1
|
Mangani S, Kremmydas S, Karamanos NK. Mimicking the Complexity of Solid Tumors: How Spheroids Could Advance Cancer Preclinical Transformative Approaches. Cancers (Basel) 2025; 17:1161. [PMID: 40227664 PMCID: PMC11987746 DOI: 10.3390/cancers17071161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
Traditional 2D cell culture models present significant limitations in replicating the intricate architecture and microenvironment of in vivo solid tumors, which are essential for accurately studying cancer initiation, growth, progression, and metastasis. This underscores the need for the development of advanced preclinical models to accelerate research outcomes. Emerging 3D cell culture systems, particularly spheroid models, provide a more realistic representation of solid tumor properties by capturing the complex interactions occurring within the tumor microenvironment, including the extracellular matrix dynamics that influence cancer progression. Among solid tumors, breast cancer remains the most frequently diagnosed cancer among women globally and a leading cause of cancer-related mortality. Here we emphasize the value of breast cancer cell-derived spheroids in revealing differential molecular characteristics and understanding cancer cell properties during the early stages of invasion into adjacent tissues. Conclusively, this study underscores the urgent need to adopt 3D cell culture platforms, given their significant contributions to advanced cancer research and pharmaceutical targeting. This may well offer a transformative approach for preclinical studies and enhance our ability to test therapeutic efficiency in conditions that closely mimic the growth and progression of in vivo solid tumors.
Collapse
Affiliation(s)
| | | | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
2
|
Huang X, Di X, Zuiderwijk MC, Zhang L, Leegwater H, Davidse S, Kindt A, Harms A, Hankemeier T, Le Dévédec SE, Ali A. Lipidomic profiling of triple-negative breast cancer cells reveals distinct metabolic signatures associated with EpCAM expression. Talanta 2025; 283:127127. [PMID: 39520925 DOI: 10.1016/j.talanta.2024.127127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Lipid metabolism is essential at all stages of cancer progression, particularly for triple-negative breast cancer (TNBC) the deadliest cancer subtype for women patients. TNBC cells exhibit significant metabolic heterogeneity, which contributes to their aggressive behavior. Epithelial-to-mesenchymal transition (EMT), a key step in metastasis, is associated with distinct lipid profiles, where the epithelial cell adhesion molecule (EpCAM) was found to be decreased along the transition. To understand this link, we employed lipidomic profiling of the TNBC cell line SUM149PT, which exhibits high variability in EpCAM, an epithelial marker. Using EpCAM levels to categorize cells with high and low EpCAM expression using fluorescence-activated cell sorter, we performed targeted mass spectrometry analysis of various lipid classes (glycerophospholipids, glycerolipids, lysophospholipids, and sphingolipids) by a hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS)-based screening method. After correcting for cell size, we identified a unique lipid profile associated with each EpCAM expression level. Notably, cells with higher EpCAM expression displayed lower levels of lysophosphatidylethanolamine (LPE). This finding suggests a potential role for LPE in the regulation of EMT in TNBC.
Collapse
Affiliation(s)
- Xiaoyue Huang
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333, CC, Leiden, the Netherlands
| | - Xinyu Di
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333, CC, Leiden, the Netherlands
| | - Melissa Celine Zuiderwijk
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333, CC, Leiden, the Netherlands
| | - Lu Zhang
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333, CC, Leiden, the Netherlands
| | - Hanneke Leegwater
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333, CC, Leiden, the Netherlands
| | - Sam Davidse
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333, CC, Leiden, the Netherlands
| | - Alida Kindt
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333, CC, Leiden, the Netherlands
| | - Amy Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333, CC, Leiden, the Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333, CC, Leiden, the Netherlands
| | - Sylvia E Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333, CC, Leiden, the Netherlands.
| | - Ahmed Ali
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333, CC, Leiden, the Netherlands.
| |
Collapse
|
3
|
Ferreira LP, Jorge C, Henriques-Pereira M, Monteiro MV, Gaspar VM, Mano JF. Flow-on-repellent biofabrication of fibrous decellularized breast tumor-stroma models. BIOMATERIALS ADVANCES 2025; 166:214058. [PMID: 39442360 DOI: 10.1016/j.bioadv.2024.214058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
On-the-fly biofabrication of reproducible 3D tumor models at a pre-clinical level is highly desirable to level-up their applicability and predictive potential. Incorporating ECM biomolecular cues and its complex 3D bioarchitecture in the design stages of such in vitro platforms is essential to better recapitulate the native tumor microenvironment. To materialize these needs, herein we describe an innovative flow-on-repellent (FLORE) 3D extrusion bioprinting technique that leverages expedited and automatized bioink deposition onto a customized superhydrophobic printing bed. We demonstrate that this approach enables the rapid generation of quasi-spherical breast cancer-stroma hybrid models in a mode governed by surface wettability rather than bioink rheological features. For this purpose, an ECM-mimetic bioink comprising breast tissue-specific decellularized matrix in the form of microfiber bundles (dECM-μF) and photocrosslinkable hyaluronan (HAMA), was formulated to generate triple negative breast tumor-stroma models. Leveraging on the FLORE bioprinting approach, a rapid, automated, and reproducible fabrication of physiomimetic breast cancer hydrogel beads was successfully demonstrated. Hydrogel beads size with and without dECM-μF was easily tailored by modelling droplet deposition time on the superhydrophobic bed. Interestingly, in heterotypic breast cancer-stroma beads a self-arrangement of different cellular populations was observed, independent of dECM-μF inclusion, with CAFs clustering overtime within the fabricated models. Drug screening assays showed that the inclusion of CAFs and dECM-μF also impacted the overall response of these living constructs when incubated with gemcitabine chemotherapeutics, with dECM-μF integration promoting a trend for higher resistance in ECM-enriched models. Overall, we developed a rapid fabrication approach leveraging on extrusion bioprinting and superhydrophobic surfaces to process photocrosslinkable dECM bioinks and to generate increasingly physiomimetic tumor-stroma-matrix platforms for drug screening.
Collapse
Affiliation(s)
- Luís P Ferreira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carole Jorge
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Margarida Henriques-Pereira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria V Monteiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Coban B, Wang Z, Liao CY, Beslmüller K, Timmermans MA, Martens JW, Hundscheid JH, Slutter B, Zweemer AJ, Neubert E, Danen EH. GRHL2 suppression of NT5E/CD73 in breast cancer cells modulates CD73-mediated adenosine production and T cell recruitment. iScience 2024; 27:109738. [PMID: 38706844 PMCID: PMC11068632 DOI: 10.1016/j.isci.2024.109738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/03/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
Tumor tissues often contain high extracellular adenosine, promoting an immunosuppressed environment linked to mesenchymal transition and immune evasion. Here, we show that loss of the epithelial transcription factor, GRHL2, triggers NT5E/CD73 ecto-enzyme expression, augmenting the conversion of AMP to adenosine. GRHL2 binds an intronic NT5E sequence and is negatively correlated with NT5E/CD73 in breast cancer cell lines and patients. Remarkably, the increased adenosine levels triggered by GRHL2 depletion in MCF-7 breast cancer cells do not suppress but mildly increase CD8 T cell recruitment, a response mimicked by a stable adenosine analog but prevented by CD73 inhibition. Indeed, NT5E expression shows a positive rather than negative association with CD8 T cell infiltration in breast cancer patients. These findings reveal a GRHL2-regulated immune modulation mechanism in breast cancers and show that extracellular adenosine, besides its established role as a suppressor of T cell-mediated cytotoxicity, is associated with enhanced T cell recruitment.
