1
|
Kaplan AA, Öztürk G, Bay S, Keskin İ. Investigating Neotenic and Metamorphic Axolotl Brain Complexity: A Stereological and Immunohistochemical Perspective. J Comp Neurol 2025; 533:e70031. [PMID: 40109227 PMCID: PMC11923732 DOI: 10.1002/cne.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/31/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
The ability of certain tetrapods, such as amphibians, to regenerate complex structures, such as organs or limbs, is well-established, though this capacity varies significantly across species, with humans exhibiting limited regenerative potential. Ependymoglia cells in the ventricular region of the brain are known to exhibit proliferative properties during homeostasis and damage and to perform stem cell functions. This study investigated changes occurring in neurons and glia in the central nervous system following metamorphosis in axolotls. Morphological alterations in brain tissue, newly formed neurons, and cellular organizations in different brain regions were assessed using stereological and immunohistochemical methods, as well as light and electron microscopy. Interestingly, we observe no statistically significant difference in total neuron numbers in the telencephalon region between neotenic and metamorphic axolotls. However, the proliferation index and the numbers of cells expressing NeuN were significantly higher in metamorphic axolotls. Furthermore, structural changes in neuronal nuclei and myelin sheath organization were determined at the light and electron microscopic levels post-metamorphosis. Ultrastructural analyses revealed a change in chromatin organization from euchromatic to heterochromatic in neurons after metamorphosis, and morphological changes were also demonstrated in myelinated nerve fibers in the telencephalon. Additionally, mucopolysaccharide-containing secretory sacs were also identified on the apical surfaces of a subgroup of ependymoglia cells located in the lateral ventricle wall. Overall, this study sheds useful light on the intricate changes occurring in the central nervous system during metamorphosis in axolotls and provides valuable insights into the mechanisms underlying these processes.
Collapse
Affiliation(s)
- Arife Ahsen Kaplan
- Department of Histology and Embryology, The School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Regenerative and Restorative Medicine Research Center (REMER), Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Turkey
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center (REMER), Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Turkey
- Department of Physiology, School of Medicine, Bolu Abant İzzet Baysal Üniversitesi, Bolu, Turkey
| | - Sadık Bay
- Regenerative and Restorative Medicine Research Center (REMER), Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Turkey
| | - İlknur Keskin
- Department of Histology and Embryology, The School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Regenerative and Restorative Medicine Research Center (REMER), Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
2
|
Rzhepakovsky I, Piskov S, Avanesyan S, Shakhbanov M, Sizonenko M, Timchenko L, Nagdalian A, Shariati MA, Al-Farga A, Aqlan F, Likhovid A. Expanding understanding of chick embryo's nervous system development at HH22-HH41 embryonic stages using X-ray microcomputed tomography. PLoS One 2024; 19:e0310426. [PMID: 39546468 PMCID: PMC11567531 DOI: 10.1371/journal.pone.0310426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/31/2024] [Indexed: 11/17/2024] Open
Abstract
Assessing the embryotoxicity and teratogenicity of various substances and processes is crucial due to their complexity and resource intensity. The chicken embryo (CE) serves an ideal model for simulating the first months of mammalian embryonic development. This makes the CE a reliable model for testing teratogenic effects, particularly in relation to the nervous system (NS), which experiences developmental abnormalities second in frequency only to cardiovascular teratogenic disorders. Microcomputed tomography (μCT) is a promising method for studying these processes. The advantages of μCT include relatively high research speed, diagnostic accuracy, high resolution and the ability to visualize the entire internal 3D structure of an object while preserving for other types of research. At the same time, there are practically no available databases of normative μCT data, both qualitative and quantitative, which would act as a starting point for screening detection of abnormalities in the development of the NS. In this study, we present a simple method for obtaining very detailed quantitative sets of 2D and 3D μCT data of NS structures of the CE (Gallus Gallus domesticus) at HH22-HH41 embryonic stages with contrasting by 1% phosphotungstic acid. The results of μCT demonstrate the exact boundaries, high general and differentiated contrast of the main and specific structures of the NS of CE, which are quantitatively and qualitatively similar to results of histological analysis. Calculations of the X-ray density and volume of the main structures of the NS at constant exponential growth are presented. In addition to the increase in linear dimensions, significant changes in the structures of various parts of the brain were identified and visualized during the CE development at HH22 to HH41 embryonic stages. The data presented establish the first methodology for obtaining normative data, including subtle localized differences in the NS in CE embryogenesis. The data obtained open up new opportunities for modern embryology, teratology, pharmacology and toxicology.
