1
|
Hu W, Feng H, Liu Y, Xu X, Zhou P, Sun Z, Tao X, Yang J, Wu J, Qu C, Liu Z. Recent advances in immunotherapy targeting CETP proteins for atherosclerosis prevention. Hum Vaccin Immunother 2025; 21:2462466. [PMID: 39907207 PMCID: PMC11801355 DOI: 10.1080/21645515.2025.2462466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025] Open
Abstract
Cholesteryl ester transfer protein (CETP) plays a key role in lipoprotein metabolism, and its activity has been linked to the risk of atherosclerosis (AS). CETP inhibitors, such as obicetrapib, represent a novel approach in immunotherapy to reduce the risk of atherosclerotic cardiovascular disease (ASCVD) by targeting lipid metabolism. In addition, CETP vaccines are being explored as a novel strategy for the prevention and treatment of ASCVD by inducing the body to produce antibodies against CETP, which is expected to reduce CETP activity, thereby increasing high-density lipoproteins (HDL) levels. This paper provides a comprehensive overview of the structure of CETP, the mechanisms of lipid transfer and the progress of immunotherapy in the last decade, which provides possible ideas for future development of novel drugs and optimization of immunization strategies.
Collapse
Affiliation(s)
- Wenhui Hu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Han Feng
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Ying Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Xiaoshuang Xu
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Ping Zhou
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Zhonghua Sun
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Xinyu Tao
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jiahui Yang
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jun Wu
- Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Qu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
2
|
Zhao M, Qiao K, Zhang L, Liang L, Chen S, Chen L, Zhang Y. Research Progress on Anti-Hyperlipidemia Peptides Derived from Foods. Nutrients 2025; 17:1181. [PMID: 40218939 PMCID: PMC11990363 DOI: 10.3390/nu17071181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Hyperlipidemia is a metabolic disorder in which cholesterol (TC) and triglycerides (TGs) in the blood exceed the normal physiological levels. The incidence of the condition has continued to rise in recent years, posing a serious threat to public health. Its clinical treatment mainly relies on drug interventions, such as statins, fibrate, and niacin. Although these drugs have shown some efficacy in the treatment of hyperlipidemia, their adverse effects cannot be ignored. In contrast, naturally derived peptides have gradually become potential candidates for the prevention and treatment of hyperlipidemia due to their strong anti-hyperlipidemic activity and safety; examples of such peptides include those from dairy products, grains, legumes, and seafood. This review systematically summarizes peptides with anti-hyperlipidemic activity and analyzes their mechanisms of action, providing a theoretical basis for further research. In addition, we also outline some challenges facing the application of peptides, hoping to prevent hyperlipidemia and reduce its incidence by encouraging the consumption of foods rich in anti-hyperlipidemia peptides.
Collapse
Affiliation(s)
- Mingxia Zhao
- Food Laboratory of Zhongyuan·Beijing Technology and Business University, Luohe 462300, China
- Food Laboratory of Zhongyuan, Luohe Food Engineering Vocational University, Luohe 462000, China
| | - Kaina Qiao
- Food Laboratory of Zhongyuan·Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Lili Zhang
- Food Laboratory of Zhongyuan·Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan·Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Shuxing Chen
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Lishui Chen
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan·Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
Shekarchizadeh Esfahani M, Siavash M, Sajad RS, Ramezani Ahmadi A, Karimifar M, Akbari M, Shekarchizadeh M. Immunotherapy and vaccine-based approaches for atherosclerosis prevention: a systematic review study. BMC Cardiovasc Disord 2025; 25:201. [PMID: 40114074 PMCID: PMC11924661 DOI: 10.1186/s12872-025-04634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
INTRODUCTION Cardiovascular disease is a major global health issue, and atherosclerosis is a leading cause of cardiovascular conditions. Traditional approaches for managing atherosclerosis have limitations, creating a need for alternative preventive strategies such as vaccines. METHODS The authors conducted a systematic review following Cochrane Handbook and PRISMA guidelines. They searched multiple databases for studies on preventive vaccines against atherosclerosis, including clinical trials and experimental models. The search period was from 1950 to August 2024. RESULTS After screening and evaluation, 47 studies were included in the systematic review. The studies investigated various vaccine candidates and immunization strategies. Vaccination goals involve targeting proteins that are found in higher quantities in individuals with atherosclerosis, such as oxidized low-density lipoprotein (LDL), apolipoprotein B-100, proprotein convertase subtilisin/kexin type-9 serine protease (PCSK9), cholesteryl ester transfer protein (CETP), and heat shock proteins HSP60 and HSP65. The review highlights the potential of vaccines in preventing atherosclerosis by targeting specific antigens, modulating lipoprotein metabolism, and enhancing immune responses. Promising approaches included PCSK9 inhibitors, virus-like particle (VLP)-based vaccines, and gene-editing techniques. Monoclonal antibodies like alirocumab, designed to inhibit PCSK9, were also effective in reducing LDL cholesterol levels. CONCLUSION This systematic review provides insights into the progress, challenges, and future directions of preventive vaccine research against atherosclerosis. The findings support the development of effective vaccines to complement existing preventive strategies and reduce the global burden of cardiovascular diseases. CLINICAL TRIAL NUMBER It is not applicable.