Collapse
Affiliation(s)
- Bircan Coban
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Zi Wang
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
- Department of clinical laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Chen-yi Liao
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Klara Beslmüller
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Mieke A.M. Timmermans
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - John W.M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Bram Slutter
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Annelien J.M. Zweemer
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Elsa Neubert
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Erik H.J. Danen
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| |
Collapse
|
5
|
Muttiah B, Ng SL, Lokanathan Y, Ng MH, Law JX. Extracellular Vesicles in Breast Cancer: From Intercellular Communication to Therapeutic Opportunities. Pharmaceutics 2024; 16:654. [PMID: 38794316 PMCID: PMC11125876 DOI: 10.3390/pharmaceutics16050654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Breast cancer, a multifaceted and heterogeneous disease, poses significant challenges in terms of understanding its intricate resistance mechanisms and devising effective therapeutic strategies. This review provides a comprehensive overview of the intricate landscape of extracellular vesicles (EVs) in the context of breast cancer, highlighting their diverse subtypes, biogenesis, and roles in intercellular communication within the tumour microenvironment (TME). The discussion spans various aspects, from EVs and stromal cells in breast cancer to their influence on angiogenesis, immune response, and chemoresistance. The impact of EV production in different culture systems, including two dimensional (2D), three dimensional (3D), and organoid models, is explored. Furthermore, this review delves into the therapeutic potential of EVs in breast cancer, presenting emerging strategies such as engineered EVs for gene delivery, nanoplatforms for targeted chemotherapy, and disrupting tumour derived EVs as a treatment approach. Understanding these complex interactions of EV within the breast cancer milieu is crucial for identifying resistance mechanisms and developing new therapeutic targets.
Collapse
Affiliation(s)
- Barathan Muttiah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| |
Collapse
|
6
|
Bittman-Soto XS, Thomas ES, Ganshert ME, Mendez-Santacruz LL, Harrell JC. The Transformative Role of 3D Culture Models in Triple-Negative Breast Cancer Research. Cancers (Basel) 2024; 16:1859. [PMID: 38791938 PMCID: PMC11119918 DOI: 10.3390/cancers16101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Advancements in cell culturing techniques have allowed the development of three-dimensional (3D) cell culture models sourced directly from patients' tissues and tumors, faithfully replicating the native tissue environment. These models provide a more clinically relevant platform for studying disease progression and treatment responses compared to traditional two-dimensional (2D) models. Patient-derived organoids (PDOs) and patient-derived xenograft organoids (PDXOs) emerge as innovative 3D cancer models capable of accurately mimicking the tumor's unique features, enhancing our understanding of tumor complexities, and predicting clinical outcomes. Triple-negative breast cancer (TNBC) poses significant clinical challenges due to its aggressive nature, propensity for early metastasis, and limited treatment options. TNBC PDOs and PDXOs have significantly contributed to the comprehension of TNBC, providing novel insights into its underlying mechanism and identifying potential therapeutic targets. This review explores the transformative role of various 3D cancer models in elucidating TNBC pathogenesis and guiding novel therapeutic strategies. It also provides an overview of diverse 3D cell culture models, derived from cell lines and tumors, highlighting their advantages and culturing challenges. Finally, it delves into live-cell imaging techniques, endpoint assays, and alternative cell culture media and methodologies, such as scaffold-free and scaffold-based systems, essential for advancing 3D cancer model research and development.
Collapse
Affiliation(s)
- Xavier S. Bittman-Soto
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23284, USA; (E.S.T.)
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23284, USA
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00921, USA
| | - Evelyn S. Thomas
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23284, USA; (E.S.T.)
| | | | | | - J. Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23284, USA; (E.S.T.)
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
7
|
Lee SY, Hwang HJ, Song YJ, Lee D, Ku B, Sa JK, Lee DW. 3D cell subculturing pillar dish for pharmacogenetic analysis and high-throughput screening. Mater Today Bio 2023; 23:100793. [PMID: 37766900 PMCID: PMC10520358 DOI: 10.1016/j.mtbio.2023.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/21/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
A pillar dishe for subculture of 3D cultured cells on hydrogel spots (Matrigel and alginate) have been developed. Cells cultured in 3D in an extracellular matrix (ECM) can retain their intrinsic properties, but cells cultured in 2D lose their intrinsic properties as the cells stick to the bottom of the well. Previously, cells and ECM spots were dispensed on a conventional culture dish for 3D cultivation. However, as the spot shape and location depended on user handling, pillars were added to the dish to realize uniform spot shape and stable subculture, supporting 3D cell culture-based high-throughput screening (HTS). Matrigel and alginate were used as ECMs during 6-passage subculture. The growth rate of lung cancer cell (A549) was higher on Matrigel than on alginate. Cancer cell was subcultured in three dimensions in the proposed pillar dish and used for drug screening and differential gene expression analysis. Interestingly, stemness markers, which are unique characteristics of lung cancer cells inducing drug resistance, were upregulated in 3D-subcultured cells compared with those in 2D-subcultured cells. Additionally, the PI3K/Akt/mTOR, VEGFR1/2, and Wnt pathways, which are promising therapeutic targets for lung cancer, were activated, showing high drug sensitivity under 3D-HTS using the 3D-subcultured cells.
