1
|
Shakeel T, Shah GM, Zeb BS, Gul I, Irshad M, Zafar H. Phytomining potential, micro-morphological assessment, and air pollution tolerance index of plant species in multi-metals contaminated soapstone and crushing stone mines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 975:179228. [PMID: 40168736 DOI: 10.1016/j.scitotenv.2025.179228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/07/2025] [Accepted: 03/22/2025] [Indexed: 04/03/2025]
Abstract
The extraction of soapstones or crushing stones often results in extensive environmental contamination. This study investigates and assesses the multi-metals and the micro-morphological characteristics (microscopic study of leaf stomata and epidermal cells) of plant species adjacent to soapstone and crushing stone mines. The study focused on monitoring plant species naturally found in the surrounding of soapstone and crushing stone mines. The natural bioaccumulation of metals of toxicological concerns in naturally grown plant species and their potential to detoxify or stabilize contaminated soils through phytoremediation mechanisms were assessed. These plant species are subjected to rigorous screening to evaluate their tolerance to soil contaminants and capacity for phytomining. The multi-metals phytoremediation potentials (BAF, BCF, and TF) of plant species were investigated. The leaf anatomy (stomatal index, number of epidermal cells, and stomata) and the air pollution tolerance index (APTI) were also assessed to gauge the growth and effectiveness of each species in remediating soil pollution. Preliminary findings reveal distinct alterations in plant leaf anatomy near mining sites, characterized by increasing numbers of stomata at the adaxial sides of leaves. The highest APTI is recorded higher in Dodonaea viscosa, and Justacia adhatoda at the Soapstone Mines with Daphne mucronata, Indigofera hetarantha, Dodonaea viscosa and Darbegeasia salicofolia at the Crushing Stone Mines are calculated. These alterations indicate the profound impact of mining activities on soil quality, plants, and ecosystem health. Different native plant species have been found and considered for phytoremediation to remove or stabilize multi-metals, including Dodonaea viscosa (Fe, Zn), Parthenium hysterophous (Fe), Calotropis procera (Ni), Justacia adhatoda (Fe). By identifying plant species capable of thriving in mining-affected environments and effectively remediating soil contamination, this study offers valuable insights for developing sustainable land management practices.
Collapse
Affiliation(s)
- Tufail Shakeel
- Department of Botany, Hazara University, Mansehra, Pakistan.
| | | | - Bibi Saima Zeb
- Department of Environmental Sciences, Comsats University, Islamabad, (Abbottabad Campus), Pakistan.
| | - Iram Gul
- Institute of Environmental Science and Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Muhammad Irshad
- Department of Environmental Sciences, Comsats University, Islamabad, (Abbottabad Campus), Pakistan
| | - Habiba Zafar
- Department of Environmental Sciences, Comsats University, Islamabad, (Abbottabad Campus), Pakistan
| |
Collapse
|
2
|
Chen J, Zhang L, Song L, Ye M, Wang L, Fan B, Li B, Yang Z, Jin R, Jia P. Effects of Illegal Solid Waste Dumping on the Structure of Soil Bacterial Communities: A Case Study in China. TOXICS 2024; 13:20. [PMID: 39853020 PMCID: PMC11769185 DOI: 10.3390/toxics13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025]
Abstract
Illegal solid waste dumping is a significant factor contributing to environmental damage. In this study, 16S rRNA gene sequencing technology was used for the identification and assessment of environmental damage in an illegal dumping area in China, with the aim of confirming environmental damage through analyzing changes in the soil bacterial communities across slag, sewage sludge, and non-contaminated areas. The results indicate that the diversity of soil bacteria decreases with an increase in the degree of pollution. The illegal dumping of slag resulted in an increase in the relative abundance of Firmicutes and a decrease in the relative abundance of Acidobacteriota. Additionally, illegal dumping of sewage sludge resulted in an increase in the relative abundance of Proteobacteria and a decrease in the relative abundance of Acidobacteriota. The contents of Ni and Be in slag and Cu, Pb, and Cd in sewage sludge were key factors affecting bacterial community composition. The results reveal the effects of heavy metal pollution on the soil bacterial community structure and its environmental driving factors, thus expanding understanding in the context of management of the environmental damage caused by illegal dumping, as well as providing a perspective on the changes in the soil bacterial community, allowing for environmental damage confirmation.
