (CAXs) participate in high-capacity transport into the vacuole. Previous studies have analysed single and double mutants that marginally reduced transport; however, assessing phenotypes caused by transport loss has proven enigmatic. Here, we generated quadruple mutants (cax1-4: qKO) that exhibited growth inhibition, an 85% reduction in tonoplast-localised H+ /Ca transport, and enhanced tolerance to anoxic conditions compared to CAX1 mutants. Leveraging inductively coupled plasma mass spectrometry (ICP-MS) and synchrotron X-ray fluorescence (SXRF), we demonstrate CAX transporters work together to regulate leaf elemental content: ICP-MS analysis showed that the elemental concentrations in leaves strongly correlated with the number of CAX mutations; SXRF imaging showed changes in element partitioning not present in single CAX mutants and qKO had a 40% reduction in calcium (Ca) abundance. Reduced endogenous Ca may promote anoxia tolerance; wild-type plants grown in Ca-limited conditions were anoxia tolerant. Sequential reduction of CAXs increased mRNA expression and protein abundance changes associated with reactive oxygen species and stress signalling pathways. Multiple CAXs participate in postanoxia recovery as their concerted removal heightened changes in postanoxia Ca signalling. This work showcases the integrated and diverse function of H+ /Cation transporters and demonstrates the ability to improve anoxia tolerance through diminishing endogenous Ca levels.
Collapse
Affiliation(s)
- Iny Elizebeth Mathew
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Hormat Shadgou Rhein
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Jian Yang
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Antonella Gradogna
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Armando Carpaneto
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| | - Qi Guo
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Ryan Tappero
- Brookhaven National Laboratory, Photon Sciences Department, Upton, New York, USA
| | | | - Bronwyn J Barkla
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Kendal D Hirschi
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
10
|
Sommer K, Becker T, von Bremen-Kühne M, Gotters M, Quarles CD, Sperling M, Kudla J, Karst U. Analysis of the elemental species-dependent uptake of lanthanide complexes in Arabidopsis thaliana plants by LA-ICP-MS. CHEMOSPHERE 2023; 338:139534. [PMID: 37467858 DOI: 10.1016/j.chemosphere.2023.139534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/02/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) are found increasingly in different water bodies, making the investigation of their uptake and distribution behavior in plants a matter of high interest to assess their potential effects on the environment. Depending on the used complexing agent, they are classified into linear or macrocyclic GBCAs, with macrocyclic complexes being more stable. In this study, by using TbCl3, Gd-DTPA-BMA, and Eu-DOTA as model compounds for ionic, linear, and macrocyclic lanthanide species, the elemental species-dependent uptake into leaves of Arabidopsis thaliana under identical biological conditions was studied. After growing for 14 days on medium containing the lanthanide species, the uptake of all studied compounds was confirmed by means of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Furthermore, the uptake rate of TbCl3 and the linear Gd-DTPA-BMA was similar, with Tb and Gd hotspots colocated in the areas of hydathodes and the trichomes of the leaves. In contrast, in the case of the macrocyclic Eu-DOTA, Eu was mainly located in the leaf veins. Additionally, Eu was colocated with Tb and Gd in the hydathode at the tip of the leave. Removal of the lanthanide species from the medium led to a decrease in signal intensities, indicating their subsequent release to some extent. However, seven days after the removal, depositions of Eu, Gd, and Tb were still present in the same areas of the leaves as before, showing that complete elimination was not achieved after this period of time. Overall, more Eu was present in the leaves compared to Gd and Tb, which can be explained by the high stability of the Eu-DOTA complex, potentially leading to a higher transport rate into the leaves, whereas TbCl3 and Gd-DTPA-BMA could interact with the roots, reducing their mobility.