Collapse
Affiliation(s)
- Sang-Yun Lee
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Hyun Ju Hwang
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
| | - You Jin Song
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Dayoung Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Bosung Ku
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
| | - Jason K. Sa
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Dong Woo Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| |
Collapse
|
8
|
Gastélum-López MDLÁ, Aguilar-Medina M, García Mata C, López-Gutiérrez J, Romero-Quintana G, Bermúdez M, Avendaño-Felix M, López-Camarillo C, Pérez-Plascencia C, Beltrán AS, Ramos-Payán R. Organotypic 3D Cell-Architecture Impacts the Expression Pattern of miRNAs-mRNAs Network in Breast Cancer SKBR3 Cells. Noncoding RNA 2023; 9:66. [PMID: 37987362 PMCID: PMC10661268 DOI: 10.3390/ncrna9060066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Currently, most of the research on breast cancer has been carried out in conventional two-dimensional (2D) cell cultures due to its practical benefits, however, the three-dimensional (3D) cell culture is becoming the model of choice in cancer research because it allows cell-cell and cell-extracellular matrix (ECM) interactions, mimicking the native microenvironment of tumors in vivo. METHODS In this work, we evaluated the effect of 3D cell organization on the expression pattern of miRNAs (by Small-RNAseq) and mRNAs (by microarrays) in the breast cancer SKBR3 cell line and analyzed the biological processes and signaling pathways regulated by the differentially expressed protein-coding genes (DE-mRNAs) and miRNAs (DE-microRNAs) found in the organoids. RESULTS We obtained well-defined cell-aggregated organoids with a grape cluster-like morphology with a size up to 9.2 × 105 μm3. The transcriptomic assays showed that cell growth in organoids significantly affected (all p < 0.01) the gene expression patterns of both miRNAs, and mRNAs, finding 20 upregulated and 19 downregulated DE-microRNAs, as well as 49 upregulated and 123 downregulated DE-mRNAs. In silico analysis showed that a subset of 11 upregulated DE-microRNAs target 70 downregulated DE-mRNAs. These genes are involved in 150 gene ontology (GO) biological processes such as regulation of cell morphogenesis, regulation of cell shape, regulation of canonical Wnt signaling pathway, morphogenesis of epithelium, regulation of cytoskeleton organization, as well as in the MAPK and AGE-RAGE signaling KEGG-pathways. Interestingly, hsa-mir-122-5p (Fold Change (FC) = 15.4), hsa-mir-369-3p (FC = 11.4), and hsa-mir-10b-5p (FC = 20.1) regulated up to 81% of the 70 downregulated DE-mRNAs. CONCLUSION The organotypic 3D cell-organization architecture of breast cancer SKBR3 cells impacts the expression pattern of the miRNAs-mRNAs network mainly through overexpression of hsa-mir-122-5p, hsa-mir-369-3p, and hsa-mir-10b-5p. All these findings suggest that the interaction between cell-cell and cell-ECM as well as the change in the culture architecture impacts gene expression, and, therefore, support the pertinence of migrating breast cancer research from conventional cultures to 3D models.
Collapse
Affiliation(s)
- María de los Ángeles Gastélum-López
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Maribel Aguilar-Medina
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Cristina García Mata
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Jorge López-Gutiérrez
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Geovanni Romero-Quintana
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Mercedes Bermúdez
- Faculty of Dentistry, Autonomous University of Chihuahua, Av. Escorza No. 900, Centro, Chihuahua 31125, Chihuahua, Mexico;
| | - Mariana Avendaño-Felix
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - César López-Camarillo
- Postgraduate in Genomic Sciences, Autonomous University of Mexico City, San Lorenzo 290, Col del Valle, Mexico City 03100, Mexico;
| | - Carlos Pérez-Plascencia
- National Cancer Institute, Av. San Fernando 22, Belisario Domínguez Sec. 16, Tlalpan, Mexico City 14080, Mexico;
- FES Iztacala, National Autonomous University of Mexico, Av. de los Barrios S/N, Los Reyes Ixtacala, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Adriana S Beltrán
- Human Pluripotent Stem Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| |
Collapse
|
9
|
Ryu S, Yoon SH, Song J, Choi Y, Lee S, Baek M, Lee HB, Jeon SY, Jon S, Lee D, Kim HS, Han W. Impact of media compositions and culture systems on the immunophenotypes of patient-derived breast cancer cells. BMC Cancer 2023; 23:831. [PMID: 37670250 PMCID: PMC10481485 DOI: 10.1186/s12885-023-11185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/17/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Heterogeneous tumor cells are thought to be a significant factor in the failure of endocrine therapy in estrogen receptor-positive (ER+) cancers. Culturing patient-derived breast cancer cells (PDBCCs) provides an invaluable tool in pre-clinical and translational research for the heterogeneity of cancer cells. This study aimed to investigate the effects of different media components and culture methods on the BCSC-associated immunophenotypes and gene expression in ER + PDBCCs. METHODS Ten patients with ER + breast cancer were employed in this study, six of whom had neoadjuvant chemotherapy and four of whom did not. PDBCCs were isolated by enzymatic methods using collagen I and hyaluronidase. PDBCCs were grown as monolayers in mediums with different compositions and as multicellular spheroid in a suspended condition. Collagen I-coated plate and ultralow attachment plate coated with polymer-X were used for monolayer and spheroid culture. Flow cytometry, immunofluorescent staining, RT-PCR, and RNA-sequencing were employed to examine the immunophenotype and genetic profile of PDBCCs. RESULTS More than 95% of PDBCCs sustain EpCAM high/+/fibroblast marker- phenotypes in monolayer conditions by subculturing 3-4 times. A83-01 removal induced senescent cells with high β-galactosidase activity. PDBCCs grown as monolayers were characterized by the majority of cells having an EpCAM+/CD49f + phenotype. Compared to full media in monolayer culture, EGF removal increased EpCAM+/CD49f - phenotype (13.8-fold, p = 0.028), whereas R-spondin removal reduced it (0.8-fold, p = 0.02). A83-01 removal increased EpCAM+/CD24 + phenotype (1.82-fold, p = 0.023) and decreased EpCAM low/-/CD44+/CD24- phenotype (0.45-fold, p = 0.026). Compared to monolayer, spheroid resulted in a significant increase in the population with EpCAM-/CD49+ (14.6-fold, p = 0.006) and EpCAM low/-/CD44+/CD24- phenotypes (4.16-fold, p = 0.022) and ALDH high activity (9.66-fold, p = 0.037). ALDH1A and EMT-related genes were upregulated. In RNA-sequencing analysis between spheroids and monolayers, a total of 561 differentially expressed genes (2-fold change, p < 0.05) were enriched in 27 KEGG pathways including signaling pathways regulating pluripotency of stem cells. In a recurrence-free survival analysis based on the Kaplan-Meier Plotter database of the up-and down-regulated genes identified in spheroids, 15 up-, and 14 down-regulated genes were associated with poor prognosis of breast cancer patients. CONCLUSION The media composition and spheroid culture method change in the BCSCs and EMT markers of PDBCCs, implying the importance of defining the media composition and culture method for studying PDBCCs in vitro.
Collapse
Affiliation(s)
- Seungyeon Ryu
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, 103, Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, 103, Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
| | - So-Hyun Yoon
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, 103, Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, 103, Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
| | - Junhyuk Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, 34141, Daejeon, Republic of Korea
| | - Yoonjung Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, 34141, Daejeon, Republic of Korea
| | - Sangeun Lee
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, 103, Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
| | - Moonjou Baek
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, 103, Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
| | - Han-Byoel Lee
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
- Department of Surgery, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Sook Young Jeon
- Department of Surgery, Kangnam Sacred Heart Hospital, 1 Shingil-ro, Youngdeungpo-ku, 07441, Seoul, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, 34141, Daejeon, Republic of Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, 34141, Daejeon, Republic of Korea
| | - Hoe Suk Kim
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea.
