1
|
Chathoth BM, Helmholz H, Angrisani N, Wiese B, Reifenrath J, Willumeit-Römer R. Investigating the Potential of Magnesium Microparticles on Cartilage and Bone Regeneration Utilizing an In Vitro Osteoarthritis Model. J Biomed Mater Res A 2025; 113:e37862. [PMID: 39719870 DOI: 10.1002/jbm.a.37862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
Osteoarthritis (OA) is a significant condition that profoundly impacts synovial joints, including cartilage and subchondral bone plate. Biomaterials that can impede OA progression are a promising alternative or supplement to anti-inflammatory and surgical interventions. Magnesium (Mg) alloys known for bone regeneration potential were assessed in the form of Mg microparticles regarding their impact on tissue regeneration and prevention of OA progression. In vitro assays based on mesenchymal stem cells (SCP-1) were applied to evaluate the Mg microparticle's compatibility and function. Biocompatibility documented through live-dead staining and lactate dehydrogenase assay revealed a 90% cell viability at a concentration below 10 mM after 3 days of exposure. An in vitro OA model based on the supplementation of the cytokines IL-1β, and TNF-α was established and disclosed the effect of Mg degradation products in differentiating SCP-1 cells. Sustained differentiation was confirmed through extracellular matrix staining and increased gene marker expression. The Mg supplementation reduced the release of inflammatory cytokines (IL-6 and IL-8) while promoting the expression of proteins such as collagen X, collagen I, and osteopontin in a time-dependent manner. The in vitro study suggests that Mg microparticles hold a therapeutic potential for OA treatment with their ability to support bone and cartilage repair mechanisms even under inflammatory conditions.
Collapse
Affiliation(s)
| | - Heike Helmholz
- Helmholtz Zentrum Hereon, Institute of Metallic Biomaterials, Geesthacht, Germany
| | - Nina Angrisani
- Hannover Medical School, Department of Orthopedic Surgery, DIAKOVERE Annastift, Hannover, Germany
| | - Björn Wiese
- Helmholtz Zentrum Hereon, Institute of Metallic Biomaterials, Geesthacht, Germany
| | - Janin Reifenrath
- Hannover Medical School, Department of Orthopedic Surgery, DIAKOVERE Annastift, Hannover, Germany
| | | |
Collapse
|
2
|
Ke L, He Q, Qu J, Wang X, Li K, Gong X, Li L, Xu J, Yu Q, Yu H, Lin X, Li J, Tan NS, Sun W, Li L, Zhang P, Cheng W. Bone-protective effects of neutralizing angiopoietin-like protein 4 monoclonal antibody in rheumatoid arthritis. Mol Ther 2024; 32:4497-4513. [PMID: 39367607 PMCID: PMC11638830 DOI: 10.1016/j.ymthe.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/07/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
Despite recent advances, rheumatoid arthritis (RA) patients remain refractory to therapy. Dysregulated overproduction of angiopoietin-like protein 4 (ANGPTL4) is thought to contribute to the disease development. ANGPTL4 was initially identified as a regulator of lipid metabolism, which is hydrolyzed to N-terminal and C-terminal (cANGPTL4) fragments in vivo. cANGPTL4 is involved in several non-lipid-related processes, including angiogenesis and inflammation. This study revealed that the level of ANGPTL4 was markedly elevated in the sera and synovial tissues from patients with RA versus controls. The administration of a neutralizing antibody against cANGPTL4 (anti-cANGPTL4 Ab) resulted in the inhibition of inflammatory processes and bone loss in animal models of collagen-induced arthritis and adjuvant-induced arthritis (AIA). Transcriptomic and proteomic profiling of synovial tissues from an AIA model indicated that the anti-cANGPTL4 Ab inhibited fibroblast-like synoviocyte (FLS) immigration and inflammatory-induced osteoclastogenesis. Mechanistically, the anti-cANGPTL4 Ab has been shown to inhibit TNF-α-induced inflammatory cascades in RA-FLS through the sirtuin 1/nuclear factor-κB signaling pathway. Moreover, the anti-cANGPTL4 Ab was found to block FLS invasion- and immigration-induced osteoclast activation. Collectively, these findings identify ANGPTL4 as a prospective biomarker for the diagnosis of RA, and targeting cANGPTL4 should represent a potential therapeutic strategy.