Collapse
Affiliation(s)
- Karolin Sommer
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Tobias Becker
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Maximilian von Bremen-Kühne
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Mario Gotters
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - C Derrick Quarles
- Elemental Scientific, Inc., 7277 World Communications Dr., Omaha, NE, 68022, USA
| | - Michael Sperling
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany; European Virtual Institute for Speciation Analysis, Corrensstr. 48, 48149, Münster, Germany
| | - Jörg Kudla
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany.
| |
Collapse
|
11
|
Li C, Mo Y, Wang N, Xing L, Qu Y, Chen Y, Yuan Z, Ali A, Qi J, Fernández V, Wang Y, Kopittke PM. The overlooked functions of trichomes: Water absorption and metal detoxication. PLANT, CELL & ENVIRONMENT 2023; 46:669-687. [PMID: 36581782 DOI: 10.1111/pce.14530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Trichomes are epidermal outgrowths on plant shoots. Their roles in protecting plants against herbivores and in the biosynthesis of specialized metabolites have long been recognized. Recently, studies are increasingly showing that trichomes also play important roles in water absorption and metal detoxication, with these roles having important implications for ecology, the environment, and agriculture. However, these two functions of trichomes have been largely overlooked and much remains unknown. In this review, we show that the trichomes of 37 plant species belonging to 14 plant families are involved in water absorption, while the trichomes of 33 species from 13 families are capable of sequestering metals within their trichomes. The ability of trichomes to absorb water results from their decreased hydrophobicity compared to the remainder of the leaf surface as well as the presence of special structures for collecting and absorbing water. In contrast, the metal detoxication function of trichomes results not only from the good connection of their basal cells to the underlying vascular tissues, but also from the presence of metal-chelating ligands and transporters within the trichomes themselves. Knowledge gaps and critical future research questions regarding these two trichome functions are highlighted. This review improves our understanding on trichomes.
Collapse
Affiliation(s)
- Cui Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yingying Mo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Nina Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Longyi Xing
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yang Qu
- Baoji Academy of Agriculture Sciences, Baoji, China
| | - Yanlong Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zuoqiang Yuan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Arshad Ali
- College of Life Sciences, Hebei University, Hebei, China
| | - Jiyan Qi
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Victoria Fernández
- School of Forest Engineering, Technical University of Madrid, Madrid, Spain
| | - Yuheng Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
12
|
Labudda M, Dziurka K, Fidler J, Gietler M, Rybarczyk-Płońska A, Nykiel M, Prabucka B, Morkunas I, Muszyńska E. The Alleviation of Metal Stress Nuisance for Plants—A Review of Promising Solutions in the Face of Environmental Challenges. PLANTS 2022; 11:plants11192544. [PMID: 36235410 PMCID: PMC9571535 DOI: 10.3390/plants11192544] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 12/04/2022]
Abstract
Environmental changes are inevitable with time, but their intensification and diversification, occurring in the last several decades due to the combination of both natural and human-made causes, are really a matter of great apprehension. As a consequence, plants are exposed to a variety of abiotic stressors that contribute to their morpho-physiological, biochemical, and molecular alterations, which affects plant growth and development as well as the quality and productivity of crops. Thus, novel strategies are still being developed to meet the challenges of the modern world related to climate changes and natural ecosystem degradation. Innovative methods that have recently received special attention include eco-friendly, easily available, inexpensive, and, very often, plant-based methods. However, such approaches require better cognition and understanding of plant adaptations and acclimation mechanisms in response to adverse conditions. In this succinct review, we have highlighted defense mechanisms against external stimuli (mainly exposure to elevated levels of metal elements) which can be activated through permanent microevolutionary changes in metal-tolerant species or through exogenously applied priming agents that may ensure plant acclimation and thereby elevated stress resistance.