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, SAV# 255, Box2202C, Brookings, SD 57007, USA.
| | - Wonshik Han
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea.
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, 103, Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea.
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, 103, Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea.
- Department of Surgery, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Genomic Medicine Institute, Medical Research Center, Seoul National University, 103, Daehak- ro, Jongno-gu, 03080, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Collodet C, Blust K, Gkouma S, Ståhl E, Chen X, Hartman J, Hedhammar M. Development and characterization of a recombinant silk network for 3D culture of immortalized and fresh tumor-derived breast cancer cells. Bioeng Transl Med 2023; 8:e10537. [PMID: 37693069 PMCID: PMC10487315 DOI: 10.1002/btm2.10537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 09/12/2023] Open
Abstract
Traditional cancer models rely on 2D cell cultures or 3D spheroids, which fail to recapitulate cell-extracellular matrix (ECM) interactions, a key element of tumor development. Existing hydrogel-based 3D alternatives lack mechanical support for cell growth and often suffer from low reproducibility. Here we report a novel strategy to make 3D models of breast cancer using a tissue-like, well-defined network environment based on recombinant spider silk, functionalized with a cell adhesion motif from fibronectin (FN-silk). With this approach, the canonical cancer cells SK-BR-3, MCF-7, and MDA-MB-231, maintain their characteristic expression of markers (i.e., ERα, HER2, and PGR) while developing distinct morphology. Transcriptomic analyses demonstrate how culture in the FN-silk networks modulates the biological processes of cell adhesion and migration while affecting physiological events involved in malignancy, such as inflammation, remodeling of the ECM, and resistance to anticancer drugs. Finally, we show that integration in FN-silk networks promotes the viability of cells obtained from the superficial scraping of patients' breast tumors.
Collapse
Affiliation(s)
- Caterina Collodet
- Division of Protein TechnologySchool of Biotechnology, KTH Royal Institute of TechnologyStockholmSweden
| | - Kelly Blust
- Division of Protein TechnologySchool of Biotechnology, KTH Royal Institute of TechnologyStockholmSweden
| | - Savvini Gkouma
- Division of Protein TechnologySchool of Biotechnology, KTH Royal Institute of TechnologyStockholmSweden
| | - Emmy Ståhl
- Division of Protein TechnologySchool of Biotechnology, KTH Royal Institute of TechnologyStockholmSweden
| | - Xinsong Chen
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
| | - Johan Hartman
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Department of Clinical Pathology and Cancer DiagnosticsKarolinska University HospitalStockholmSweden
| | - My Hedhammar
- Division of Protein TechnologySchool of Biotechnology, KTH Royal Institute of TechnologyStockholmSweden
| |
Collapse
|
11
|
Ortiz MMO, Andrechek ER. Molecular Characterization and Landscape of Breast cancer Models from a multi-omics Perspective. J Mammary Gland Biol Neoplasia 2023; 28:12. [PMID: 37269418 DOI: 10.1007/s10911-023-09540-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023] Open
Abstract
Breast cancer is well-known to be a highly heterogenous disease. This facet of cancer makes finding a research model that mirrors the disparate intrinsic features challenging. With advances in multi-omics technologies, establishing parallels between the various models and human tumors is increasingly intricate. Here we review the various model systems and their relation to primary breast tumors using available omics data platforms. Among the research models reviewed here, breast cancer cell lines have the least resemblance to human tumors since they have accumulated many mutations and copy number alterations during their long use. Moreover, individual proteomic and metabolomic profiles do not overlap with the molecular landscape of breast cancer. Interestingly, omics analysis revealed that the initial subtype classification of some breast cancer cell lines was inappropriate. In cell lines the major subtypes are all well represented and share some features with primary tumors. In contrast, patient-derived xenografts (PDX) and patient-derived organoids (PDO) are superior in mirroring human breast cancers at many levels, making them suitable models for drug screening and molecular analysis. While patient derived organoids are spread across luminal, basal- and normal-like subtypes, the PDX samples were initially largely basal but other subtypes have been increasingly described. Murine models offer heterogenous tumor landscapes, inter and intra-model heterogeneity, and give rise to tumors of different phenotypes and histology. Murine models have a reduced mutational burden compared to human breast cancer but share some transcriptomic resemblance, and representation of many breast cancer subtypes can be found among the variety subtypes. To date, while mammospheres and three- dimensional cultures lack comprehensive omics data, these are excellent models for the study of stem cells, cell fate decision and differentiation, and have also been used for drug screening. Therefore, this review explores the molecular landscapes and characterization of breast cancer research models by comparing recent published multi-omics data and analysis.
Collapse
Affiliation(s)
- Mylena M O Ortiz
- Genetics and Genomics Science Program, Michigan State University, East Lansing, MI, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, 2194 BPS Building 567 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
12
|
Moradi-Mehr S, Khademy M, Akbari-Birgani S, Kafian H, Lalenejad M, Abdollahpour D, Moghimi M. Comparative evaluation of the therapeutic strategies using a minimal model of luminal-A breast cancer. Biochem Biophys Res Commun 2023; 666:107-114. [PMID: 37182285 DOI: 10.1016/j.bbrc.2023.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Cellular behavior is heavily influenced by cellular interactions, which are often lost in conventional cell culture methods. As a result, in vitro cellular behavior may not accurately reflect in vivo conditions. Three-dimensional (3D) culture, on the other hand, is better suited for studying cellular behavior as it allows for more comprehensive cell communication. In this study, we utilized 3D culture of the MCF-7 cell line to create a minimal model of luminal-A breast cancer and evaluated its histopathological and morphological features using various methods. To determine the optimal therapeutic strategies for eliminating cancer cells, we assessed the effectiveness of diverse therapeutic approaches, including targeting distinct phases of the cell cycle, endocrine therapy, and gene therapy in both 2D and 3D culture systems. Our findings indicate that cells derived from mammospheres respond differently to their parent cells in monolayer culture depending on the therapeutic strategy used. This variability in drug response may be due to the altered microenvironment created by heterogeneous cellular makeup and emerging cellular interactions in the 3D culture. Therefore, it is important to administer a therapeutic approach that can eradicate cells regardless of the microenvironment.