Collapse
Affiliation(s)
- Liqing Ke
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Qifei He
- Department of Bone Joint and Musculoskeletal Tumor, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong 518035, China
| | - Jing Qu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Xiyue Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Kaibo Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xun Gong
- Guang'anmen Hospital China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Lan Li
- Department of Pathology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Jiake Xu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Shenzhen University of Advanced Technology, Shenzhen, Guangdong 518060, China; School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Qiuliyang Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Shenzhen University of Advanced Technology, Shenzhen, Guangdong 518060, China
| | - Hao Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xuefei Lin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jian Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 138673, Singapore
| | - Wei Sun
- Department of Bone Joint and Musculoskeletal Tumor, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong 518035, China
| | - Liang Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Peng Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Shenzhen University of Advanced Technology, Shenzhen, Guangdong 518060, China; The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, Shandong 250300, China.
| | - Wenxiang Cheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
3
|
Wang MG, Seale P, Furman D. The infrapatellar fat pad in inflammaging, knee joint health, and osteoarthritis. NPJ AGING 2024; 10:34. [PMID: 39009582 PMCID: PMC11250832 DOI: 10.1038/s41514-024-00159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024]
Abstract
Osteoarthritis (OA) is the most common form of arthritis and accounts for nearly $140 billion in annual healthcare expenditures only in the United States. Obesity, aging, and joint injury are major risk factors for OA development and progression, but the mechanisms contributing to pathology remain unclear. Emerging evidence suggests that cellular dysregulation and inflammation in joint tissues, including intra-articular adipose tissue depots, may contribute to disease severity. In particular, the infrapatellar fat pad (IFP), located in the knee joint, which provides a protective cushion for joint loading, also secretes multiple endocrine factors and inflammatory cytokines (inflammaging) that can regulate joint physiology and disease. Correlates of cartilage degeneration and OA-associated disease severity include inflammation and fibrosis of IFP in model organisms and human studies. In this article, we discuss recent progress in understanding the roles and regulation of intra-articular fat tissue in regulating joint biology and OA.
Collapse
Affiliation(s)
- Magnolia G Wang
- Department of Biology, School of Arts and Sciences, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Furman
- Center for AI and Data Science of Aging, Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Stanford 1000 Immunomes Project, Stanford University, Stanford, CA, 94305, USA.
- IIMT, Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, 29, Argentina.
| |
Collapse
|
4
|
Shawl M, Geetha T, Burnett D, Babu JR. Omega-3 Supplementation and Its Effects on Osteoarthritis. Nutrients 2024; 16:1650. [PMID: 38892583 PMCID: PMC11174396 DOI: 10.3390/nu16111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by the destruction of the articular cartilage, resulting in a pro-inflammatory response. The progression of OA is multifactorial and is influenced by the underlying cause of inflammation, which includes but is not limited to trauma, metabolism, biology, comorbidities, and biomechanics. Although articular cartilage is the main tissue affected in osteoarthritis, the chronic inflammatory environment negatively influences the surrounding synovium, ligaments, and subchondral bone, further limiting their functional abilities and enhancing symptoms of OA. Treatment for osteoarthritis remains inconsistent due to the inability to determine the underlying mechanism of disease onset, severity of symptoms, and complicating comorbidities. In recent years, diet and nutritional supplements have gained interest regarding slowing the disease process, prevention, and treatment of OA. This is due to their anti-inflammatory properties, which result in a positive influence on pain, joint mobility, and cartilage formation. More specifically, omega-3 polyunsaturated fatty acids (PUFA) have demonstrated an influential role in the progression of OA, resulting in the reduction of cartilage destruction, inhibition of pro-inflammatory cytokine cascades, and production of oxylipins that promote anti-inflammatory pathways. The present review is focused on the assessment of evidence explaining the inflammatory processes of osteoarthritis and the influence of omega-3 supplementation to modulate the progression of osteoarthritis.
Collapse
Affiliation(s)
- Megan Shawl
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Donna Burnett
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
5
|
Scalzone A, Sanjurjo-Rodríguez C, Berlinguer-Palmini R, Dickinson AM, Jones E, Wang XN, Crossland RE. Functional and Molecular Analysis of Human Osteoarthritic Chondrocytes Treated with Bone Marrow-Derived MSC-EVs. Bioengineering (Basel) 2024; 11:388. [PMID: 38671809 PMCID: PMC11047960 DOI: 10.3390/bioengineering11040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease, causing impaired mobility. There are currently no effective therapies other than palliative treatment. Mesenchymal stromal cells (MSCs) and their secreted extracellular vesicles (MSC-EVs) have shown promise in attenuating OA progression, promoting chondral regeneration, and modulating joint inflammation. However, the precise molecular mechanism of action driving their beneficial effects has not been fully elucidated. In this study, we analyzed MSC-EV-treated human OA chondrocytes (OACs) to assess viability, proliferation, migration, cytokine and catabolic protein expression, and microRNA and mRNA profiles. We observed that MSC-EV-treated OACs displayed increased metabolic activity, proliferation, and migration compared to the controls. They produced decreased proinflammatory (Il-8 and IFN-γ) and increased anti-inflammatory (IL-13) cytokines, and lower levels of MMP13 protein coupled with reduced expression of MMP13 mRNA, as well as negative microRNA regulators of chondrogenesis (miR-145-5p and miR-21-5p). In 3D models, MSC-EV-treated OACs exhibited enhanced chondrogenesis-promoting features (elevated sGAG, ACAN, and aggrecan). MSC-EV treatment also reversed the pathological impact of IL-1β on chondrogenic gene expression and extracellular matrix component (ECM) production. Finally, MSC-EV-treated OACs demonstrated the enhanced expression of genes associated with cartilage function, collagen biosynthesis, and ECM organization and exhibited a signature of 24 differentially expressed microRNAs, associated with chondrogenesis-associated pathways and ECM interactions. In conclusion, our data provide new insights on the potential mechanism of action of MSC-EVs as a treatment option for early-stage OA, including transcriptomic analysis of MSC-EV-treated OA, which may pave the way for more targeted novel therapeutics.