Collapse
Affiliation(s)
- Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Kinga Dziurka
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Justyna Fidler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Anna Rybarczyk-Płońska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Małgorzata Nykiel
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Beata Prabucka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-59326-61
| |
Collapse
|
13
|
Jia Y, Jiang X, Xu J, Cao M, Luo J. Cd and pb Co-Pollution Increased Ecological Risk and Changed Rhizosphere Characteristics of Arabidopsis Thaliana During Phytoremediation. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:909-916. [PMID: 35234979 DOI: 10.1007/s00128-022-03473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Previous studies have reported that co-contamination can result in more complex effects on the phytoremediation efficiency of plants relative to those of a single pollutant. However, the effect of co-contamination on plant rhizosphere characteristics has rarely been revealed. This study was carried out to assess the changes in soil pH, the content and fractionation of dissolved organic matter (DOM), and the metal solubility in the rhizosphere of Arabidopsis thaliana when treated with Cd and Pb simultaneously. The results showed that co-contamination increased the concentrations of DOM by 24.8% and 30.9% in the rhizosphere soil of A. thaliana relative to individual Cd or Pb pollution, respectively. At the end of the experiment, co-contamination significantly decreased the initial soil pH from 6.6 ± 0.3 to 5.5 ± 0.4, whereas a decrease was not observed under Pb pollution alone. Variations in soil pH and DOM can change the fractions of the two metals in the rhizosphere soil of A. thaliana. DOM in co-contaminated soil showed a higher Cd (1.05 mg L-1) and Pb (0.75 mg L-1) extraction ability relative to that in the Cd-polluted (0.89 mg Cd L-1 and 0.59 mg Pb L-1) or Pb-polluted (0.68 mg Cd L-1 and 0.63 mg Pb L-1) soils. The soluble Cd content in the co-contaminated (0.44 mg L-1) soil was significantly lower than that in the Cd-polluted (0.71 mg L-1) soil because A. thaliana is a Cd accumulator, whereas the soluble Pb content showed the opposite trend (47.0 mg L-1 vs. 37.4 mg L-1) because the species is a Pb excluder. Therefore, A. thaliana in co-contaminated soil would pose a leaching risk for the non-hyperaccumulated metals, thereby increasing the potential ecological risk during the phytoremediation process.
Collapse
Affiliation(s)
- Yifan Jia
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Xiaoxuan Jiang
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Jing Xu
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, University Road, LE1 7RH, Leicester, United Kingdom
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China
| |
Collapse
|
14
|
Guo C, Hu J, Gao W, Gao P, Cao Z, Liu N, Wang X, Liu W, Zhao J, Dong J, Genin GM, Zhou LH. Mechanosensation triggers enhanced heavy metal ion uptake by non-glandular trichomes. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127983. [PMID: 34923380 DOI: 10.1016/j.jhazmat.2021.127983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
The trichomes of Arabidopsis thaliana serve as accumulation sites for heavy metals such as Cd2+, and thereby both help plants cope with heavy metal stress and detoxify the soil. These trichomes are also believed to prime plant defenses against insect herbivores in response to mechanical stimulation. Because Cd2+ in such trichomes may be beneficial for plant defenses, we hypothesized that mechanical stimulation would enhance sequestration of Cd2+ in trichomes. We quantified the distribution and concentration of Cd2+ in leaves of A. thaliana, of the glabrous mutant gl1-1 of A. thaliana, and Brassica rapa L. subsp. pekinensis (Lour.) Hanelt (Chinese cabbage) and examined how these changed following mechanical stimulation of the trichomes or leaves. Light brushing or exposure to caterpillars of Spodoptera exigua led trichomes of both A. thaliana and Chinese cabbage to accumulate Cd2+ complexes more rapidly and to a higher concentration than trichomes in unstimulated controls. Comparison to responses in leaves of gl1-1 mutants suggested that this acceleration and enhancement of Cd2+ storage requires signaling through trichomes. In wild type A. thaliana, Cd2+ was found exclusively in trichomes, whereas in gl1-1 mutants, Cd2+ was found mainly in the - mesophyll cells. Results suggest a mechanobiological pathway for improving heavy metal detoxification of soils through the action of hyperaccumulator plant leaves containing non-glandular trichomes.
Collapse
Affiliation(s)
- Chao Guo
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Jingjing Hu
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Wenqiang Gao
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Peipei Gao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, Hebei, China; Key Laboratory for Farmland Eco-environments of Hebei Province, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Zhiyan Cao
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Ning Liu
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Xue Wang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Wenju Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, Hebei, China; Key Laboratory for Farmland Eco-environments of Hebei Province, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, Hebei, China; Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Centre of Vegetable Industry in Hebei, College of Horticulture, Baoding 071001, China
| | - Jingao Dong
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, Hebei, China; College of Plant Protection, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Guy M Genin
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St.Louis, MO 63130, Uinted States; NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St.Louis, MO 63130, United States
| | - Li Hong Zhou
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, Hebei, China.