Collapse
Affiliation(s)
- Jialiang Chen
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China; (J.C.); (L.Z.); (L.S.); (M.Y.); (L.W.); (B.F.); (B.L.); (Z.Y.)
| | - Lulu Zhang
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China; (J.C.); (L.Z.); (L.S.); (M.Y.); (L.W.); (B.F.); (B.L.); (Z.Y.)
| | - Lang Song
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China; (J.C.); (L.Z.); (L.S.); (M.Y.); (L.W.); (B.F.); (B.L.); (Z.Y.)
| | - Mai Ye
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China; (J.C.); (L.Z.); (L.S.); (M.Y.); (L.W.); (B.F.); (B.L.); (Z.Y.)
| | - Lin Wang
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China; (J.C.); (L.Z.); (L.S.); (M.Y.); (L.W.); (B.F.); (B.L.); (Z.Y.)
| | - Bin Fan
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China; (J.C.); (L.Z.); (L.S.); (M.Y.); (L.W.); (B.F.); (B.L.); (Z.Y.)
| | - Bin Li
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China; (J.C.); (L.Z.); (L.S.); (M.Y.); (L.W.); (B.F.); (B.L.); (Z.Y.)
| | - Zetao Yang
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China; (J.C.); (L.Z.); (L.S.); (M.Y.); (L.W.); (B.F.); (B.L.); (Z.Y.)
| | - Rongzhou Jin
- School of Life Sciences, South China Normal University, Guangzhou 510631, China;
| | - Pu Jia
- School of Life Sciences, South China Normal University, Guangzhou 510631, China;
| |
Collapse
|
3
|
Mao W, Wu Y, Li Q, Xiang Y, Tang W, Hu H, Ji X, Li H. Seed endophytes and rhizosphere microbiome of Imperata cylindrica, a pioneer plant of abandoned mine lands. Front Microbiol 2024; 15:1415329. [PMID: 39113844 PMCID: PMC11303138 DOI: 10.3389/fmicb.2024.1415329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Some plant-associated microorganisms could improve host plants biotic and abiotic stress tolerance. Imperata cylindrica is a dominant pioneer plant in some abandoned mine lands with higher concentrations of heavy metal (HM). To discover the specific microbiome of I. cylindrica in this extreme environment and evaluate its role, the microbiome of I. cylindrica's seeds and rhizosphere soils from HM heavily contaminated (H) and lightly contaminated (L) sites were studied. It was found that HM-contamination significantly reduced the richness of endophytic bacteria in seeds, but increased the abundance of resistant species, such as Massilia sp. and Duganella sp. Spearman's rank correlation coefficient analysis showed that both Massilia sp. and Duganella sp. showed a significant positive correlation with Zn concentration, indicating that it may have a strong tolerance to Zn. A comparison of the microbiome of rhizosphere soils (RS) and adjacent bare soils (BS) of site H showed that I. cylindrica colonization significantly increased the diversity of fungi in rhizosphere soil and the abundance of Ascomycota associated with soil nutrient cycling. Spearman's rank correlation coefficient analysis showed that Ascomycota was positively correlated with the total nitrogen. Combined with the fact that the total nitrogen content of RS was significantly higher than that of BS, we suppose that Ascomycota may enhance the nitrogen fixation of I. cylindrica, thereby promoting its growth in such an extreme environment. In conclusion, the concentration of HM and nutrient contents in the soil significantly affected the microbial community of rhizosphere soils and seeds of I. cylindrica, in turn, the different microbiomes further affected soil HM concentration and nutrient contents. The survival of I. cylindrica in HM severely contaminated environment may mainly be through recruiting more microorganisms that can enhance its nutrition supply.