Collapse
Affiliation(s)
- Annachiara Scalzone
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Centre for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia, 80125 Napoli, Italy
| | - Clara Sanjurjo-Rodríguez
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS7 4SA, UK
| | | | - Anne M. Dickinson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS7 4SA, UK
| | - Xiao-Nong Wang
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Rachel E. Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
6
|
Gordon C, Trainor J, Shah RJ, Studholme K, Gelman A, Doswell F, Sadar F, Giovannetti A, Gershenson J, Khan A, Nicholson J, Huang Z, Spurgat M, Tang SJ, Wang H, Ojima I, Carlson D, Komatsu DE, Kaczocha M. Fatty acid binding protein 5 inhibition attenuates pronociceptive cytokine/chemokine expression and suppresses osteoarthritis pain: A comparative human and rat study. Osteoarthritis Cartilage 2024; 32:266-280. [PMID: 38035977 PMCID: PMC11283882 DOI: 10.1016/j.joca.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is often accompanied by debilitating pain that is refractory to available analgesics due in part to the complexity of signaling molecules that drive OA pain and our inability to target these in parallel. Fatty acid binding protein 5 (FABP5) is a lipid chaperone that regulates inflammatory pain; however, its contribution to OA pain has not been characterized. DESIGN This combined clinical and pre-clinical study utilized synovial tissues obtained from subjects with end-stage OA and rats with monoiodoacetate-induced OA. Cytokine and chemokine release from human synovia incubated with a selective FABP5 inhibitor was profiled with cytokine arrays and ELISA. Immunohistochemical analyses were conducted for FABP5 in human and rat synovium. The efficacy of FABP5 inhibitors on pain was assessed in OA rats using incapacitance as an outcome. RNA-seq was then performed to characterize the transcriptomic landscape of synovial gene expression in OA rats treated with FABP5 inhibitor or vehicle. RESULTS FABP5 was expressed in human synovium and FABP5 inhibition reduced the secretion of pronociceptive cytokines (interleukin-6 [IL6], IL8) and chemokines (CCL2, CXCL1). In rats, FABP5 was upregulated in the OA synovium and its inhibition alleviated incapacitance. The transcriptome of the rat OA synovium exhibited >6000 differentially expressed genes, including the upregulation of numerous pronociceptive cytokines and chemokines. FABP5 inhibition blunted the upregulation of the majority of these pronociceptive mediators. CONCLUSIONS FABP5 is expressed in the OA synovium and its inhibition suppresses pronociceptive signaling and pain, indicating that FABP5 inhibitors may constitute a novel class of analgesics to treat OA.
Collapse
Affiliation(s)
- Chris Gordon
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - James Trainor
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Rohan J Shah
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Keith Studholme
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Alex Gelman
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Faniya Doswell
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Faisal Sadar
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Allessio Giovannetti
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Josh Gershenson
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Ayesha Khan
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - James Nicholson
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - ZeYu Huang
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Michael Spurgat
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Shao-Jun Tang
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Hehe Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| | - David Carlson
- Genomics Core Facility and Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, NY, USA
| | - David E Komatsu
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
7
|
Alvarez-Flores MP, Correia Batista IDF, Villas Boas IM, Bufalo MC, de Souza JG, Oliveira DS, Bonfá G, Fernandes CM, Marques Porto R, Lichtenstein F, Picolo G, Tambourgi DV, Chudzinski-Tavassi AM, Ibañez OCM, Teixeira C. Snake and arthropod venoms: Search for inflammatory activity in human cells involved in joint diseases. Toxicon 2024; 238:107568. [PMID: 38110040 DOI: 10.1016/j.toxicon.2023.107568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