Collapse
Affiliation(s)
- Sahar Moradi-Mehr
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Mitra Khademy
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran; Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Hosein Kafian
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Meelad Lalenejad
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Daryoush Abdollahpour
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran; Optics Research Center, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Minoosh Moghimi
- Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
13
|
van der Noord VE, van der Stel W, Louwerens G, Verhoeven D, Kuiken HJ, Lieftink C, Grandits M, Ecker GF, Beijersbergen RL, Bouwman P, Le Dévédec SE, van de Water B. Systematic screening identifies ABCG2 as critical factor underlying synergy of kinase inhibitors with transcriptional CDK inhibitors. Breast Cancer Res 2023; 25:51. [PMID: 37147730 PMCID: PMC10161439 DOI: 10.1186/s13058-023-01648-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/07/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a subtype of breast cancer with limited treatment options and poor clinical prognosis. Inhibitors of transcriptional CDKs are currently under thorough investigation for application in the treatment of multiple cancer types, including breast cancer. These studies have raised interest in combining these inhibitors, including CDK12/13 inhibitor THZ531, with a variety of other anti-cancer agents. However, the full scope of these potential synergistic interactions of transcriptional CDK inhibitors with kinase inhibitors has not been systematically investigated. Moreover, the mechanisms behind these previously described synergistic interactions remain largely elusive. METHODS Kinase inhibitor combination screenings were performed to identify kinase inhibitors that synergize with CDK7 inhibitor THZ1 and CDK12/13 inhibitor THZ531 in TNBC cell lines. CRISPR-Cas9 knockout screening and transcriptomic evaluation of resistant versus sensitive cell lines were performed to identify genes critical for THZ531 resistance. RNA sequencing analysis after treatment with individual and combined synergistic treatments was performed to gain further insights into the mechanism of this synergy. Kinase inhibitor screening in combination with visualization of ABCG2-substrate pheophorbide A was used to identify kinase inhibitors that inhibit ABCG2. Multiple transcriptional CDK inhibitors were evaluated to extend the significance of the found mechanism to other transcriptional CDK inhibitors. RESULTS We show that a very high number of tyrosine kinase inhibitors synergize with the CDK12/13 inhibitor THZ531. Yet, we identified the multidrug transporter ABCG2 as key determinant of THZ531 resistance in TNBC cells. Mechanistically, we demonstrate that most synergistic kinase inhibitors block ABCG2 function, thereby sensitizing cells to transcriptional CDK inhibitors, including THZ531. Accordingly, these kinase inhibitors potentiate the effects of THZ531, disrupting gene expression and increasing intronic polyadenylation. CONCLUSION Overall, this study demonstrates the critical role of ABCG2 in limiting the efficacy of transcriptional CDK inhibitors and identifies multiple kinase inhibitors that disrupt ABCG2 transporter function and thereby synergize with these CDK inhibitors. These findings therefore further facilitate the development of new (combination) therapies targeting transcriptional CDKs and highlight the importance of evaluating the role of ABC transporters in synergistic drug-drug interactions in general.
Collapse
Affiliation(s)
- Vera E van der Noord
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Wanda van der Stel
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Gijs Louwerens
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Danielle Verhoeven
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Hendrik J Kuiken
- Division of Molecular Carcinogenesis, The NKI Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, The NKI Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Melanie Grandits
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Gerhard F Ecker
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, The NKI Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Peter Bouwman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sylvia E Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
14
|
Firatligil-Yildirir B, Yalcin-Ozuysal O, Nonappa. Recent advances in lab-on-a-chip systems for breast cancer metastasis research. NANOSCALE ADVANCES 2023; 5:2375-2393. [PMID: 37143816 PMCID: PMC10153489 DOI: 10.1039/d2na00823h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/26/2023] [Indexed: 05/06/2023]
Abstract
Breast cancer is the leading cause of cancer-related deaths in women. Multiple molecular subtypes, heterogeneity, and their ability to metastasize from the primary site to distant organs make breast cancer challenging to diagnose, treat, and obtain the desired therapeutic outcome. As the clinical importance of metastasis is dramatically increasing, there is a need to develop sustainable in vitro preclinical platforms to investigate complex cellular processes. Traditional in vitro and in vivo models cannot mimic the highly complex and multistep process of metastasis. Rapid progress in micro- and nanofabrication has contributed to soft lithography or three-dimensional printing-based lab-on-a-chip (LOC) systems. LOC platforms, which mimic in vivo conditions, offer a more profound understanding of cellular events and allow novel preclinical models for personalized treatments. Their low cost, scalability, and efficiency have resulted in on-demand design platforms for cell, tissue, and organ-on-a-chip platforms. Such models can overcome the limitations of two- and three-dimensional cell culture models and the ethical challenges involved in animal models. This review provides an overview of breast cancer subtypes, various steps and factors involved in metastases, existing preclinical models, and representative examples of LOC systems used to study and understand breast cancer metastasis and diagnosis and as a platform to evaluate advanced nanomedicine for breast cancer metastasis.
Collapse
Affiliation(s)
| | - Ozden Yalcin-Ozuysal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology Urla 35430 Izmir Turkey
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University FI-33720 Tampere Finland
| |
Collapse
|
15
|
GRHL2 Regulation of Growth/Motility Balance in Luminal versus Basal Breast Cancer. Int J Mol Sci 2023; 24:ijms24032512. [PMID: 36768838 PMCID: PMC9916895 DOI: 10.3390/ijms24032512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
The transcription factor Grainyhead-like 2 (GRHL2) is a critical transcription factor for epithelial tissues that has been reported to promote cancer growth in some and suppress aspects of cancer progression in other studies. We investigated its role in different breast cancer subtypes. In breast cancer patients, GRHL2 expression was increased in all subtypes and inversely correlated with overall survival in basal-like breast cancer patients. In a large cell line panel, GRHL2 was expressed in luminal and basal A cells, but low or absent in basal B cells. The intersection of ChIP-Seq analysis in 3 luminal and 3 basal A cell lines identified conserved GRHL2 binding sites for both subtypes. A pathway analysis of ChIP-seq data revealed cell-cell junction regulation and epithelial migration as well as epithelial proliferation, as candidate GRHL2-regulated processes and further analysis of hub genes in these pathways showed similar regulatory networks in both subtypes. However, GRHL2 deletion in a luminal cell line caused cell cycle arrest while this was less prominent in a basal A cell line. Conversely, GRHL2 loss triggered enhanced migration in the basal A cells but failed to do so in the luminal cell line. ChIP-Seq and ChIP-qPCR demonstrated GRHL2 binding to CLDN4 and OVOL2 in both subtypes but not to other GRHL2 targets controlling cell-cell adhesion that were previously identified in other cell types, including CDH1 and ZEB1. Nevertheless, E-cadherin protein expression was decreased upon GRHL2 deletion especially in the luminal line and, in agreement with its selectively enhanced migration, only the basal A cell line showed concomitant induction of vimentin and N-cadherin. To address how the balance between growth reduction and aspects of EMT upon loss of GRHL2 affected in vivo behavior, we used a mouse basal A orthotopic transplantation model in which the GRHL2 gene was silenced. This resulted in reduced primary tumor growth and a reduction in number and size of lung colonies, indicating that growth suppression was the predominant consequence of GRHL2 loss. Altogether, these findings point to largely common but also distinct roles for GRHL2 in luminal and basal breast cancers with respect to growth and motility and indicate that, in agreement with its negative association with patient survival, growth suppression is the dominant response to GRHL2 loss.