Collapse
Affiliation(s)
- Wenqin Mao
- Life Science and Technology and Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Ying Wu
- The First People’s Hospital of Yunnan Province, Kunming, China
| | - Qiaohong Li
- The First People’s Hospital of Yunnan Province, Kunming, China
| | - Yingying Xiang
- The Affiliated Yanan Hospital of Kunming Medical University, Kunming, China
| | - Wenting Tang
- Life Science and Technology and Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Haiyan Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Xiuling Ji
- Life Science and Technology and Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Haiyan Li
- Life Science and Technology and Medical Faculty, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
4
|
Li W, He E, Van Gestel CAM, Peijnenburg WJGM, Chen G, Liu X, Zhu D, Qiu H. Pioneer plants enhance soil multifunctionality by reshaping underground multitrophic community during natural succession of an abandoned rare earth mine tailing. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134450. [PMID: 38701726 DOI: 10.1016/j.jhazmat.2024.134450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Spontaneous natural succession in metal mine tailings is fundamental to the rehabilitation of bare tailing. Here, an abandoned rare earth element (REE) mine tailing with spontaneous colonisation by pioneer plants with different functional traits was selected. Soil nutrient cycling, fertility, organic matter decomposition as well as underground organismal communities and their multitrophic networks were investigated. Compared with the bare tailing, the colonisation with Lycopodium japonicum, Miscanthus sinensis, and Dicranopteris dichotoma increased soil multifunction by 222%, 293%, and 525%, respectively. This was accompanied by significant changes in soil bacterial and protistan community composition and increased soil multitrophic network complexity. Rhizospheres of different plant species showed distinct microbial community composition compared to that of bare tailing. Some WPS-2, Chloroflexi, and Chlorophyta were mainly present in the bare tailing, while some Proteobacteria and Cercozoa were predominantly seen in the rhizosphere. Pearson correlation and Random Forest revealed the biotic factors driving soil multifunction. Structural equation modelling further revealed that pioneer plants improved soil multifunction primarily by decreasing the microbial biodiversity and increasing the multitrophic network complexity. Overall, this highlights the importance of subterrestrial organisms in accelerating soil rehabilitation during natural succession and provides options for the ecological restoration of degraded REE mining areas.
Collapse
Affiliation(s)
- Wenxing Li
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| | - Cornelis A M Van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 Hz, the Netherlands
| | | | - Guangquan Chen
- Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Xiaorui Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Ortiz J, Dias N, Alvarado R, Soto J, Sanhueza T, Rabert C, Jorquera M, Arriagada C. N- acyl homoserine lactones (AHLs) type signal molecules produced by rhizobacteria associated with plants that growing in a metal(oids) contaminated soil: A catalyst for plant growth. Microbiol Res 2024; 281:127606. [PMID: 38277718 DOI: 10.1016/j.micres.2024.127606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/23/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
The present study explores the potential of rhizobacteria isolated from Baccharis linearis and Solidago chilensis in metal(loid)-contaminated soil for producing N-acyl-homoserine lactones (AHLs)-type signal molecules and promoting plant growth. A total of 42 strains were isolated, four demonstrating the production of AHL-type signal molecules. Based on 16S rRNA gene sequencing analyses and MALDI-TOF analyses, these four isolates were identified as belonging to the Pseudomonas genus, specifically P. brassicacearum, P. frederickberguensis, P. koreensis, and P. orientalis. The four AHL-producing strains were evaluated for metal(loid)s tolerance, their plant growth promotion traits, AHL quantification, and their impact on in vitro Lactuca sativa plant growth. The study found that four strains exhibited high tolerance to metal(loid)s, particularly As, Cu, and Zn. Additionally, plant growth-promoting traits were detected in AHL-producing bacteria, such as siderophore production, ammonia production, ACC deaminase activity, and P solubilization. Notably, AHL production varied among strains isolated from B. linearis, where C7-HSL and C9-HSL signal molecules were detected, and S. chilensis, where only C7-HSL signal molecules were observed. In the presence of copper, the production of C7-HSL and C9-HSL significantly decreased in B. linearis isolates, while in S. chilensis isolates, C7-HSL production was inhibited. Further, when these strains were inoculated on lettuce seeds and in vitro plants, a significant increase in germination and plant growth was observed. Mainly, the inoculation of P. brassicacearum and P. frederickberguensis led to extensive root hair development, significantly increasing length and root dry weight. Our results demonstrate that rhizospheric strains produce AHL molecules and stimulate plant growth, primarily through root development. However, the presence of copper reduces the production of these molecules, potentially affecting the root development of non-metalloid tolerant plants such as S. chilensis, which would explain its low population in this hostile environment.