Most anti-inflammatory drugs currently adopted to treat chronic inflammatory joint diseases can alleviate symptoms but they do not lead to remission. Therefore, new and more efficient drugs are needed to block the course of joint inflammatory diseases. Animal venoms, rich in bioactive compounds, can contribute as valuable tools in this field of research. In this study, we first demonstrate the direct action of venoms on cells that constitute the articular joints. We established a platform consisting of cell-based assays to evaluate the release of cytokines (IL-6, IL-8, TNFα, IL-1β, and IL-10) by human chondrocytes, synoviocytes and THP1 macrophages, as well as the release of neuropeptides (substance-P and β-endorphin) by differentiated sensory neuron-like cells, 24 h after stimulation of cells with 21 animal venoms from snake and arthropod species, sourced from different taxonomic families and geographic origins. Results demonstrated that at non-cytotoxic concentrations, the venoms activate at varying degrees the secretion of inflammatory mediators involved in the pathology of articular diseases, such as IL-6, IL-8, and TNF-α by chondrocytes, synoviocytes, and macrophages and of substance P by neuron-like cells. Venoms of the Viperidae snake family were more inflammatory than those of the Elapidae family, while venoms of Arthropods were less inflammatory than snake venoms. Notably, some venoms also induced the release of the anti-inflammatory IL-10 by macrophages. However, the scorpion Buthus occitanus venom induced the release of IL-10 without increasing the release of inflammatory cytokines by macrophages. Since the cell types used in the experiments are crucial elements in joint inflammatory processes, the results of this work may guide future research on the activation of receptors and inflammatory signaling pathways by selected venoms in these particular cells, aiming at discovering new targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Isadora Maria Villas Boas
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunochemistry, Instituto Butantan, Sao Paulo, Brazil
| | | | - Jean Gabriel de Souza
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunogenetics, Instituto Butantan, Sao Paulo, Brazil
| | | | - Giuliano Bonfá
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunochemistry, Instituto Butantan, Sao Paulo, Brazil
| | - Cristina Maria Fernandes
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Pharmacology, Instituto Butantan, Sao Paulo, Brazil
| | - Rafael Marques Porto
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil
| | - Flavio Lichtenstein
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil
| | - Gisele Picolo
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Pain and Signaling, Instituto Butantan, Sao Paulo, Brazil
| | | | | | - Olga Célia Martinez Ibañez
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunogenetics, Instituto Butantan, Sao Paulo, Brazil.
| | - Catarina Teixeira
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Pharmacology, Instituto Butantan, Sao Paulo, Brazil.
| |
Collapse
|
8
|
Calvet J, Berenguer-Llergo A, Orellana C, García-Manrique M, Rusiñol M, Garcia-Cirera S, Llop M, Arévalo M, Garcia-Pinilla A, Galisteo C, Aymerich C, Gómez R, Serrano A, Carreras A, Gratacós J. Specific-cytokine associations with outcomes in knee osteoarthritis subgroups: breaking down disease heterogeneity with phenotyping. Arthritis Res Ther 2024; 26:19. [PMID: 38212829 PMCID: PMC10782658 DOI: 10.1186/s13075-023-03244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Despite existing extensive literature, a comprehensive and clinically relevant classification system for osteoarthritis (OA) has yet to be established. In this study, we aimed to further characterize four knee OA (KOA) inflammatory phenotypes (KOIP) recently proposed by our group, by identifying the inflammatory factors associated with KOA severity and progression in a phenotype-specific manner. METHODS We performed an analysis within each of the previously defined four KOIP groups, to assess the association between KOA severity and progression and a panel of 13 cytokines evaluated in the plasma and synovial fluid of our cohort's patients. The cohort included 168 symptomatic female KOA patients with persistent joint effusion. RESULTS Overall, our analyses showed that associations with KOA outcomes were of higher magnitude within the KOIP groups than for the overall patient series (all p-values < 1.30e-16) and that several of the cytokines showed a KOIP-specific behaviour regarding their associations with KOA outcomes. CONCLUSION Our study adds further evidence supporting KOA as a multifaceted syndrome composed of multiple phenotypes with differing pathophysiological pathways, providing an explanation for inconsistencies between previous studies focussed on the role of cytokines in OA and the lack of translational results to date. Our findings also highlight the potential clinical benefits of accurately phenotyping KOA patients, including improved patient stratification, tailored therapies, and the discovery of novel treatments.