| |
Collapse
|
15
|
Clemens S. The cell biology of zinc. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1688-1698. [PMID: 34727160 DOI: 10.1093/jxb/erab481] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Nearly 10% of all plant proteins belong to the zinc (Zn) proteome. They require Zn either for catalysis or as a structural element. Most of the protein-bound Zn in eukaryotic cells is found in the cytosol. The fundamental differences between transition metal cations in the stability of their complexes with organic ligands, as described by the Irving-Williams series, necessitate buffering of cytosolic Zn (the 'free Zn' pool) in the picomolar range (i.e. ~6 orders of magnitude lower than the total cellular concentration). Various metabolites and peptides, including nicotianamine, glutathione, and phytochelatins, serve as Zn buffers. They are hypothesized to supply Zn to enzymes, transporters, or the recently identified sensor proteins. Zn2+ acquisition is mediated by ZRT/IRT-like proteins. Metal tolerance proteins transport Zn2+ into vacuoles and the endoplasmic reticulum, the major Zn storage sites. Heavy metal ATPase-dependent efflux of Zn2+ is another mechanism to control cytosolic Zn. Spatially controlled Zn2+ influx or release from intracellular stores would result in dynamic modulation of cellular Zn pools, which may directly influence protein-protein interactions or the activities of enzymes involved in signaling cascades. Possible regulatory roles of such changes, as recently elucidated in mammalian cells, are discussed.
Collapse
Affiliation(s)
- Stephan Clemens
- Department of Plant Physiology and Faculty of Life Science: Food, Nutrition and Health, University of Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| |
Collapse
|
16
|
Stanton C, Sanders D, Krämer U, Podar D. Zinc in plants: Integrating homeostasis and biofortification. MOLECULAR PLANT 2022; 15:65-85. [PMID: 34952215 DOI: 10.1016/j.molp.2021.12.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 05/24/2023]
Abstract
Zinc plays many essential roles in life. As a strong Lewis acid that lacks redox activity under environmental and cellular conditions, the Zn2+ cation is central in determining protein structure and catalytic function of nearly 10% of most eukaryotic proteomes. While specific functions of zinc have been elucidated at a molecular level in a number of plant proteins, wider issues abound with respect to the acquisition and distribution of zinc by plants. An important challenge is to understand how plants balance between Zn supply in soil and their own nutritional requirement for zinc, particularly where edaphic factors lead to a lack of bioavailable zinc or, conversely, an excess of zinc that bears a major risk of phytotoxicity. Plants are the ultimate source of zinc in the human diet, and human Zn deficiency accounts for over 400 000 deaths annually. Here, we review the current understanding of zinc homeostasis in plants from the molecular and physiological perspectives. We provide an overview of approaches pursued so far in Zn biofortification of crops. Finally, we outline a "push-pull" model of zinc nutrition in plants as a simplifying concept. In summary, this review discusses avenues that can potentially deliver wider benefits for both plant and human Zn nutrition.
Collapse
Affiliation(s)
| | - Dale Sanders
- John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | - Ute Krämer
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, 44801 Bochum, Germany.
| | - Dorina Podar
- Department of Molecular Biology and Biotechnology and Centre for Systems Biology, Biodiversity and Bioresources, Babes-Bolyai University, 400084 Cluj-Napoca, Romania.
| |
Collapse
|
17
|
Hieta JP, Sipari N, Räikkönen H, Keinänen M, Kostiainen R. Mass Spectrometry Imaging of Arabidopsis thaliana Leaves at the Single-Cell Level by Infrared Laser Ablation Atmospheric Pressure Photoionization (LAAPPI). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2895-2903. [PMID: 34738804 PMCID: PMC8640987 DOI: 10.1021/jasms.1c00295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this study, we show that infrared laser ablation atmospheric pressure photoionization mass spectrometry (LAAPPI-MS) imaging with 70 μm lateral resolution allows for the analysis of Arabidopsis thaliana (A. thaliana) leaf substructures ranging from single-cell trichomes and the interveinal leaf lamina to primary, secondary, and tertiary veins. The method also showed its potential for depth profiling analysis for the first time by mapping analytes at the different depths of the leaf and spatially resolving the topmost trichomes and cuticular wax layer from the underlying tissues. Negative ion LAAPPI-MS detected many different flavonol glycosides, fatty acids, fatty acid esters, galactolipids, and glycosphingolipids, whose distributions varied significantly between the different substructures of A. thaliana leaves. The results show that LAAPPI-MS provides a highly promising new tool to study the role of metabolites in plants.