Collapse
Affiliation(s)
| | - Sergey Piskov
- North-Caucasus Federal University, Stavropol, Russia
| | | | | | | | | | | | - Mohammad Ali Shariati
- Semey Branch of Kazakh Research Institute of Processingand Food Industry, Almaty, Kazakhstan
| | - Ammar Al-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Faisal Aqlan
- Department of Chemistry, College of Sciences, Ibb University, Ibb, Yemen
| | | |
Collapse
|
3
|
Jiménez S, Santos-Álvarez I, Fernández-Valle E, Castejón D, Villa-Valverde P, Rojo-Salvador C, Pérez-Llorens P, Ruiz-Fernández MJ, Ariza-Pastrana S, Martín-Orti R, González-Soriano J, Moreno N. Comparative MRI analysis of the forebrain of three sauropsida models. Brain Struct Funct 2024; 229:1349-1364. [PMID: 38546870 PMCID: PMC11176103 DOI: 10.1007/s00429-024-02788-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/12/2024] [Indexed: 06/15/2024]
Abstract
The study of the brain by magnetic resonance imaging (MRI) allows to obtain detailed anatomical images, useful to describe specific encephalic structures and to analyze possible variabilities. It is widely used in clinical practice and is becoming increasingly used in veterinary medicine, even in exotic animals; however, despite its potential, its use in comparative neuroanatomy studies is still incipient. It is a technology that in recent years has significantly improved anatomical resolution, together with the fact that it is non-invasive and allows for systematic comparative analysis. All this makes it particularly interesting and useful in evolutionary neuroscience studies, since it allows for the analysis and comparison of brains of rare or otherwise inaccessible species. In the present study, we have analyzed the prosencephalon of three representative sauropsid species, the turtle Trachemys scripta (order Testudine), the lizard Pogona vitticeps (order Squamata) and the snake Python regius (order Squamata) by MRI. In addition, we used MRI sections to analyze the total brain volume and ventricular system of these species, employing volumetric and chemometric analyses together. The raw MRI data of the sauropsida models analyzed in the present study are available for viewing and downloading and have allowed us to produce an atlas of the forebrain of each of the species analyzed, with the main brain regions. In addition, our volumetric data showed that the three groups presented clear differences in terms of total and ventricular brain volumes, particularly the turtles, which in all cases presented distinctive characteristics compared to the lizards and snakes.