Collapse
Affiliation(s)
| | - Mansour Siavash
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Raheleh Sadat Sajad
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mozhgan Karimifar
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Akbari
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masood Shekarchizadeh
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Zhang L, Al-Ammari A, Zhu D, Zhang H, Zhou P, Zhi X, Ding W, Li X, Yu Q, Gai Y, Ma X, Chen C, Zuo C, Zhang J, Zhu W, Sun D. A nanovaccine for immune activation and prophylactic protection of atherosclerosis in mouse models. Nat Commun 2025; 16:2111. [PMID: 40025093 PMCID: PMC11873251 DOI: 10.1038/s41467-025-57467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Vaccines offer prophylactic treatments against atherosclerosis by eliciting effector T cell and antibody responses, which require effective delivery of antigen and adjuvant to activate dendritic cells (DC). Here we show that individual conjugation of antigen p210 and adjuvant CpG oligodeoxynucleotides onto superparamagnetic iron oxide nanoparticles formulates a nanovaccine cocktail that activates DCs for antigen cross-presentation and induction of co-stimulatory signals, cytokines and CD8+ effector/effector memory T cell responses. This nanovaccine modulates the DCs in the draining lymph nodes, activates both CD4+ and CD8+ T cells, elicits memory responses, and induces both anti-p210 IgM and IgG antibodies to suppress atherosclerosis. Lastly, three intradermal vaccinations of this nanovaccine mitigate the atherosclerosis development in the ApoE-/- mice. Our nanovaccine design and preclinical data thus presents a potential candidate for prophylactic treatment for atherosclerosis.
Collapse
Affiliation(s)
- Lei Zhang
- Chemicobiology and Functional Materials Institute, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Abdulrahman Al-Ammari
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, PR China
| | - Danxuan Zhu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Hongsong Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Peng Zhou
- Chemicobiology and Functional Materials Institute, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Xu Zhi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, PR China
| | - Weixiao Ding
- Chemicobiology and Functional Materials Institute, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Xinmeng Li
- Chemicobiology and Functional Materials Institute, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Qingqing Yu
- Chemicobiology and Functional Materials Institute, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Yuwen Gai
- Chemicobiology and Functional Materials Institute, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Xiaoling Ma
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Chuntao Chen
- Chemicobiology and Functional Materials Institute, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Chao Zuo
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Jiaan Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China.
| | - Wanying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, PR China.
| | - Dongping Sun
- Chemicobiology and Functional Materials Institute, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, PR China.