Collapse
Affiliation(s)
- Juha-Pekka Hieta
- Drug
Research Program and Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Nina Sipari
- Viikki
Metabolomics Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Heikki Räikkönen
- Drug
Research Program and Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Markku Keinänen
- Department
of Environmental and Biological Sciences, Institute of Photonics,
Faculty of Science and Forestry, University
of Eastern Finland, P.O. Box 111, Joensuu 80101, Finland
| | - Risto Kostiainen
- Drug
Research Program and Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| |
Collapse
|
18
|
Lee S, Lee J, Ricachenevsky FK, Punshon T, Tappero R, Salt DE, Guerinot ML. Redundant roles of four ZIP family members in zinc homeostasis and seed development in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1162-1173. [PMID: 34559918 PMCID: PMC8613002 DOI: 10.1111/tpj.15506] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 05/28/2023]
Abstract
Zinc (Zn) is essential for normal plant growth and development. The Zn-regulated transporter, iron-regulated transporter (IRT)-like protein (ZIP) family members are involved in Zn transport and cellular Zn homeostasis throughout the domains of life. In this study, we have characterized four ZIP transporters from Arabidopsis thaliana (IRT3, ZIP4, ZIP6, and ZIP9) to better understand their functional roles. The four ZIP proteins can restore the growth defect of a yeast Zn uptake mutant and are upregulated under Zn deficiency. Single and double mutants show no phenotypes under Zn-sufficient or Zn-limited growth conditions. In contrast, triple and quadruple mutants show impaired growth irrespective of external Zn supply due to reduced Zn translocation from root to shoot. All four ZIP genes are highly expressed during seed development, and siliques from all single and higher-order mutants exhibited an increased number of abnormal seeds and decreased Zn levels in mature seeds relative to wild type. The seed phenotypes could be reversed by supplementing the soil with Zn. Our data demonstrate that IRT3, ZIP4, ZIP6, and ZIP9 function redundantly in maintaining Zn homeostasis and seed development in A. thaliana.
Collapse
Affiliation(s)
- Sichul Lee
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Korea
| | - Joohyun Lee
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, 215306, China
| | - Felipe K. Ricachenevsky
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
- Botany Department, Biosciences Institute; and Graduate Program in Cell and Molecular Biology, Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | | | - David E. Salt
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Mary Lou Guerinot
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
19
|
van der Ent A, Nkrumah PN, Aarts MGM, Baker AJM, Degryse F, Wawryk C, Kirby JK. Isotopic signatures reveal zinc cycling in the natural habitat of hyperaccumulator Dichapetalum gelonioides subspecies from Malaysian Borneo. BMC PLANT BIOLOGY 2021; 21:437. [PMID: 34579652 PMCID: PMC8474765 DOI: 10.1186/s12870-021-03190-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Some subspecies of Dichapetalum gelonioides are the only tropical woody zinc (Zn)-hyperaccumulator plants described so far and the first Zn hyperaccumulators identified to occur exclusively on non-Zn enriched 'normal' soils. The aim of this study was to investigate Zn cycling in the parent rock-soil-plant interface in the native habitats of hyperaccumulating Dichapetalum gelonioides subspecies (subsp. pilosum and subsp. sumatranum). We measured the Zn isotope ratios (δ66Zn) of Dichapetalum plant material, and associated soil and parent rock materials collected from Sabah (Malaysian Borneo). RESULTS We found enrichment in heavy Zn isotopes in the topsoil (δ66Zn 0.13 ‰) relative to deep soil (δ66Zn -0.15 ‰) and bedrock (δ66Zn -0.90 ‰). This finding suggests that both weathering and organic matter influenced the Zn isotope pattern in the soil-plant system, with leaf litter cycling contributing significantly to enriched heavier Zn in topsoil. Within the plant, the roots were enriched in heavy Zn isotopes (δ66Zn ~ 0.60 ‰) compared to mature leaves (δ66Zn ~ 