Collapse
|
16
|
Wang Z, Coban B, Wu H, Chouaref J, Daxinger L, Paulsen MT, Ljungman M, Smid M, Martens JWM, Danen EHJ. GRHL2-controlled gene expression networks in luminal breast cancer. Cell Commun Signal 2023; 21:15. [PMID: 36691073 PMCID: PMC9869538 DOI: 10.1186/s12964-022-01029-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/24/2022] [Indexed: 01/24/2023] Open
Abstract
Grainyhead like 2 (GRHL2) is an essential transcription factor for development and function of epithelial tissues. It has dual roles in cancer by supporting tumor growth while suppressing epithelial to mesenchymal transitions (EMT). GRHL2 cooperates with androgen and estrogen receptors (ER) to regulate gene expression. We explore genome wide GRHL2 binding sites conserved in three ER⍺/GRHL2 positive luminal breast cancer cell lines by ChIP-Seq. Interaction with the ER⍺/FOXA1/GATA3 complex is observed, however, only for a minor fraction of conserved GRHL2 peaks. We determine genome wide transcriptional dynamics in response to loss of GRHL2 by nascent RNA Bru-seq using an MCF7 conditional knockout model. Integration of ChIP- and Bru-seq pinpoints candidate direct GRHL2 target genes in luminal breast cancer. Multiple connections between GRHL2 and proliferation are uncovered, including transcriptional activation of ETS and E2F transcription factors. Among EMT-related genes, direct regulation of CLDN4 is corroborated but several targets identified in other cells (including CDH1 and ZEB1) are ruled out by both ChIP- and Bru-seq as being directly controlled by GRHL2 in luminal breast cancer cells. Gene clusters correlating positively (including known GRHL2 targets such as ErbB3, CLDN4/7) or negatively (including TGFB1 and TGFBR2) with GRHL2 in the MCF7 knockout model, display similar correlation with GRHL2 in ER positive as well as ER negative breast cancer patients. Altogether, this study uncovers gene sets regulated directly or indirectly by GRHL2 in luminal breast cancer, identifies novel GRHL2-regulated genes, and points to distinct GRHL2 regulation of EMT in luminal breast cancer cells. Video Abstract.
Collapse
Affiliation(s)
- Zi Wang
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bircan Coban
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Haoyu Wu
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jihed Chouaref
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Michelle T Paulsen
- Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mats Ljungman
- Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erik H J Danen
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
17
|
Nuñez-Olvera SI, Aguilar-Arnal L, Cisneros-Villanueva M, Hidalgo-Miranda A, Marchat LA, Salinas-Vera YM, Ramos-Payán R, Pérez-Plasencia C, Carlos-Reyes Á, Puente-Rivera J, López-Camarillo C. Breast Cancer Cells Reprogram the Oncogenic lncRNAs/mRNAs Coexpression Networks in Three-Dimensional Microenvironment. Cells 2022; 11:3458. [PMID: 36359853 PMCID: PMC9656377 DOI: 10.3390/cells11213458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Organotypic three-dimensional (3D) cell cultures more accurately mimic the characteristics of solid tumors in vivo in comparison with traditional two-dimensional (2D) monolayer cell models. Currently, studies on the regulation of long non-coding RNAs (lncRNAs) have not been explored in breast cancer cells cultured in 3D microenvironments. In the present research, we studied the expression and potential roles of lncRNAs in estrogen receptor-positive luminal B subtype BT-474 breast cancer cells grown over extracellular matrix proteins-enriched 3D cultures. Global expression profiling using DNA microarrays identifies 290 upregulated and 183 downregulated lncRNAs in 3D cultures relative to 2D condition. Using a co-expression analysis approach of lncRNAs and mRNAs pairs expressed in the same experimental conditions, we identify hundreds of regulatory axes modulating genes involved in cancer hallmarks, such as responses to estrogens, cell proliferation, hypoxia, apical junctions, and resistance to endocrine therapy. In addition, we identified 102 lncRNAs/mRNA correlations in 3D cultures, which were similar to those reported in TCGA datasets obtained from luminal B breast cancer patients. Interestingly, we also found a set of mRNAs transcripts co-expressed with LINC00847 and CTD-2566J3.1 lncRNAs, which were predictors of pathologic complete response and overall survival. Finally, both LINC00847 and CTD -2566J3.1 were co-expressed with essential genes for cancer genetic dependencies, such as FOXA1 y GINS2. Our experimental and predictive findings show that co-expressed lncRNAs/mRNAs pairs exhibit a high degree of similarity with those found in luminal B breast cancer patients, suggesting that they could be adequate pre-clinical tools to identify not only biomarkers related to endocrine therapy response and PCR, but to understand the biological behavior of cancer cells in 3D microenvironments.
Collapse
Affiliation(s)
- Stephanie I. Nuñez-Olvera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico
| | - Laurence A. Marchat
- Programa en Biomedicina Molecular y Red de Biotecnología, ENMyH-Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - Yarely M. Salinas-Vera
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados, Mexico City 07360, Mexico
| | - Rosalio Ramos-Payán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán 80040, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan). Av. San Fernando 22, Col. Sección XVI. Tlalpan, Mexico City 14080, Mexico
- Laboratorio de Genómica, Unidad de Biomedicina, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Ángeles Carlos-Reyes
- Laboratorio de Onco-Inmunobiología, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Jonathan Puente-Rivera
- División de Ciencias de la Salud, Biológicas y Ambientales, Universidad Abierta y a Distancia, Mexico City 03330, Mexico
| | - Cesar López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 03100, Mexico
| |
Collapse
|
18
|
Liu Q, van der Stel W, van der Noord VE, Leegwater H, Coban B, Elbertse K, Pruijs JTM, Béquignon OJM, van Westen G, Dévédec SEL, Danen EHJ. Hypoxia Triggers TAZ Phosphorylation in Basal A Triple Negative Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms231710119. [PMID: 36077517 PMCID: PMC9456181 DOI: 10.3390/ijms231710119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Hypoxia and HIF signaling drive cancer progression and therapy resistance and have been demonstrated in breast cancer. To what extent breast cancer subtypes differ in their response to hypoxia has not been resolved. Here, we show that hypoxia similarly triggers HIF1 stabilization in luminal and basal A triple negative breast cancer cells and we use high throughput targeted RNA sequencing to analyze its effects on gene expression in these subtypes. We focus on regulation of YAP/TAZ/TEAD targets and find overlapping as well as distinct target genes being modulated in luminal and basal A cells under hypoxia. We reveal a HIF1 mediated, basal A specific response to hypoxia by which TAZ, but not YAP, is phosphorylated at Ser89. While total YAP/TAZ localization is not affected by hypoxia, hypoxia drives a shift of [p-TAZ(Ser89)/p-YAP(Ser127)] from the nucleus to the cytoplasm in basal A but not luminal breast cancer cells. Cell fractionation and YAP knock-out experiments confirm cytoplasmic sequestration of TAZ(Ser89) in hypoxic basal A cells. Pharmacological and genetic interference experiments identify c-Src and CDK3 as kinases involved in such phosphorylation of TAZ at Ser89 in hypoxic basal A cells. Hypoxia attenuates growth of basal A cells and the effect of verteporfin, a disruptor of YAP/TAZ-TEAD–mediated transcription, is diminished under those conditions, while expression of a TAZ-S89A mutant does not confer basal A cells with a growth advantage under hypoxic conditions, indicating that other hypoxia regulated pathways suppressing cell growth are dominant.