| |
Collapse
|
5
|
Xu X, Silveira A, Lundman P, Rahbar A, Söderberg-Nauclér C. Enhanced levels of IL-6 and PAI-1 and decreased levels of MMP-3 in cytomegalovirus seropositive patients with prior myocardial infarction. IJC HEART & VASCULATURE 2025; 56:101570. [PMID: 39691830 PMCID: PMC11650320 DOI: 10.1016/j.ijcha.2024.101570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024]
Abstract
Background Efforts to understand atherosclerosis, a major cause of ischemic heart disease, have linked several lifestyle factors to increased risk for developing cardiovascular disease. Some studies suggest that cytomegalovirus (CMV), a widely prevalent herpesvirus, is reactivated in atherosclerotic plaques and associated with higher cardiovascular mortality risk. We aimed to explore whether CMV seropositivity and CMV-IgG antibody levels correlate with relevant biomarkers in a cohort of patients with myocardial infarction (MI) and matched controls. Methods and results We analyzed a dataset from 324 survivors of MI treated in Stockholm between 1996 and 2001. Blood samples collected three months after MI were used to measure protective Apo B100 autoantibodies, metabolic, and inflammatory biomarkers. CMV serology was performed on stored serum samples. Correlation analyses were conducted between biomarkers and CMV serostatus in 324 patients and age- and sex-matched controls. While CMV seroprevalence was equal, the CMV-IgG levels were higher in controls. Among various factors examined, CMV seropositive MI patients had elevated levels of plasminogen activator inhibitor-1 (PAI-1) and interleukin-6, along with lower levels of MMP-3, than CMV seronegative MI patients. CMV-IgG levels correlated positively with PAI-1 levels in patients. Although CMV seropositivity was associated with increased proinsulin levels, there was no correlation with diabetes diagnosis. Conclusions Our findings suggest an enhanced inflammatory and prothrombotic state in CMV seropositive patients after MI. Notably, patients had lower levels of CMV IgG than controls.
Collapse
Affiliation(s)
- Xinling Xu
- Department of Medicine Solna, Unit Microbial Pathogenesis, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Angela Silveira
- Department of Medicine Solna, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pia Lundman
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institute, Stockholm, Sweden
| | - Afsar Rahbar
- Department of Medicine Solna, Unit Microbial Pathogenesis, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Söderberg-Nauclér
- Department of Medicine Solna, Unit Microbial Pathogenesis, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Biosciences, InFLAMES Research Flagship Center, MediCity, University of Turku, Finland
| |
Collapse
|
6
|
Afzal S, Abdul Manap AS, Attiq A, Albokhadaim I, Kandeel M, Alhojaily SM. From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front Pharmacol 2023; 14:1269581. [PMID: 37927596 PMCID: PMC10622810 DOI: 10.3389/fphar.2023.1269581] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Increased production and buildup of reactive oxygen species (ROS) can lead to various health issues, including metabolic problems, cancers, and neurological conditions. Our bodies counteract ROS with biological antioxidants such as SOD, CAT, and GPx, which help prevent cellular damage. However, if there is an imbalance between ROS and these antioxidants, it can result in oxidative stress. This can cause genetic and epigenetic changes at the molecular level. This review delves into how ROS plays a role in disorders caused by oxidative stress. We also look at animal models used for researching ROS pathways. This study offers insights into the mechanism, pathology, epigenetic changes, and animal models to assist in drug development and disease understanding.
Collapse
Affiliation(s)
- Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Aimi Syamima Abdul Manap
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Ibrahim Albokhadaim
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sameer M. Alhojaily
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
7
|
Lecis D, Massaro G, Benedetto D, Di Luozzo M, Russo G, Mauriello A, Federici M, Sangiorgi GM. Immunomodulation Therapies for Atherosclerosis: The Past, the Present, and the Future. Int J Mol Sci 2023; 24:10979. [PMID: 37446157 PMCID: PMC10342012 DOI: 10.3390/ijms241310979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the most common cause of morbidity and death worldwide. Recent studies have demonstrated that this chronic inflammatory disease of the arterial wall can be controlled through the modulation of immune system activity. Many patients with cardiovascular disease remain at elevated risk of recurrent events despite receiving current, state-of-the-art preventive medical treatment. Much of this residual risk is attributed to inflammation. Therefore, finding new treatment strategies for this category of patients became of common interest. This review will discuss the experimental and clinical data supporting the possibility of developing immune-based therapies for lowering cardiovascular risk, explicitly focusing on vaccination strategies.