0.30 ‰), which suggests highly expressed membrane transporters in these Dichapetalum subspecies preferentially transporting lighter Zn isotopes during root-to-shoot translocation. The shoots, mature leaves and phloem tissues were enriched in heavy Zn isotopes (δ66Zn 0.34-0.70 ‰) relative to young leaves (δ66Zn 0.25 ‰). Thisindicates that phloem sources are enriched in heavy Zn isotopes relative to phloem sinks, likely because of apoplastic retention and compartmentalization in the Dichapetalum subspecies. CONCLUSIONS The findings of this study reveal Zn cycling in the rock-soil-plant continuum within the natural habitat of Zn hyperaccumulating subspecies of Dichapetalum gelonioides from Malaysian Borneo. This study broadens our understanding of the role of a tropical woody Zn hyperaccumulator plant in local Zn cycling, and highlights the important role of leaf litter recycling in the topsoil Zn budget. Within the plant, phloem plays key role in Zn accumulation and redistribution during growth and development. This study provides an improved understanding of the fate and behaviour of Zn in hyperaccumulator soil-plant systems, and these insights may be applied in the biofortification of crops with Zn.
Collapse
Affiliation(s)
- Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Queensland, 4072, St Lucia, Australia
- Laboratoire Sols et Environnement, Université de Lorraine-INRAE, UMR 1120, Nancy, France
| | - Philip Nti Nkrumah
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Queensland, 4072, St Lucia, Australia.
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
| | - Alan J M Baker
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Queensland, 4072, St Lucia, Australia
- Laboratoire Sols et Environnement, Université de Lorraine-INRAE, UMR 1120, Nancy, France
- School of BioSciences, The University of Melbourne, Victoria, Melbourne, Australia
| | - Fien Degryse
- Soil Sciences, University of Adelaide, South Australia, Adelaide, Australia
| | - Chris Wawryk
- Industry Environments Program, CSIRO Land and Water, Environmental Assessment and Technologies, Adelaide, South Australia, Australia
| | - Jason K Kirby
- Industry Environments Program, CSIRO Land and Water, Environmental Assessment and Technologies, Adelaide, South Australia, Australia
| |
Collapse
|
20
|
Thongchai A, Meeinkuirt W, Taeprayoon P, Chelong IA. Effects of soil amendments on leaf anatomical characteristics of marigolds cultivated in cadmium-spiked soils. Sci Rep 2021; 11:15909. [PMID: 34354195 PMCID: PMC8342601 DOI: 10.1038/s41598-021-95467-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
The marigolds (Tagetes spp.) in this study were classified as excluders for cadmium (Cd); however, their leaves also accumulated substantial Cd content. Among the experimental treatments (i.e., control, cattle manure, pig manure, and leonardite which served as soil amendments), pig manure resulted in significantly increased growth performance for all marigold cultivars as seen by relative growth rates (119-132.3%) and showed positive effects on leaf anatomy modifications, e.g., thickness of spongy and palisade mesophyll, size of vein area and diameter of xylem cells. This may be due to substantially higher essential nutrient content, e.g., total nitrogen (N) and extractable phosphorus (P), in pig manure that aided all marigold cultivars, particularly the French cultivar which exhibited the highest relative growth rate (132.3%). In the Cd-only treatment, cell disorganization was observed in vascular bundles as well as in palisade and spongy mesophyll, which may have been responsible for the lowest plant growth performance recorded in this study, particularly among the American and Honey cultivars (RGR = 73% and 77.3%, respectively).
Collapse
Affiliation(s)
- Alapha Thongchai
- Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala, 95000, Thailand
| | - Weeradej Meeinkuirt
- Mahidol University, Nakhonsawan Campus, Nakhonsawan, 60130, Thailand. .,Water and Soil Environmental Research Unit, Mahidol University, Nakhonsawan Campus, Nakhonsawan, 60130, Thailand.
| | | | - Isma-Ae Chelong
- Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala, 95000, Thailand
| |
Collapse
|