Collapse
Affiliation(s)
- Joan Calvet
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
| | - Antoni Berenguer-Llergo
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - Cristóbal Orellana
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - María García-Manrique
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Menna Rusiñol
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - Silvia Garcia-Cirera
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - Maria Llop
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - Marta Arévalo
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - Alba Garcia-Pinilla
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - Carlos Galisteo
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - Cristina Aymerich
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - Rafael Gómez
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - Alejandra Serrano
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - Anna Carreras
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - Jordi Gratacós
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
9
|
Patnaik R, Riaz S, Sivani BM, Faisal S, Naidoo N, Rizzo M, Banerjee Y. Evaluating the potential of Vitamin D and curcumin to alleviate inflammation and mitigate the progression of osteoarthritis through their effects on human chondrocytes: A proof-of-concept investigation. PLoS One 2023; 18:e0290739. [PMID: 38157375 PMCID: PMC10756552 DOI: 10.1371/journal.pone.0290739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/14/2023] [Indexed: 01/03/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disorder primarily affecting the elderly, characterized by a prominent inflammatory component. The long-term side effects associated with current therapeutic approaches necessitate the development of safer and more efficacious alternatives. Nutraceuticals, such as Vitamin D and curcumin, present promising therapeutic potentials due to their safety, efficacy, and cost-effectiveness. In this study, we utilized a proinflammatory human chondrocyte model of OA to assess the anti-inflammatory properties of Vitamin D and curcumin, with a particular focus on the Protease-Activated Receptor-2 (PAR-2) mediated inflammatory pathway. Employing a robust siRNA approach, we effectively modulated the expression of PAR-2 to understand its role in the inflammatory process. Our results reveal that both Vitamin D and curcumin attenuate the expression of PAR-2, leading to a reduction in the downstream proinflammatory cytokines, such as Tumor Necrosis Factor-alpha (TNF-α), Interleukin 6 (IL-6), and Interleukin 8 (IL-8), implicated in the OA pathogenesis. Concurrently, these compounds suppressed the expression of Receptor Activator of Nuclear Factor kappa-Β Ligand (RANKL) and its receptor RANK, which are associated with PAR-2 mediated TNF-α stimulation. Additionally, Vitamin D and curcumin downregulated the expression of Interferon gamma (IFN-γ), known to elevate RANKL levels, underscoring their potential therapeutic implications in OA. This study, for the first time, provides evidence of the mitigating effect of Vitamin D and curcumin on PAR-2 mediated inflammation, employing an siRNA approach in OA. Thus, our findings pave the way for future research and the development of novel, safer, and more effective therapeutic strategies for managing OA.
Collapse
Affiliation(s)
- Rajashree Patnaik
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Sumbal Riaz
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Bala Mohan Sivani
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Shemima Faisal
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Nerissa Naidoo
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Yajnavalka Banerjee
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
- Centre for Medical Education, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
10
|
Inoue S, Inahashi Y, Itakura M, Inoue G, Muneshige K, Hirose T, Iwatsuki M, Takaso M, Miyagi M, Uchida K. Medermycin Inhibits TNFα-Promoted Inflammatory Reaction in Human Synovial Fibroblasts. Int J Mol Sci 2023; 24:13871. [PMID: 37762174 PMCID: PMC10531480 DOI: 10.3390/ijms241813871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Synovial inflammation plays a crucial role in the destruction of joints and the experience of pain in osteoarthritis (OA). Emerging evidence suggests that certain antibiotic agents and their derivatives possess anti-inflammatory properties. Medermycin (MED) has been identified as a potent antibiotic, specifically active against Gram-positive bacteria. In this study, we aimed to investigate the impact of MED on TNFα-induced inflammatory reactions in a synovial cell line, SW-982, as well as primary human synovial fibroblasts (HSF) using RNA sequencing, rtRT-PCR, ELISA, and western blotting. Through the analysis of differentially expressed genes (DEGs), we identified a total of 1478 significantly upregulated genes in SW-982 cells stimulated with TNFα compared to the vehicle control. Among these upregulated genes, MED treatment led to a reduction in 1167 genes, including those encoding proinflammatory cytokines such as IL1B, IL6, and IL8. Pathway analysis revealed the enrichment of DEGs in the TNF and NFκB signaling pathway, further supporting the involvement of MED in modulating inflammatory responses. Subsequent experiments demonstrated that MED inhibited the expression of IL6 and IL8 at both the mRNA and protein levels in both SW982 cells and HSF. Additionally, MED treatment resulted in a reduction in p65 phosphorylation in both cell types, indicating its inhibitory effect on NFκB activation. Interestingly, MED also inhibited Akt phosphorylation in SW982 cells, but not in HSF. Overall, our findings suggest that MED suppresses TNFα-mediated inflammatory cytokine production and p65 phosphorylation. These results highlight the potential therapeutic value of MED in managing inflammatory conditions in OA. Further investigations utilizing articular chondrocytes and animal models of OA may provide valuable insights into the therapeutic potential of MED for this disease.
Collapse
Affiliation(s)
- Sho Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Japan; (S.I.); (G.I.); (K.M.); (M.T.); (M.M.)
| | - Yuki Inahashi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Minato-ku Shirokane, Tokyo 108-8641, Japan; (Y.I.); (T.H.); (M.I.)
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Minato-ku Shirokane, Tokyo 108-8641, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City 252-0374, Japan;
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Japan; (S.I.); (G.I.); (K.M.); (M.T.); (M.M.)
| | - Kyoko Muneshige
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Japan; (S.I.); (G.I.); (K.M.); (M.T.); (M.M.)
| | - Tomoyasu Hirose
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Minato-ku Shirokane, Tokyo 108-8641, Japan; (Y.I.); (T.H.); (M.I.)