Collapse
Affiliation(s)
- Dalgisio Lecis
- Division of Cardiology, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy; (G.M.); (D.B.); (M.D.L.); (G.R.)
| | - Gianluca Massaro
- Division of Cardiology, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy; (G.M.); (D.B.); (M.D.L.); (G.R.)
| | - Daniela Benedetto
- Division of Cardiology, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy; (G.M.); (D.B.); (M.D.L.); (G.R.)
| | - Marco Di Luozzo
- Division of Cardiology, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy; (G.M.); (D.B.); (M.D.L.); (G.R.)
| | - Giulio Russo
- Division of Cardiology, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy; (G.M.); (D.B.); (M.D.L.); (G.R.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, University “Tor Vergata”, 00133 Rome, Italy;
| | - Massimo Federici
- Department of Systemic Medicine, University “Tor Vergata”, 00133 Rome, Italy;
| | - Giuseppe Massimo Sangiorgi
- Division of Cardiology, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy; (G.M.); (D.B.); (M.D.L.); (G.R.)
- Department of Biomedicine and Prevention, “Tor Vergata” University of Rome, 00133 Rome, Italy
| |
Collapse
|
8
|
Meng Q, Liu H, Liu J, Pang Y, Liu Q. Advances in immunotherapy modalities for atherosclerosis. Front Pharmacol 2023; 13:1079185. [PMID: 36703734 PMCID: PMC9871313 DOI: 10.3389/fphar.2022.1079185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. Atherosclerosis is the pathological basis of atherosclerotic cardiovascular disease (ASCVD). Atherosclerosis is now understood to be a long-term immune-mediated inflammatory condition brought on by a complicated chain of factors, including endothelial dysfunction, lipid deposits in the artery wall, and monocyte-derived macrophage infiltration, in which both innate immunity and adaptive immunity play an indispensable role. Recent studies have shown that atherosclerosis can be alleviated by inducing a protective immune response through certain auto-antigens or exogenous antigens. Some clinical trials have also demonstrated that atherosclerotic is associated with the presence of immune cells and immune factors in the body. Therefore, immunotherapy is expected to be a new preventive and curative measure for atherosclerosis. In this review, we provide a summary overview of recent progress in the research of immune mechanisms of atherosclerosis and targeted therapeutic pathways.
Collapse
Affiliation(s)
- Qingwen Meng
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou, China,Deparment of Cardiovascular, The First Affiliated Hospital of Hainan Medical University, Haikou, China,Hainan Provincial Key Laboratory of Tropical Brain Research and Transformation, Hainan Medical University, Haikou, China
| | - Huajiang Liu
- Deparment of Cardiovascular, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jinteng Liu
- School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Yangyang Pang
- School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Qibing Liu
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou, China,School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China,*Correspondence: Qibing Liu,
| |
Collapse
|
9
|
Miceli G, Basso MG, Rizzo G, Pintus C, Tuttolomondo A. The Role of the Coagulation System in Peripheral Arterial Disease: Interactions with the Arterial Wall and Its Vascular Microenvironment and Implications for Rational Therapies. Int J Mol Sci 2022; 23:14914. [PMID: 36499242 PMCID: PMC9739112 DOI: 10.3390/ijms232314914] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Peripheral artery disease (PAD) is a clinical manifestation of atherosclerotic disease with a large-scale impact on the economy and global health. Despite the role played by platelets in the process of atherogenesis being well recognized, evidence has been increasing on the contribution of the coagulation system to the atherosclerosis formation and PAD development, with important repercussions for the therapeutic approach. Histopathological analysis and some clinical studies conducted on atherosclerotic plaques testify to the existence of different types of plaques. Likely, the role of coagulation in each specific type of plaque can be an important determinant in the histopathological composition of atherosclerosis and in its future stability. In this review, we analyze the molecular contribution of inflammation and the coagulation system on PAD pathogenesis, focusing on molecular similarities and differences between atherogenesis in PAD and coronary artery disease (CAD) and discussing the possible implications for current therapeutic strategies and future perspectives accounting for molecular inflammatory and coagulation targets. Understanding the role of cross-talking between coagulation and inflammation in atherosclerosis genesis and progression could help in choosing the right patients for future dual pathway inhibition strategies, where an antiplatelet agent is combined with an anticoagulant, whose role, despite pathophysiological premises and trials' results, is still under debate.