Collapse
Affiliation(s)
- Javier Ortiz
- Laboratorio de Biorremediación, Facultad de Ciencias Agropecuarias y Mediambiente, Universidad de La Frontera, Temuco, Chile
| | - Nathalia Dias
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Roxana Alvarado
- Laboratorio de Biorremediación, Facultad de Ciencias Agropecuarias y Mediambiente, Universidad de La Frontera, Temuco, Chile
| | - Javiera Soto
- Laboratorio de Biorremediación, Facultad de Ciencias Agropecuarias y Mediambiente, Universidad de La Frontera, Temuco, Chile
| | - Tedy Sanhueza
- Laboratorio de Biorremediación, Facultad de Ciencias Agropecuarias y Mediambiente, Universidad de La Frontera, Temuco, Chile
| | - Claudia Rabert
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Milko Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - César Arriagada
- Laboratorio de Biorremediación, Facultad de Ciencias Agropecuarias y Mediambiente, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
6
|
Tamburini E, Mandaresu M, Lussu R, Sergi S, Vitali F, Carucci A, Cappai G. Metal phytostabilization by mastic shrub (Pistacia lentiscus L.) and its root-associated bacteria in different habitats of Sardinian abandoned mining areas (Italy). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122107-122120. [PMID: 37964146 DOI: 10.1007/s11356-023-30776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023]
Abstract
Pistacia lentiscus L. is an excluder metallophyte proposed for the revegetation and phytostabilization of metal-contaminated sites in the Mediterranean area. The present study aims at evaluating the linking between bacterial communities and plants spontaneously growing in ecosystems chronically impacted by mining activities. Environmental properties and metal accumulation into hypogeal and epigeal tissues were analyzed in wild plants of two contrasting habitats with extreme metal contamination (> 2300 mg/kg for Zn, > 1100 mg/kg for Pb, > 10 mg/kg for Cd). The community structures of rhizospheric and root endophytic bacteria were fingerprinted by terminal restriction fragment length polymorphism of the 16S rRNA gene. The wild shrubs efficiently restrict the accumulation of the three major contaminants to the epigeal tissues in the two habitats under study (249 ± 68 mg/kg dw for Zn, 43 ± 21 mg/kg dw for Pb, and 1.4 ± 0.5 mg/kg dw for Cd). Evidence was provided that the combined but not individual effect of environmental conditions (moisture, inorganic carbon, pH) and proportion between Zn and Cd in the mine substrate play a role in structuring rhizosphere bacterial communities. The observed changes in community structures of root endophytes were found to be strongly associated with Pb level in roots and substrate properties (inorganic carbon and Zn/Cd ratio). Overall, our study highlights the importance of the analysis of multifactorial interactions among mine substrate, plant, and microbes for understanding how the environmental context affects phytoremediation under real conditions.
Collapse
Affiliation(s)
- Elena Tamburini
- Departnent of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Sp.8, 09042, Monserrato, CA, Italy.
| | - Melinda Mandaresu
- Departnent of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Sp.8, 09042, Monserrato, CA, Italy
| | - Raffaela Lussu
- Departnent of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Sp.8, 09042, Monserrato, CA, Italy
| | - Simona Sergi
- Departnent of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Sp.8, 09042, Monserrato, CA, Italy
| | - Francesco Vitali
- Research Centre for Agriculture and Environment, Council for Agricultural Research and Economics, Via Di Lanciola 12/A, 50125, Florence, Italy
| | - Alessandra Carucci
- Department of Civil- Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123, Cagliari, Italy
| | - Giovanna Cappai
- Department of Civil- Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123, Cagliari, Italy
| |
Collapse
|
7
|
Aponte H, Sulbaran-Bracho Y, Mondaca P, Vidal C, Pérez R, Meier S, Cornejo P, Rojas C. Biochemical, Catabolic, and PGP Activity of Microbial Communities and Bacterial Strains from the Root Zone of Baccharis linearis in a Mediterranean Mine Tailing. Microorganisms 2023; 11:2639. [PMID: 38004650 PMCID: PMC10673359 DOI: 10.3390/microorganisms11112639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 11/26/2023] Open
Abstract
The management of mine tailings (MT) is commonly workload heavy, intrusive, and expensive. Phytostabilization offers a promising approach for MT management; however, it poses challenges due to the unfavorable physicochemical properties of these wastes. Nevertheless, native microorganisms capable of supporting plant growth and development could enhance the efficacy of phytostabilization. This study assesses the biological activity of microbial communities from the root zone of Baccharis linearis, which is naturally present in MT, in order to evaluate their biotechnological potential for phytostabilization. The root zone and bulk samples were collected from B. linearis plants located within a MT in the Mediterranean zone of Chile. Enzyme activities related to the cycling of C, N, and P were assessed. The community-level physiological profile was evaluated using the MicroRespTM system. Bacterial plant growth-promoting (PGP) traits and colony forming units (CFU) were evaluated through qualitative and microbiological methods, respectively. CFU, enzyme activities, and CLPP were higher in the root zone compared with the bulk samples. Five bacterial strains from the root zone exhibited PGP traits such as P solubilization and N acquisition, among others. The presence of microbial communities in the root zone of B. linearis with PGP traits suggests their potential to enhance the ecological management of MT through phytostabilization programs.