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Minato-ku Shirokane, Tokyo 108-8641, Japan
| | - Masato Iwatsuki
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Minato-ku Shirokane, Tokyo 108-8641, Japan; (Y.I.); (T.H.); (M.I.)
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Minato-ku Shirokane, Tokyo 108-8641, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Japan; (S.I.); (G.I.); (K.M.); (M.T.); (M.M.)
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Japan; (S.I.); (G.I.); (K.M.); (M.T.); (M.M.)
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Japan; (S.I.); (G.I.); (K.M.); (M.T.); (M.M.)
- Shonan University of Medical Sciences Research Institute, Nishikubo 500, Chigasaki 253-0083, Japan
| |
Collapse
|
11
|
Gugjoo MB, Dar ER, Farooq F, Ahmad SM, Sofi AH, Shah SA, Bhat MH, Khan TA, Shah RA, Parrah JUD. Cryopreserved allogeneic bone marrow mesenchymal stem cells show better osteochondral defect repair potential than adipose tissue mesenchymal stem cells. Curr Res Transl Med 2023; 71:103364. [PMID: 36436354 DOI: 10.1016/j.retram.2022.103364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) due to their characteristic properties have a potential to treat osteoarthritis, one of the major growing joint problems. MSCs show differential ex vivo chondrogenic potential on the basis of source that remains to be validated under in vivo environment. This study compared chondrogenic potential of MSCs derived from two common sources, adipose tissue (AD) and bone marrow (BM) under ex vivo and in vivo environments. The randomized placebo controlled osteochondral defect (OCD) study divided n = 72 rabbits equally into Control, AD-MSCs and BM-MSCs groups. Ex vivo chondrogenic induction resulted in an increased aggrecan fold expression in BM-MSCs and AD-MSCs. The former cell type had significantly (p<0.05) higher fold expression as compared to the latter. The cell treated OCDs had significantly reduced gene expression for inflammatory markers (IL-6, IL-8 and TNF-α) as compared to the control. In OCD study, radiography, MRI, gross observation, histopathology and SEM revealed that the cell treated defects were early filled by the tissue that had better surface architecture and matrices as compared to the control. BM-MSCs treated defects had better scores especially for gross and histopathology than the AD-MSCs. Gene expression for osteochondral regulation and cartilaginous matrices was higher in BM-MSCs group while only for matrices including the Col I in AD-MSCs as compared to the control. It was concluded that OCD in the cell treated groups are filled early with mostly a fibrocartilaginous to hyaline tissue. BM-MSCs may have an edge over AD-MSCs in OCD repair.
Collapse
Affiliation(s)
| | - Ejaz Rasool Dar
- Division of Surgery and Radiology, FVSc & AH, SKUAST-K, Shuhama, Alusteng
| | - Fajar Farooq
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST-K, Shuhama, Alusteng
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, FVSc & AH, SKUAST-K, Shuhama, Alusteng
| | - Asif Hassan Sofi
- Division of Livestock Products and Technology, FVSc & AH, SKUAST-K, Shuhama, Alusteng
| | - Showkat Ahmad Shah
- Division of Veterinary Pathology, FVSc & AH, SKUAST-K, Shuhama, Alusteng
| | | | | | - Riaz Ahmad Shah
- Division of Animal Biotechnology, FVSc & AH, SKUAST-K, Shuhama, Alusteng
| | - Jalal-Ud-Din Parrah
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST-K, Shuhama, Alusteng
| |
Collapse
|
12
|
Muneshige K, Inahashi Y, Itakura M, Iwatsuki M, Hirose T, Inoue G, Takaso M, Sunazuka T, Ohashi Y, Ohta E, Uchida K. Jietacin Derivative Inhibits TNF-α-Mediated Inflammatory Cytokines Production via Suppression of the NF-κB Pathway in Synovial Cells. Pharmaceuticals (Basel) 2022; 16:ph16010005. [PMID: 36678502 PMCID: PMC9862604 DOI: 10.3390/ph16010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Synovial inflammation plays a central role in joint destruction and pain in osteoarthritis (OA). The NF-κB pathway plays an important role in the inflammatory process and is activated in OA. A previous study reported that a jietacin derivative (JD), (Z)-2-(8-oxodec-9-yn-1-yl)-1-vinyldiazene 1-oxide, suppressed the nuclear translocation of NF-κB in a range of cancer cell lines. However, the effect of JD in synovial cells and the exact mechanism of JD as an NF-κB inhibitor remain to be determined. We investigated the effect of JD on TNF-α-induced inflammatory reaction in a synovial cell line, SW982 and human primary synovial fibroblasts (hPSFs). Additionally, we examined phosphorylated levels of p65 and p38 and expression of importin α3 and β1 using Western blotting. RNA-Seq analysis revealed that JD suppressed TNF-α-induced differential expression: among 204 genes significantly differentially expressed between vehicle and TNF-α-stimulated SW982 (183 upregulated and 21 downregulated) (FC ≥ 2, Q < 0.05), expression of 130 upregulated genes, including inflammatory cytokines (IL1A, IL1B, IL6, IL8) and chemokines (CCL2, CCL3, CCL5, CCL20, CXCL9, 10, 11), was decreased by JD treatment and that of 14 downregulated genes was increased. KEGG pathway analysis showed that DEGs were increased in the cytokine−cytokine receptor interaction, TNF signaling pathway, NF-κB signaling pathway, and rheumatoid arthritis. JD inhibited IL1B, IL6 and IL8 mRNA expression and IL-6 and IL-8 protein production in both SW982 and hPSFs. JD also suppressed p65 phosphorylation in both SW982 and hPSFs. In contrast, JD did not alter p38 phosphorylation. JD may inhibit TNF-α-mediated inflammatory cytokine production via suppression of p65 phosphorylation in both SW982 and hPSFs. Our results suggest that JD may have therapeutic potential for OA due to its anti-inflammatory action through selective suppression of the NF-κB pathway on synovial cells.