Collapse
Affiliation(s)
- S Jiménez
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Bilbao, 48940, Spain
| | - I Santos-Álvarez
- Departament Section of Anatomy and Embriology, Faculty of Veterinary, Complutense University, Avenida Puerta de Hierro s/n, Madrid, 28040, Spain
| | - E Fernández-Valle
- ICTS Bioimagen Complutense, Complutense University, Paseo de Juan XXIII 1, Madrid, 28040, Spain
| | - D Castejón
- ICTS Bioimagen Complutense, Complutense University, Paseo de Juan XXIII 1, Madrid, 28040, Spain
| | - P Villa-Valverde
- ICTS Bioimagen Complutense, Complutense University, Paseo de Juan XXIII 1, Madrid, 28040, Spain
| | - C Rojo-Salvador
- Departament Section of Anatomy and Embriology, Faculty of Veterinary, Complutense University, Avenida Puerta de Hierro s/n, Madrid, 28040, Spain
| | - P Pérez-Llorens
- Departament Section of Anatomy and Embriology, Faculty of Veterinary, Complutense University, Avenida Puerta de Hierro s/n, Madrid, 28040, Spain
| | - M J Ruiz-Fernández
- Departament Section of Anatomy and Embriology, Faculty of Veterinary, Complutense University, Avenida Puerta de Hierro s/n, Madrid, 28040, Spain
| | - S Ariza-Pastrana
- Palmitos Park Canarias, Barranco de los Palmitos, s/n, Maspalomas, Las Palmas, 35109, Spain
| | - R Martín-Orti
- Departament Section of Anatomy and Embriology, Faculty of Veterinary, Complutense University, Avenida Puerta de Hierro s/n, Madrid, 28040, Spain
| | - Juncal González-Soriano
- Departament Section of Anatomy and Embriology, Faculty of Veterinary, Complutense University, Avenida Puerta de Hierro s/n, Madrid, 28040, Spain.
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, Avenida José Antonio Nováis 12, Madrid, 28040, Spain.
| |
Collapse
|
4
|
Lozano D, López JM, Chinarro A, Morona R, Moreno N. A detailed 3D MRI brain atlas of the African lungfish Protopterus annectens. Sci Rep 2024; 14:7999. [PMID: 38580713 PMCID: PMC10997765 DOI: 10.1038/s41598-024-58671-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024] Open
Abstract
The study of the brain by magnetic resonance imaging (MRI) in evolutionary analyses is still in its incipient stage, however, it is particularly useful as it allows us to analyze detailed anatomical images and compare brains of rare or otherwise inaccessible species, evolutionarily contextualizing possible differences, while at the same time being non-invasive. A good example is the lungfishes, sarcopterygians that are the closest living relatives of tetrapods and thus have an interesting phylogenetic position in the evolutionary conquest of the terrestrial environment. In the present study, we have developed a three-dimensional representation of the brain of the lungfish Protopterus annectens together with a rostrocaudal anatomical atlas. This methodological approach provides a clear delineation of the major brain subdivisions of this model and allows to measure both brain and ventricular volumes. Our results confirm that lungfish show neuroanatomical patterns reminiscent of those of extant basal sarcopterygians, with an evaginated telencephalon, and distinctive characters like a small optic tectum. These and additional characters uncover lungfish as a remarkable model to understand the origins of tetrapod diversity, indicating that their brain may contain significant clues to the characters of the brain of ancestral tetrapods.
Collapse
Affiliation(s)
- Daniel Lozano
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, 28040, Madrid, Spain.
| | - Jesús M López
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, 28040, Madrid, Spain
| | - Adrián Chinarro
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, 28040, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, 28040, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, 28040, Madrid, Spain
| |
Collapse
|
5
|
Francois C, Schilliger L, Eberlé O, Delavenne C, Paillusseau C. GROSS AND ULTRASONOGRAPHIC ANATOMY OF THE COELOMIC ORGANS OF HEALTHY AXOLOTLS ( AMBYSTOMA MEXICANUM). J Zoo Wildl Med 2024; 54:670-680. [PMID: 38251990 DOI: 10.1638/2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 01/23/2024] Open
Abstract
The objectives of this study were to describe the gross anatomy and ultrasonographic appearance of coelomic organs in subadult and adult axolotls (Ambystoma mexicanum), to describe an ultrasound technique, and to test correlations of ultrasonographic measurement with body length, width, and weight. Necropsies of coelomic organs were conducted on 10 axolotls (females = 5; males = 5) and ultrasound on 11 (males = 5; females = 6). Animals were kept in water and maintained conscious during ultrasound. The heart, caudal vena cava, liver, gallbladder, spleen, esophagus, stomach, colon, kidneys, ovaries, and fat bodies were identified in all study subjects, although testicles were identified in only 6/7 subjects. The pancreas and adrenal glands could not be identified in any animals, either during necropsy or ultrasonography. Coelomic and pericardial effusion was present in all animals. Ultrasonographic measurements of the liver, spleen, myocardial thickness, and right and left kidney length were highly repeatable (correlation value [CV] < 5%) and the esophagus, spleen, caudal vena cava, fat bodies, gallbladder, colon thickness, right kidney height and width, and right testicle diameter were statistically repeatable (CV < 10%).