Collapse
Affiliation(s)
- Humberto Aponte
- Laboratory of Soil Microbial Ecology and Biogeochemistry, Institute of Agri-Food, Animal and Environmental Sciences (ICA3), Universidad de O’Higgins, San Fernando 3070000, Chile;
- Centre of Systems Biology for Crop Protection (BioSaV), Institute of Agri-Food, Animal and Environmental Sciences (ICA3), Universidad de O’Higgins, San Fernando 3070000, Chile
| | - Yoelvis Sulbaran-Bracho
- Centre of Systems Biology for Crop Protection (BioSaV), Institute of Agri-Food, Animal and Environmental Sciences (ICA3), Universidad de O’Higgins, San Fernando 3070000, Chile
- Laboratory of Entomology, Institute of Agri-Food, Animal and Environmental Sciences (ICA3), Universidad de O’Higgins, Rancagua 2841959, Chile
| | - Pedro Mondaca
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile
| | - Catalina Vidal
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Campus Andrés Bello, Universidad de La Frontera, Avenida Francisco Salazar, Temuco 4811230, Chile; (C.V.); (R.P.)
| | - Rodrigo Pérez
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Campus Andrés Bello, Universidad de La Frontera, Avenida Francisco Salazar, Temuco 4811230, Chile; (C.V.); (R.P.)
- Doctorate Program in Sciences of Natural Resources, Universidad de la Frontera, Temuco 4811230, Chile
| | - Sebastián Meier
- Instituto de Investigaciones Agropecuarias (INIA), Centro de Investigación Regional de Investigación Carillanca, Temuco 4880815, Chile;
- Escuela de Agronomía, Facultad de Ciencias, Ingeniería y Tecnología, Campus Alemania Sede Temuco, Universidad Mayor, Av. Alemania 0281, Temuco 4801043, Chile
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile;
| | - Claudia Rojas
- Laboratory of Soil Microbial Ecology and Biogeochemistry, Institute of Agri-Food, Animal and Environmental Sciences (ICA3), Universidad de O’Higgins, San Fernando 3070000, Chile;
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
| |
Collapse
|
8
|
Zulfiqar U, Haider FU, Maqsood MF, Mohy-Ud-Din W, Shabaan M, Ahmad M, Kaleem M, Ishfaq M, Aslam Z, Shahzad B. Recent Advances in Microbial-Assisted Remediation of Cadmium-Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:3147. [PMID: 37687393 PMCID: PMC10490184 DOI: 10.3390/plants12173147] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Soil contamination with cadmium (Cd) is a severe concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Industries such as mining, manufacturing, building, etc., rapidly produce a substantial amount of Cd, posing environmental risks. Cd toxicity in crop plants decreases nutrient and water uptake and translocation, increases oxidative damage, interferes with plant metabolism and inhibits plant morphology and physiology. However, various conventional physicochemical approaches are available to remove Cd from the soil, including chemical reduction, immobilization, stabilization and electro-remediation. Nevertheless, these processes are costly and unfriendly to the environment because they require much energy, skilled labor and hazardous chemicals. In contrasting, contaminated soils can be restored by using bioremediation techniques, which use plants alone and in association with different beneficial microbes as cutting-edge approaches. This review covers the bioremediation of soils contaminated with Cd in various new ways. The bioremediation capability of bacteria and fungi alone and in combination with plants are studied and analyzed. Microbes, including bacteria, fungi and algae, are reported to have a high tolerance for metals, having a 98% bioremediation capability. The internal structure of microorganisms, their cell surface characteristics and the surrounding environmental circumstances are all discussed concerning how microbes detoxify metals. Moreover, issues affecting the effectiveness of bioremediation are explored, along with potential difficulties, solutions and prospects.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
- University of Chinese Academy of Sciences, Beijing 100039, China
| | | | - Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan;
- Department of Soil and Environmental Sciences, Ghazi University, D. G. Khan 32200, Pakistan
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Muhammad Shabaan
- Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan;
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
- Department of Agriculture, Extension, Azad Jammu & Kashmir, Pakistan
| | - Zoya Aslam
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
9
|
Samad A, Degenhardt D, Séguin A, Morency MJ, Gagné P, Martineau C. Microbial community structural and functional differentiation in capped thickened oil sands tailings planted with native boreal species. Front Microbiol 2023; 14:1168653. [PMID: 37465026 PMCID: PMC10350512 DOI: 10.3389/fmicb.2023.1168653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