Collapse
Affiliation(s)
- Kyoko Muneshige
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City 252-0374, Japan
| | - Yuki Inahashi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City 252-0374, Japan
| | - Masato Iwatsuki
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
| | - Tomoyasu Hirose
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City 252-0374, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City 252-0374, Japan
| | - Toshiaki Sunazuka
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
| | - Yoshihisa Ohashi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City 252-0374, Japan
| | - Etsuro Ohta
- Department of Immunology II, Kitasato University School of Allied Health Sciences, 1-15-1 Minami-ku, Kitasato, Sagamihara City 252-0375, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City 252-0374, Japan
- Shonan University of Medical Sciences Research Institute, Nishikubo 500, Chigasaki 253-0083, Japan
- Correspondence:
| |
Collapse
|
13
|
Galla R, Ruga S, Ferrari S, Saccone S, Saccuman L, Invernizzi M, Uberti F. In vitro analysis of the effects of plant-derived chondroitin sulfate from intestinal barrier to chondrocytes. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
14
|
KRENYTSKA D, KOT L, HALENOVA T, RAKSHA N, VOVK T, SAVCHUK O, PELLICANO R, ABENAVOLI L, FALALYEYEVA T, OSTAPCHENKO L. Cytokine profile in patients with osteoarthritis after SARS-CoV-2 infection. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2022; 34. [DOI: 10.23736/s2724-542x.22.02943-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
|
15
|
Marsh S, Constantin-Teodosiu T, Chapman V, Sottile V. In vitro Exposure to Inflammatory Mediators Affects the Differentiation of Mesenchymal Progenitors. Front Bioeng Biotechnol 2022; 10:908507. [PMID: 35813997 PMCID: PMC9257013 DOI: 10.3389/fbioe.2022.908507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022] Open
Abstract
The increasing prevalence of joint disease, and in particular osteoarthritis (OA), calls for novel treatment strategies to prevent disease progression in addition to existing approaches focusing mainly on the relief of pain symptoms. The inherent properties of mesenchymal stem cells (MSCs) make them an attractive candidate for novel tissue repair strategies, as these progenitors have the potential to differentiate into chondrocytes needed to replace degraded cartilage and can exert a modulating effect on the inflammatory environment of the diseased joint. However, the inflammatory environment of the joint may affect the ability of these cells to functionally integrate into the host tissue and exert beneficial effects, as hinted by a lack of success seen in clinical trials. Identification of factors and cell signalling pathways that influence MSC function is therefore critical for ensuring their success in the clinic, and here the effects of inflammatory mediators on bone marrow-derived MSCs were evaluated. Human MSCs were cultured in the presence of inflammatory mediators typically associated with OA pathology (IL-1β, IL-8, IL-10). While exposure to these factors did not produce marked effects on MSC proliferation, changes were observed when the mediators were added under differentiating conditions. Results collected over 21 days showed that exposure to IL-1β significantly affected the differentiation response of these cells exposed to chondrogenic and osteogenic conditions, with gene expression analysis indicating changes in MAPK, Wnt and TLR signalling pathways, alongside an increased expression of pro-inflammatory cytokines and cartilage degrading enzymes. These results highlight the value of MSCs as a preclinical model to study OA and provide a basis to define the impact of factors driving OA pathology on the therapeutic potential of MSCs for novel OA treatments.