Collapse
|
19
|
Lee SY, Hwang HJ, Ku B, Lee DW. Cell Proliferation Receptor-Enhanced 3D High-Throughput Screening Model for Optimized Drug Efficacy Evaluation in Breast Cancer Cells. Anal Chem 2022; 94:11838-11847. [PMID: 35977405 DOI: 10.1021/acs.analchem.2c02222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A higher correlation of epidermal growth factor receptor (EGFR)-targeting drugs has been reported with the use of the cell proliferation receptor-enhanced three-dimensional high-throughput screening model (CPRE 3D-HTS model) compared with two-dimensional (2D) cell-based HTS. A greater expression of differential human EGFR 2 (HER2) protein between HER2-positive and HER2-negative cell lines was observed in breast cancer (BC) cell lines cultured using the CPRE 3D-HTS model compared with 2D-cultured cells. When using 2D-cultured cells, properties such as the expression of the cell proliferation receptor are lost as the cells attach to the bottom of the well plate. In an effort to solve this problem, the CPRE 3D-HTS model expressing high cell proliferation receptors was optimized by the selection of alginate as the extracellular matrix. Results from the use of the CPRE 3D-HTS model showed higher drug resistance with increased expression of drug resistance-related proteins. Of particular interest, a higher correlation of HER2-targeted drugs was observed with the use of the CPRE 3D-HTS model. In order to validate this higher correlation of target drugs observed in the CPRE 3D-HTS model, the results of Western blot analysis and high content imaging analysis were analyzed, which confirmed that 3D-cultured BC cell lines showed a greater difference in the expression of HER2-positive and HER2-negative BC cell lines than 2D-cultured cells. Thus, the use of CPRE 3D-HTS using a 384-pillar plate resulted in increased accuracy when screening HER2-targeted drugs in BC, and it is a very useful platform for analyzing the efficacy of targeted drugs by enhancing the expression of HER2.
Collapse
Affiliation(s)
- Sang-Yun Lee
- Department of Biomedical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Hyun Ju Hwang
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon 16229, Republic of Korea
| | - Bosung Ku
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon 16229, Republic of Korea
| | - Dong Woo Lee
- Department of Biomedical Engineering, Gachon University, Seongnam 13120, Republic of Korea.,Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon 16229, Republic of Korea
| |
Collapse
|
20
|
Salinas-Vera YM, Valdés J, Hidalgo-Miranda A, Cisneros-Villanueva M, Marchat LA, Nuñez-Olvera SI, Ramos-Payán R, Pérez-Plasencia C, Arriaga-Pizano LA, Prieto-Chávez JL, López-Camarillo C. Three-Dimensional Organotypic Cultures Reshape the microRNAs Transcriptional Program in Breast Cancer Cells. Cancers (Basel) 2022; 14:2490. [PMID: 35626094 PMCID: PMC9139376 DOI: 10.3390/cancers14102490] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
The 3D organotypic cultures, which depend on the growth of cells over the extracellular matrix (ECM) used as a scaffold, can better mimic several characteristics of solid cancers that influence tumor biology and the response to drug therapies. Most of our current knowledge on cancer is derived from studies in 2D cultures, which lack the ECM-mediated microenvironment. Moreover, the role of miRNAs that is critical for fine-tuning of gene expression is poorly understood in 3D cultures. The aim of this study was to compare the miRNA expression profiles of breast cancer cells grown in 2D and 3D conditions. On an on-top 3D cell culture model using a basement membrane matrix enriched with laminin, collagen IV, entactin, and heparin-sulfate proteoglycans, the basal B (Hs578T) and luminal (T47D) breast cancer cells formed 3D spheroid-like stellate and rounded mass structures, respectively. Morphological changes in 3D cultures were observed as cell stretching, cell-cell, and cell-ECM interactions associated with a loss of polarity and reorganization on bulk structures. Interestingly, we found prolongations of the cytoplasmic membrane of Hs578T cells similar to tunneled nanotubes contacting between neighboring cells, suggesting the existence of cellular intercommunication processes and the possibility of fusion between spheroids. Expression profiling data revealed that 354 miRNAs were differentially expressed in 3D relative to 2D cultures in Hs578T cells. Downregulated miRNAs may contribute to a positive regulation of genes involved in hypoxia, catabolic processes, and focal adhesion, whereas overexpressed miRNAs modulate genes involved in negative regulation of the cell cycle. Target genes of the top ten modulated miRNAs were selected to construct miRNA/mRNA coregulation networks. Around 502 interactions were identified for downregulated miRNAs, including miR-935/HIF1A and miR-5189-3p/AKT that could contribute to cell migration and the response to hypoxia. Furthermore, the expression levels of miR-935 and its target HIF1A correlated with the expression found in clinical tumors and predicted poor outcomes. On the other hand, 416 interactions were identified for overexpressed miRNAs, including miR-6780b-5p/ANKRD45 and miR-7641/CDK4 that may result in cell proliferation inhibition and cell cycle arrest in quiescent layers of 3D cultures. In conclusion, 3D cultures could represent a suitable model that better resembles the miRNA transcriptional programs operating in tumors, with implications not only in the understanding of basic cancer biology in 3D microenvironments, but also in the identification of novel biomarkers of disease and potential targets for personalized therapies in cancer.
Collapse
Affiliation(s)
- Yarely M. Salinas-Vera
- Departamento de Bioquímica, CINVESTAV-IPN, Ciudad de México 07360, Mexico; (Y.M.S.-V.); (J.V.)
| | - Jesús Valdés
- Departamento de Bioquímica, CINVESTAV-IPN, Ciudad de México 07360, Mexico; (Y.M.S.-V.); (J.V.)