Collapse
Affiliation(s)
| | | | - Olivia Eberlé
- Diagnostic Imaging Unit, VetAgro Sup, Marcy l'Étoile 69280, France
| | | | | |
Collapse
|
6
|
Park JK, Do Y. Current State of Conservation Physiology for Amphibians: Major Research Topics and Physiological Parameters. Animals (Basel) 2023; 13:3162. [PMID: 37893886 PMCID: PMC10603670 DOI: 10.3390/ani13203162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Analysis of physiological responses can be used to assess population health, identify threat factors, and understand mechanisms of stress. In addition to this, conservation physiologists have sought to establish potential management strategies for environmental change and evaluate the effectiveness of conservation efforts. From past to present, the field of conservation physiology is developing in an increasingly broader context. In this review, we aim to categorize the topics covered in conservation physiology research on amphibians and present the measured physiological parameters to provide directions for future research on conservation physiology. Physiological responses of amphibians to environmental stressors are the most studied topic, but conservation physiological studies on metamorphosis, habitat loss and fragmentation, climate change, and conservation methods are relatively lacking. A number of physiological indices have been extracted to study amphibian conservation physiology, and the indices have varying strengths of correlation with each subject. Future research directions are suggested to develop a comprehensive monitoring method for amphibians, identify interactions among various stressors, establish physiological mechanisms for environmental factors, and quantify the effects of conservation activities on amphibian physiology.
Collapse
Affiliation(s)
| | - Yuno Do
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea;
| |
Collapse
|
7
|
Wei X, Fu S, Li H, Liu Y, Wang S, Feng W, Yang Y, Liu X, Zeng YY, Cheng M, Lai Y, Qiu X, Wu L, Zhang N, Jiang Y, Xu J, Su X, Peng C, Han L, Lou WPK, Liu C, Yuan Y, Ma K, Yang T, Pan X, Gao S, Chen A, Esteban MA, Yang H, Wang J, Fan G, Liu L, Chen L, Xu X, Fei JF, Gu Y. Single-cell Stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration. Science 2022; 377:eabp9444. [PMID: 36048929 DOI: 10.1126/science.abp9444] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The molecular mechanism underlying brain regeneration in vertebrates remains elusive. We performed spatial enhanced resolution omics sequencing (Stereo-seq) to capture spatially resolved single-cell transcriptomes of axolotl telencephalon sections during development and regeneration. Annotated cell types exhibited distinct spatial distribution, molecular features, and functions. We identified an injury-induced ependymoglial cell cluster at the wound site as a progenitor cell population for the potential replenishment of lost neurons, through a cell state transition process resembling neurogenesis during development. Transcriptome comparisons indicated that these induced cells may originate from local resident ependymoglial cells. We further uncovered spatially defined neurons at the lesion site that may regress to an immature neuron-like state. Our work establishes spatial transcriptome profiles of an anamniote tetrapod brain and decodes potential neurogenesis from ependymoglial cells for development and regeneration, thus providing mechanistic insights into vertebrate brain regeneration.