Collapse
Affiliation(s)
- S. Marsh
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, United Kingdom
| | - T. Constantin-Teodosiu
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - V. Chapman
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - V. Sottile
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, United Kingdom
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- *Correspondence: V. Sottile,
| |
Collapse
|
16
|
Bai RJ, Li YS, Zhang FJ. Osteopontin, a bridge links osteoarthritis and osteoporosis. Front Endocrinol (Lausanne) 2022; 13:1012508. [PMID: 36387862 PMCID: PMC9649917 DOI: 10.3389/fendo.2022.1012508] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease characterized by degradation of articular cartilage, inflammation, and changes in periarticular and subchondral bone of joints. Osteoporosis (OP) is another systemic skeletal disease characterized by low bone mass and bone mineral density (BMD) accompanied by microarchitectural deterioration in bone tissue and increased bone fragility and fracture risk. Both OA and OP are mainly affected on the elderly people. Recent studies have shown that osteopontin (OPN) plays a vital role in bone metabolism and homeostasis. OPN involves these biological activities through participating in the proliferation, migration, differentiation, and adhesion of several bone-related cells, including chondrocytes, synoviocytes, osteoclasts, osteoblasts, and marrow mesenchymal stem cells (MSCs). OPN has been demonstrated to be closely related to the occurrence and development of many bone-related diseases, such as OA and OP. This review summarizes the role of OPN in regulating inflammation activity and bone metabolism in OA and OP. Furthermore, some drugs that targeted OPN to treat OA and OP are also summarized in the review. However, the complex mechanism of OPN in regulating OA and OP is not fully elucidated, which drives us to explore the depth effect of OPN on these two bone diseases.
Collapse
Affiliation(s)
- Rui-Jun Bai
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- *Correspondence: Yu-Sheng Li, ; Fang-Jie Zhang,
| | - Fang-Jie Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Yu-Sheng Li, ; Fang-Jie Zhang,
| |
Collapse
|
17
|
Molnar V, Matišić V, Kodvanj I, Bjelica R, Jeleč Ž, Hudetz D, Rod E, Čukelj F, Vrdoljak T, Vidović D, Starešinić M, Sabalić S, Dobričić B, Petrović T, Antičević D, Borić I, Košir R, Zmrzljak UP, Primorac D. Cytokines and Chemokines Involved in Osteoarthritis Pathogenesis. Int J Mol Sci 2021; 22:9208. [PMID: 34502117 PMCID: PMC8431625 DOI: 10.3390/ijms22179208] [Citation(s) in RCA: 283] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis is a common cause of disability worldwide. Although commonly referred to as a disease of the joint cartilage, osteoarthritis affects all joint tissues equally. The pathogenesis of this degenerative process is not completely understood; however, a low-grade inflammation leading to an imbalance between anabolic and katabolic processes is a well-established factor. The complex network of cytokines regulating these processes and cell communication has a central role in the development and progression of osteoarthritis. Concentrations of both proinflammatory and anti-inflammatory cytokines were found to be altered depending on the osteoarthritis stage and activity. In this review, we analyzed individual cytokines involved in the immune processes with an emphasis on their function in osteoarthritis.
Collapse
Affiliation(s)
- Vilim Molnar
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Vid Matišić
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
| | - Ivan Kodvanj
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Roko Bjelica
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
| | - Željko Jeleč
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Department of Nursing, University North, 48000 Varaždin, Croatia
| | - Damir Hudetz
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Orthopaedic Surgery, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia
| | - Eduard Rod
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
| | - Fabijan Čukelj
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- University Hospital “Sisters of Mercy”, Clinic for Traumatology, Draškovićeva 19, 10000 Zagreb, Croatia;
- Department of Health Studies, University of Split, 21000 Split, Croatia
- Department of Traumatology, Medical University Merkur Hospital, 10000 Zagreb, Croatia
| | - Trpimir Vrdoljak
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Department of Orthopaedic Surgery, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia
| | - Dinko Vidović
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- University Hospital “Sisters of Mercy”, Clinic for Traumatology, Draškovićeva 19, 10000 Zagreb, Croatia;
| | | | - Srećko Sabalić
- University Hospital “Sisters of Mercy”, Clinic for Traumatology, Draškovićeva 19, 10000 Zagreb, Croatia;
| | - Borut Dobričić
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Department of Orthopaedics and Traumatology, University Hospital Dubrava, 10000 Zagreb, Croatia
| | - Tadija Petrović
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Department of Health Studies, University of Split, 21000 Split, Croatia
| | - Darko Antičević
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Igor Borić
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Department of Traumatology, Medical University Merkur Hospital, 10000 Zagreb, Croatia
- Medical School, University of Split, 21000 Split, Croatia;
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
| | - Rok Košir
- Molecular Biology Laboratory, BIA Separations CRO, Labena Ltd., 1000 Ljubljana, Slovenia; (R.K.); (U.P.Z.)
| | - Uršula Prosenc Zmrzljak
- Molecular Biology Laboratory, BIA Separations CRO, Labena Ltd., 1000 Ljubljana, Slovenia; (R.K.); (U.P.Z.)
| | - Dragan Primorac
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Split, 21000 Split, Croatia;
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School REGIOMED, 96450 Coburg, Germany
- Eberly College of Science, State College, The Pennsylvania State University, University Park, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
| |
Collapse
|