Collapse
Affiliation(s)
- Giuseppe Miceli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico “P. Giaccone”, 90100 Palermo, Italy
| | - Maria Grazia Basso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico “P. Giaccone”, 90100 Palermo, Italy
| | - Giuliana Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico “P. Giaccone”, 90100 Palermo, Italy
| | - Chiara Pintus
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico “P. Giaccone”, 90100 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico “P. Giaccone”, 90100 Palermo, Italy
| |
Collapse
|
10
|
Caoili SEC. Comprehending B-Cell Epitope Prediction to Develop Vaccines and Immunodiagnostics. Front Immunol 2022; 13:908459. [PMID: 35874755 PMCID: PMC9300992 DOI: 10.3389/fimmu.2022.908459] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
|
11
|
Sveen KA, Smith G, Björkbacka H, Orho-Melander M, Engström G, Gonçalves I, Melander O, Nilsson J, Bengtsson E. High levels of autoantibodies against apoB100 p210 are associated with lower incidence of atrial fibrillation in women. J Intern Med 2022; 291:207-217. [PMID: 34532909 DOI: 10.1111/joim.13393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Atrial fibrillation (AF) is associated with inflammation, both systemically and in the atrial tissue. Oxidized low-density lipoprotein (LDL) is increased in patients with AF and is suggested to be one of the molecules that drives inflammation. Autoantibodies against oxidized LDL and apolipoprotein B100, the protein component of LDL, are linked to atherosclerotic disease. However, whether these autoantibodies are associated with occurrence of AF is not known. We investigated autoantibodies against oxidized apolipoprotein B100 peptides and incidence of AF in a large population-based cohort. METHODS IgM and IgG against native and aldehyde-modified apoB100 peptides 210 (p210) and 45 were analyzed by enzyme-linked immunosorbent assay (ELISA) in 5169 individuals from the Malmö Diet and Cancer cohort. RESULTS Seven hundred sixty-nine incident AF cases were recorded during a follow-up of 21.3 years. Individuals with high levels of IgM against native p210 at baseline had a lower risk of developing AF; however, the association did not remain after adjustment for age and sex. Women had higher levels of IgM against native p210 than men (0.70 ± 0.22 AU vs. 0.63 ± 0.21 AU, p < 0.001). The association of IgM against native p210 and AF was significantly different between sexes (p for interaction = 0.024), where females with high IgM against p210 had a lower risk for incidence of AF (hazard ratio [95% confidence interval] 4th versus 1st quartile: 0.67 [0.49-0.91]; p = 0.01) after adjusting for risk factors and comorbidities. CONCLUSION These findings support an association of humoral autoimmunity with AF.