The oil sands mining operations in Alberta have produced billions of m3 of tailings which must be reclaimed and integrated into various mine closure landforms, including terrestrial landforms. Microorganisms play a central role in nutrient cycling during the reclamation of disturbed landscapes, contributing to successful vegetation restoration and long-term sustainability. However, microbial community succession and response in reconstructed and revegetated tailings remain largely unexplored. This study aimed to monitor the structural and functional responses of microbial communities in tailings subjected to different capping and vegetation strategies over two growing seasons (GS). To achieve this, a column-based greenhouse experiment was conducted to investigate microbial communities in tailings that were capped with a layer (10 or 30 cm) of peat-mineral mix (PMM) and planted with either upland or wetland communities. DNA metabarcoding analysis of the bacterial 16S rRNA gene and fungal ITS2 region as well as shotgun metagenomics were used to asses the impact of treatments on microbial taxonomy and functions, respectively. Results showed that tailings microbial diversity and community composition changed considerably after two GS compared to baseline samples, while communities in the PMM capping layer were much more stable. Likewise, several microbial functions were significantly enriched in tailings after two GS. Interestingly, the impact of capping on bacterial communities in tailings varied depending on the plant community, leading to a higher number of differentially abundant taxa and to a decrease in Shannon diversity and evenness in the upland treatment but not in the wetland treatment. Moreover, while capping in the presence of wetland vegetation increased the energy-related metabolic functions (carbon, nitrogen, and sulfur), these functions were depleted by capping in the upland treatment. Fungi represented a small proportion of the microbial community in tailings, but the relative abundance of several taxa changed over time, while the capping treatments favored the growth of some beneficial taxa, notably the root endophyte Serendipita, in both upland and wetland columns. The results suggest that selecting the right combination of capping material and vegetation type may contribute to improve below-ground microbial processes and sustain plant growth in harsh environments such as oil sands tailings.
Collapse
Affiliation(s)
- Abdul Samad
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Dani Degenhardt
- Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB, Canada
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Marie-Josée Morency
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Patrick Gagné
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Christine Martineau
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| |
Collapse
|
10
|
Wang W, Xue J, You J, Han H, Qi H, Wang X. Effect of composite amendments on physicochemical properties of copper tailings repaired by herbaceous plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19790-19802. [PMID: 36241833 DOI: 10.1007/s11356-022-23606-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Phytoremediation is considered to be the most environmentally friendly green restoration technology for dealing with mine waste. Adding amendments can improve the substrate environment for plant growth and enhance remediation efficiency. Herbaceous plants have become the preferred species for vegetation restoration in abandoned mines because of their fast greening and simple management. After 8 weeks of pot experiments in the early stage, it was shown that the plant height and fresh weight of the plants treated with 5% conditioner and 0.5% straw (C2S2) were significantly higher than those of other treatments. Considering that, in this paper, to explore the effect of composite amendments on physicochemical properties of copper tailings repaired by herbaceous plants, the untreated copper tailings were employed as the control group, whereas copper tailings repaired by ryegrass (Lolium perenne L.), vetiver grass (Chrysopogon zizanioides L.), and tall fescue (Festuca arundinacea) with or without conditioners and straw combination into the compound amendments were taken separately as the test group. After 6 months of planting, the pH, electrical conductivity, water content, available potassium, organic matter, total nitrogen, and available phosphorus in the main physical and chemical properties of copper tailings in each experimental area were analyzed. The results showed that the electrical conductivity, organic matter, and total nitrogen content of copper tailings were improved to a certain extent by planting plants without treatment. Meanwhile, compared with the control group, all indexes of planting plants showed an upward trend after adding composite amendments. Among them, pH, water content, and available potassium content of copper tailings were enhanced more obviously. Furthermore, as discovered from the gray correlation analysis results, vetiver grass planted with composite amendments has the best comprehensive effect of improving the physicochemical properties of copper tailings, followed by tall fescue and ryegrass.