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico; (A.H.-M.); (M.C.-V.)
| | - Mireya Cisneros-Villanueva
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico; (A.H.-M.); (M.C.-V.)
| | - Laurence A. Marchat
- Programa en Biomedicina Molecular y Red de Biotecnología, Instituto Politécnico Nacional, Ciudad de México 07320, Mexico;
| | - Stephanie I. Nuñez-Olvera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Rosalio Ramos-Payán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán 80030, Mexico;
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico;
| | - Lourdes A. Arriaga-Pizano
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Medico Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico;
| | - Jessica L. Prieto-Chávez
- Laboratorio de Citometria de Flujo, Centro de Instrumentos, Coordinación de Investigación en Salud, Hospital de Especialidades del Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico;
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México 03100, Mexico
| |
Collapse
|
21
|
Burger GA, van de Water B, Le Dévédec SE, Beltman JB. Density-Dependent Migration Characteristics of Cancer Cells Driven by Pseudopod Interaction. Front Cell Dev Biol 2022; 10:854721. [PMID: 35547818 PMCID: PMC9084912 DOI: 10.3389/fcell.2022.854721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
The ability of cancer cells to invade neighboring tissue from primary tumors is an important determinant of metastatic behavior. Quantification of cell migration characteristics such as migration speed and persistence helps to understand the requirements for such invasiveness. One factor that may influence invasion is how local tumor cell density shapes cell migration characteristics, which we here investigate with a combined experimental and computational modeling approach. First, we generated and analyzed time-lapse imaging data on two aggressive Triple-Negative Breast Cancer (TNBC) cell lines, HCC38 and Hs578T, during 2D migration assays at various cell densities. HCC38 cells exhibited a counter-intuitive increase in speed and persistence with increasing density, whereas Hs578T did not exhibit such an increase. Moreover, HCC38 cells exhibited strong cluster formation with active pseudopod-driven migration, especially at low densities, whereas Hs578T cells maintained a dispersed positioning. In order to obtain a mechanistic understanding of the density-dependent cell migration characteristics and cluster formation, we developed realistic spatial simulations using a Cellular Potts Model (CPM) with an explicit description of pseudopod dynamics. Model analysis demonstrated that pseudopods exerting a pulling force on the cell and interacting via increased adhesion at pseudopod tips could explain the experimentally observed increase in speed and persistence with increasing density in HCC38 cells. Thus, the density-dependent migratory behavior could be an emergent property of single-cell characteristics without the need for additional mechanisms. This implies that pseudopod dynamics and interaction may play a role in the aggressive nature of cancers through mediating dispersal.
Collapse
Affiliation(s)
| | | | | | - Joost B. Beltman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
22
|
Han Y, Liu C, Xu H, Cao Y. Engineering reversible hydrogels for
3D
cell culture and release using diselenide catalyzed fast disulfide formation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yueying Han
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics Nanjing University Nanjing Jiangsu 210093 China
- Jinan Microecological Biomedicine Shandong Laboratory Jinan Shandong 250021 China
| | - Cheng Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics Nanjing University Nanjing Jiangsu 210093 China
- Jinan Microecological Biomedicine Shandong Laboratory Jinan Shandong 250021 China
| |
Collapse
|
23
|
Özkan H, Öztürk DG, Korkmaz G. Transcriptional Factor Repertoire of Breast Cancer in 3D Cell Culture Models. Cancers (Basel) 2022; 14:cancers14041023. [PMID: 35205770 PMCID: PMC8870600 DOI: 10.3390/cancers14041023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Knowledge of the transcriptional regulation of breast cancer tumorigenesis is largely based on studies performed in two-dimensional (2D) monolayer culture models, which lack tissue architecture and therefore fail to represent tumor heterogeneity. However, three-dimensional (3D) cell culture models are better at mimicking in vivo tumor microenvironment, which is critical in regulating cellular behavior. Hence, 3D cell culture models hold great promise for translational breast cancer research. Abstract Intratumor heterogeneity of breast cancer is driven by extrinsic factors from the tumor microenvironment (TME) as well as tumor cell–intrinsic parameters including genetic, epigenetic, and transcriptomic traits. The extracellular matrix (ECM), a major structural component of the TME, impacts every stage of tumorigenesis by providing necessary biochemical and biomechanical cues that are major regulators of cell shape/architecture, stiffness, cell proliferation, survival, invasion, and migration. Moreover, ECM and tissue architecture have a profound impact on chromatin structure, thereby altering gene expression. Considering the significant contribution of ECM to cellular behavior, a large body of work underlined that traditional two-dimensional (2D) cultures depriving cell–cell and cell–ECM interactions as well as spatial cellular distribution and organization of solid tumors fail to recapitulate in vivo properties of tumor cells residing in the complex TME. Thus, three-dimensional (3D) culture models are increasingly employed in cancer research, as these culture systems better mimic the physiological microenvironment and shape the cellular responses according to the microenvironmental cues that will regulate critical cell functions such as cell shape/architecture, survival, proliferation, differentiation, and drug response as well as gene expression. Therefore, 3D cell culture models that better resemble the patient transcriptome are critical in defining physiologically relevant transcriptional changes. This review will present the transcriptional factor (TF) repertoire of breast cancer in 3D culture models in the context of mammary tissue architecture, epithelial-to-mesenchymal transition and metastasis, cell death mechanisms, cancer therapy resistance and differential drug response, and stemness and will discuss the impact of culture dimensionality on breast cancer research.
Collapse
Affiliation(s)
- Hande Özkan
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Deniz Gülfem Öztürk
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
- Correspondence: (D.G.Ö.); (G.K.)
| | - Gozde Korkmaz
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
- Correspondence: (D.G.Ö.); (G.K.)
| |
Collapse
|
24
|
P3H4 Overexpression Serves as a Prognostic Factor in Lung Adenocarcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9971353. [PMID: 34257701 PMCID: PMC8249155 DOI: 10.1155/2021/9971353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
Background The present study is aimed at evaluating the functional and clinical values of P3H4 in lung adenocarcinoma. Moreover, we also investigated the downstream pathways that P3H4 might participate in. Methods The differential expression analysis was used to identify genes differentially expressed in lung adenocarcinoma tissues as compared with normal tissues. Survival analysis was used to test the association between P3H4 and survival time. Gene set enrichment analysis was conducted to explore the downstream pathways. CCK8 and transwell were employed to examine the impact of P3H4 on cell phenotypes. Results P3H4 was highly upregulated in LUAD tissues at both RNA and protein levels. Moreover, the LUAD patients, who had high expression of P3H4, were also observed to have shorter disease-free survival and overall survival. These results demonstrated that P3H4 could be used as a prognostic biomarker for LUAD. Moreover, we also found that it was the copy number alterations (CNAs), not DNA methylation, that regulated the RNA expression of P3H4, indicating that its upregulation might be partially resulted from the CNAs. Furthermore, functional experiments revealed that the A549 and H1299 cells with siRNA treatment (siP3H4) exhibited significantly decreased cell proliferation after 24 hours, migratory ability, and invasiveness. Functionally, the upregulated proteins in the P3H4 high expression group were mainly enriched in tumor microenvironment-related pathways such as phagosome, focal adhesion, and ECM-receptor interaction and cancer-related pathways such as bladder cancer pathway, proteoglycans in cancer, and hippo signaling pathway. Conclusion The present study systematically evaluated the functional and clinical values of P3H4 in LUAD, and explored the related biological pathways. P3H4 might promote LUAD progression through regulating tumor microenvironment-related pathways.
Collapse
|