Collapse
Affiliation(s)
- Xiaoyu Wei
- BGI-Hangzhou, Hangzhou 310012, China.,BGI-Shenzhen, Shenzhen 518103, China
| | - Sulei Fu
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Hanbo Li
- BGI-Shenzhen, Shenzhen 518103, China.,BGI-Qingdao, Qingdao 266555, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao 266555, China
| | - Yang Liu
- BGI-Shenzhen, Shenzhen 518103, China
| | - Shuai Wang
- BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weimin Feng
- BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunzhi Yang
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | | | - Yan-Yun Zeng
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Mengnan Cheng
- BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiwei Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaojie Qiu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Liang Wu
- BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yujia Jiang
- BGI-Shenzhen, Shenzhen 518103, China.,BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Jiangshan Xu
- BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Cheng Peng
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Lei Han
- BGI-Shenzhen, Shenzhen 518103, China.,Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518120, China.,Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Wilson Pak-Kin Lou
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Chuanyu Liu
- BGI-Shenzhen, Shenzhen 518103, China.,Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Yue Yuan
- BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Tao Yang
- BGI-Shenzhen, Shenzhen 518103, China
| | - Xiangyu Pan
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | | | - Ao Chen
- BGI-Shenzhen, Shenzhen 518103, China.,Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Miguel A Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518103, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518103, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | | | - Longqi Liu
- BGI-Hangzhou, Hangzhou 310012, China.,BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Liang Chen
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518103, China.,Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Ying Gu
- BGI-Hangzhou, Hangzhou 310012, China.,BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| |
Collapse
|
8
|
Histological reinterpretation of paraphysis cerebri in Ambystoma mexicanum. Acta Histochem 2022; 124:151915. [PMID: 35738026 DOI: 10.1016/j.acthis.2022.151915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022]
Abstract
Intraventricular and extraventricular choroid plexuses are neuroepithelial folds which arise from the roof of the diencephalon. We describe the circumventricular structure of the diencephalon roof (paraphysis cerebri) during the various development stages of Ambystoma mexicanum. The parasagittal sections of the larvae epithalamus exhibit the presence, in addition to the epiphysis, of two dorsal primordia in nearby areas, which appear to be extraventricular saccular evaginations of different origin that give rise to two structures we define as the anterior extraventricular choroid plexus (AEP) and posterior extraventricular choroid plexus (PEP). During larvae development, the primordia arise perpendicular to each other, grow and show luminal folds and invaginations. Later, the two extraventricular evaginations, which are separate units, become interrelated. As the PEP grows, it covers the AEP dorsally, but it is difficult to define the borders of these organs. AEP is formed by alveolar-acinar epithelial aggregates with evidence of secretion-like content. PEP structure is like a choroid plexus, but its position is extraventricular and dorsal to the AEP. The PEP is always between the AEP and the meninges and can be small or large in size. This means that in A. mexicanum, the paraphysis cerebri is made up of two adjacent organs, which arise almost simultaneously from two different primordia (the AEP and the PEP) and as the posterior one grows, it overlaps the anterior one and masks itself. In conclusion, we suggest that AEP and PEP are homologous to paraphysis cerebri and the dorsal sac, respectively.
Collapse
|
9
|
Iyer AA, Briggman KL. Amphibian behavioral diversity offers insights into evolutionary neurobiology. Curr Opin Neurobiol 2021; 71:19-28. [PMID: 34481981 DOI: 10.1016/j.conb.2021.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 11/18/2022]
Abstract
Recent studies have served to emphasize the unique placement of amphibians, composed of more than 8000 species, in the evolution of the brain. We provide an overview of the three amphibian orders and their respective ecologies, behaviors, and brain anatomy. Studies have probed the origins of independently evolved parental care strategies in frogs and the biophysical principles driving species-specific differences in courtship vocalization patterns. Amphibians are also important models for studying the central control of movement, especially in the context of the vertebrate origin of limb-based locomotion. By highlighting the versatility of amphibians, we hope to see a further adoption of anurans, urodeles, and gymnophionans as model systems for the evolution and neural basis of behavior across vertebrates.
Collapse
Affiliation(s)
- Aditya A Iyer
- Center of Advanced European Studies and Research (Caesar), Ludwig-Erhard-Allee 2, Bonn, Germany
| | - Kevin L Briggman
- Center of Advanced European Studies and Research (Caesar), Ludwig-Erhard-Allee 2, Bonn, Germany.
| |
Collapse
|