Collapse
Affiliation(s)
- Weiwei Wang
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| | - Jinchun Xue
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China.
| | - Jiajia You
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| | - Huaqin Han
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| | - Hui Qi
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| | - Xiaojuan Wang
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| |
Collapse
|
11
|
Yin Y, Wang X, Hu Y, Li F, Cheng H. Soil bacterial community structure in the habitats with different levels of heavy metal pollution at an abandoned polymetallic mine. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130063. [PMID: 36182879 DOI: 10.1016/j.jhazmat.2022.130063] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal pollution caused by mining activities can be harmful to soil microbiota, which are highly sensitive to heavy metal stress. This study aimed to investigate the response of soil bacterial communities to varying levels of heavy metal pollution in four types of habitats (i.e., tailing, remediation, natural recovery, and undisturbed areas) at an abandoned polymetallic mine by high-throughput 16 S rRNA gene sequencing, and to determine the dominant ecological processes and major factors driving the variations in bacterial community composition. The diversity and composition of bacterial communities varied significantly between soil habitats (p < 0.05). Heterogeneous selection played a crucial role in shaping the difference of bacterial community composition between distinct soil habitats. Redundancy analysis and Pearson correlation analysis revealed that the total contents of Cu and Zn were key factors causing the difference in bacterial community composition in the tailing and remediation areas, whereas bioavailable Mn and Cd, total nitrogen, available nitrogen, soil organic carbon, vegetation coverage, and plant diversity were key factors shaping the soil bacterial structure in the undisturbed and natural recovery areas. These findings provide insights into the distribution patterns of bacterial communities in soil habitats with different levels of heavy metal pollution, and the dominant ecological processes and the corresponding environmental drivers, and expand knowledge in bacterial assembly mechanisms in mining regions.
Collapse
Affiliation(s)
- Yue Yin
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiaojie Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Fadong Li
- State Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
12
|
Zhimo VY, Kumar A, Biasi A, Abdelfattah A, Sharma VK, Salim S, Feygenberg O, Bartuv R, Freilich S, Whitehead SR, Wisniewski M, Droby S. Assembly and dynamics of the apple carposphere microbiome during fruit development and storage. Front Microbiol 2022; 13:928888. [PMID: 36016781 PMCID: PMC9395710 DOI: 10.3389/fmicb.2022.928888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial communities associated with fruit can contribute to quality and pathogen resistance, but little is known about their assembly and dynamics during fruit development and storage. Three apple cultivars growing under the same environmental conditions were utilized to examine the apple carposphere microbiome composition and structure at different developmental stages and storage. There was a significant effect (Adonis, p ≤ 0.001) of fruit genotype and its developmental stages and storage times on the fruit surface microbial assemblage and a strong temporal microbial community succession was detected (Mantel test: R ≤ 0.5, p = 0.001) in both bacterial and fungal communities. A set of 15 bacterial and 35 fungal core successional taxa and members exhibiting differential abundances at different fruit stages were identified. For the first time, we show the existence of underlying universal dynamics in the assembly of fruit-associated microbiomes. We also provide evidence of strong microbial cross-domain associations and uncover potential microbe-microbe correlations in the apple carposphere. Together our findings shed light on how the fruit carposphere assemble and change over time, and provide new insights into fruit microbial ecology.