Collapse
Affiliation(s)
- Kari Anne Sveen
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden.,The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Gothenburg University and the Department of Cardiology, Institute of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.,Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund University, Lund, Sweden
| | - Harry Björkbacka
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | | | - Gunnar Engström
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Department of Cardiology, Skåne University Hospital, Lund, Sweden
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Department of Emergency and Internal Medicine, Skåne University Hospital, Lund, Sweden
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Department of Emergency and Internal Medicine, Skåne University Hospital, Lund, Sweden
| | - Eva Bengtsson
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall, characterized by the formation of plaques containing lipid, connective tissue and immune cells in the intima of large and medium-sized arteries. Over the past three decades, a substantial reduction in cardiovascular mortality has been achieved largely through LDL-cholesterol-lowering regimes and therapies targeting other traditional risk factors for cardiovascular disease, such as hypertension, smoking, diabetes mellitus and obesity. However, the overall benefits of targeting these risk factors have stagnated, and a huge global burden of cardiovascular disease remains. The indispensable role of immunological components in the establishment and chronicity of atherosclerosis has come to the forefront as a clinical target, with proof-of-principle studies demonstrating the benefit and challenges of targeting inflammation and the immune system in cardiovascular disease. In this Review, we provide an overview of the role of the immune system in atherosclerosis by discussing findings from preclinical research and clinical trials. We also identify important challenges that need to be addressed to advance the field and for successful clinical translation, including patient selection, identification of responders and non-responders to immunotherapies, implementation of patient immunophenotyping and potential surrogate end points for vascular inflammation. Finally, we provide strategic guidance for the translation of novel targets of immunotherapy into improvements in patient outcomes. In this Review, the authors provide an overview of the immune cells involved in atherosclerosis, discuss preclinical research and published and ongoing clinical trials assessing the therapeutic potential of targeting the immune system in atherosclerosis, highlight emerging therapeutic targets from preclinical studies and identify challenges for successful clinical translation. Inflammation is an important component of the pathophysiology of cardiovascular disease; an imbalance between pro-inflammatory and anti-inflammatory processes drives chronic inflammation and the formation of atherosclerotic plaques in the vessel wall. Clinical trials assessing canakinumab and colchicine therapies in atherosclerotic cardiovascular disease have provided proof-of-principle of the benefits associated with therapeutic targeting of the immune system in atherosclerosis. The immunosuppressive adverse effects associated with the systemic use of anti-inflammatory drugs can be minimized through targeted delivery of anti-inflammatory drugs to the atherosclerotic plaque, defining the window of opportunity for treatment and identifying more specific targets for cardiovascular inflammation. Implementing immunophenotyping in clinical trials in patients with atherosclerotic cardiovascular disease will allow the identification of immune signatures and the selection of patients with the highest probability of deriving benefit from a specific therapy. Clinical stratification via novel risk factors and discovery of new surrogate markers of vascular inflammation are crucial for identifying new immunotherapeutic targets and their successful translation into the clinic.
Collapse
|
13
|
Hoebinger C, Rajcic D, Hendrikx T. Oxidized Lipids: Common Immunogenic Drivers of Non-Alcoholic Fatty Liver Disease and Atherosclerosis. Front Cardiovasc Med 2022; 8:824481. [PMID: 35083304 PMCID: PMC8784685 DOI: 10.3389/fcvm.2021.824481] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis to inflammatory steatohepatitis (NASH) and cirrhosis, continues to rise, making it one of the major chronic liver diseases and indications for liver transplantation worldwide. The pathological processes underlying NAFLD not only affect the liver but are also likely to have systemic effects. In fact, growing evidence indicates that patients with NAFLD are at increased risk for developing atherosclerosis. Indeed, cardiovascular complications are the leading cause of mortality in NAFLD patients. Here, we aim to address common pathophysiological molecular pathways involved in chronic fatty liver disease and atherosclerosis. In particular, we focus on the role of oxidized lipids and the formation of oxidation-specific epitopes, which are important targets of host immunity. Acting as metabolic danger signals, they drive pro-inflammatory processes and thus contribute to disease progression. Finally, we summarize encouraging studies indicating that oxidized lipids are promising immunological targets to improve intervention strategies for NAFLD and potentially limit the risk of developing atherosclerosis.
Collapse
Affiliation(s)
- Constanze Hoebinger
- Department of Laboratory Medicine, Klinisches Institut für Labormedizin (KILM), Medical University Vienna, Vienna, Austria
| | - Dragana Rajcic
- Department of Laboratory Medicine, Klinisches Institut für Labormedizin (KILM), Medical University Vienna, Vienna, Austria
| | - Tim Hendrikx
- Department of Laboratory Medicine, Klinisches Institut für Labormedizin (KILM), Medical University Vienna, Vienna, Austria.,Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
14
|
Promoting athero-protective immunity by vaccination with low density lipoprotein-derived antigens. Atherosclerosis 2021; 335:89-97. [PMID: 34462127 DOI: 10.1016/j.atherosclerosis.2021.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022]
Abstract
Immune responses activated by LDL particles that have been trapped and oxidized in the arterial wall play an important role in atherosclerosis. Some of these immune responses are protective by facilitating the removal of pro-inflammatory and toxic lipid species formed as result of LDL oxidation. However, should these protective immune responses be insufficient, other more potent pro-inflammatory immune responses instead contributing to disease progression will gradually become dominant. The importance of the balance between protective and pathogenic immunity is particularly apparent when it comes to the adaptive immune system where pro-inflammatory T helper 1 (Th1) type T cells aggravate atherosclerosis, while regulatory T cells (Tregs) have an opposing role. As oxidized LDL is a key autoantigen in atherosclerosis, it has become an interesting possibility that immune-modulatory therapy that favors the activity of apolipoprotein B peptide-specific Tregs could be developed into a novel treatment strategy for prevention/stabilization of atherosclerosis and ischemic cardiovascular events. Indeed, several such oxidized LDL tolerance vaccines have shown promising results in animal models of atherosclerosis. This review will discuss the experimental background for development of atherosclerosis vaccines based on LDL-derived antigens as well as the challenges involved in translating these findings into clinical application.
Collapse
|
15
|
Deroissart J, Porsch F, Koller T, Binder CJ. Anti-inflammatory and Immunomodulatory Therapies in Atherosclerosis. Handb Exp Pharmacol 2021; 270:359-404. [PMID: 34251531 DOI: 10.1007/164_2021_505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypercholesterolemia is a major risk factor in atherosclerosis development and lipid-lowering drugs (i.e., statins) remain the treatment of choice. Despite effective reduction of LDL cholesterol in patients, a residual cardiovascular risk persists in some individuals, highlighting the need for further therapeutic intervention. Recently, the CANTOS trial paved the way toward the development of specific therapies targeting inflammation, a key feature in atherosclerosis progression. The pre-existence of multiple drugs modulating both innate and adaptive immune responses has significantly accelerated the number of translational studies applying these drugs to atherosclerosis. Additional preclinical research has led to the discovery of new therapeutic targets, offering promising perspectives for the treatment and prevention of atherosclerosis. Currently, both drugs with selective targeting and broad unspecific anti-inflammatory effects have been tested. In this chapter, we aim to give an overview of current advances in immunomodulatory treatment approaches for atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Justine Deroissart
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Koller
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
Ji E, Lee S. Antibody-Based Therapeutics for Atherosclerosis and Cardiovascular Diseases. Int J Mol Sci 2021; 22:ijms22115770. [PMID: 34071276 PMCID: PMC8199089 DOI: 10.3390/ijms22115770] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide, and its prevalence is increasing due to the aging of societies. Atherosclerosis, a type of chronic inflammatory disease that occurs in arteries, is considered to be the main cause of cardiovascular diseases such as ischemic heart disease or stroke. In addition, the inflammatory response caused by atherosclerosis confers a significant effect on chronic inflammatory diseases such as psoriasis and rheumatic arthritis. Here, we review the mechanism of action of the main causes of atherosclerosis such as plasma LDL level and inflammation; furthermore, we review the recent findings on the preclinical and clinical effects of antibodies that reduce the LDL level and those that neutralize the cytokines involved in inflammation. The apolipoprotein B autoantibody and anti-PCSK9 antibody reduced the level of LDL and plaques in animal studies, but failed to significantly reduce carotid inflammation plaques in clinical trials. The monoclonal antibodies against PCSK9 (alirocumab, evolocumab), which are used as a treatment for hyperlipidemia, lowered cholesterol levels and the incidence of cardiovascular diseases. Antibodies that neutralize inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-17, and IL-12/23) have shown promising but contradictory results and thus warrant further research.
Collapse
Affiliation(s)
- Eunhye Ji
- Division of Cardiology, Heart Institute, Asan Medical Center, Seoul 05505, Korea;
| | - Sahmin Lee
- Division of Cardiology, Heart Institute, Asan Medical Center, Seoul 05505, Korea;
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul 05505, Korea
- Correspondence:
| |
Collapse
|