Collapse
Affiliation(s)
- V. Yeka Zhimo
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Ajay Kumar
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Antonio Biasi
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Ahmed Abdelfattah
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee, Potsdam, Germany
| | - Vijay Kumar Sharma
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Shoshana Salim
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Oleg Feygenberg
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Rotem Bartuv
- Department of Natural Resources, Institute of Plant Sciences, Agricultural Research Organization, Newe Yaar Research Center, Ramat Yishay, Israel
- Faculty of Agriculture, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shiri Freilich
- Department of Natural Resources, Institute of Plant Sciences, Agricultural Research Organization, Newe Yaar Research Center, Ramat Yishay, Israel
| | - Susan R. Whitehead
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michael Wisniewski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Samir Droby
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
- *Correspondence: Samir Droby,
| |
Collapse
|
13
|
Meniv NP, Maslovska OD, Komplikevych SY, Hnatush SO. Microbiota of the rhizosphere zone of Calamagrostis epigeios from a coal mine waste dump. BIOSYSTEMS DIVERSITY 2022. [DOI: 10.15421/012224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The microbiota plays an important role in the processes of plant overgrowth of coal mine waste dumps, enabling the transformation of numerous compounds into forms available to plants. The overgrowth of coal mine dumps is influenced by many factors. Pioneers are plant species that have a wide ecological and phytocenotic amplitude. Calamagrostis epigeios (L.) Roth. occupies a special place among them. The composition of the microbiota of the rhizosphere zone of C. epigeios was studied in relation to the age of the plants and the stage of the succession of the “Vizeyska” mine dump (Ukraine). It was established and confirmed as a result of two-factor variance analysis that the growth phase of C. epigeios and the stage of the succession of coal mine waste dumps have different effects on the number of microorganisms from the rhizosphere zone of plants. The number of pedotrophic microorganisms, microorganisms that metabolize nitrogen of organic compounds, cellulose-degrading microorganisms, and microscopic fungi depended more on the age of C. epigeios, and not on the stage of the succession of the studied area. The number of chemolithotrophic bacteria, particularly thiobacteria, decreased with the change of the growth phase of C. epigeios. The number of acidophobic thiobacteria depended more on the stage of succession, and the number of acidophilic thiobacteria depended more on the age of the C. epigeios. The number of microorganisms that metabolize nitrogen of organic compounds, oligonitrophilic microorganisms and microorganisms that metabolize nitrogen of inorganic compounds in the samples of tailings from the area with grasses and perennials and from the area with grasses, shrubs, and sun-loving trees was higher, compared to the number of these groups of microorganisms in the control and changed with the change in the growth phase of C. epigeios. The number of microorganisms that metabolize nitrogen of organic compounds, oligonitrophilic microrganisms and microorganisms that metabolize nitrogen of inorganic compounds was the highest in the samples from the area with grasses, shrubs, and sun-loving trees during the adult growth phase of C. epigeios. In the area where C. epigeios dominated within the vegetation, the highest number of microorganisms that metabolize nitrogen of organic compounds was also during the adult phase of C. epigeios, and the number of bacteria that assimilate mineral forms of nitrogen and oligonitrophilic microorganisms was the highest during the sub-adult stage. The index of pedotrophicity is higher in the samples taken in the area where C. epigeios prevails among other herbaceous plants, and where in the tree layer there are Betula pendula, Populus tremula with an admixture of Pinus sylvestris. Pedotrophicity indices which were calculated for these samples do not depend on the growth stage of C. epigeios and are higher than for the control area. Immobilization-mobilization of nitrogen indices in samples of tailings from the area with grasses and perennials and from the area with grasses, shrubs, and sun-loving trees ranged from 1.94 to 3.52 and were higher compared to the control site.
Collapse
|
14
|
Endophytic Fungi Isolated from Baccharis linearis and Echinopsis chiloensis with Antifungal Activity against Botrytis cinerea. J Fungi (Basel) 2022; 8:jof8020197. [PMID: 35205951 PMCID: PMC8878204 DOI: 10.3390/jof8020197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
Botrytis cinerea is one of the most important phytopathogens in agriculture worldwide, infecting economically important crops. The main control of this fungus is by synthetic fungicides, causing the selection of resistant isolates. Compounds produced by endophytic fungi have been shown to have antifungal activity against this pathogen and can be used as an alternative to synthetic fungicides. The aim of this work was to isolate endophytic fungi from Chilean foothills in the Metropolitan Region. Ten fungi were isolated from Echinopsis chiloensis and Baccharis linearis, however, only two isolates inhibited the mycelial growth of B. cinerea by antibiosis and were identified as Epicoccum sp. and Pleosporales sp. Extracts at 200 mg L−1 from Epicoccum sp. and Pleosporales sp. showed antifungal activity against B. cinerea of 54.6 and 44.6% respectively. Active compounds in the Epicoccum sp. extracts were mainly alkaloids and phenolic compounds; meanwhile, in the Pleosporales sp. extracts, terpenes and/or saponins were responsible for the antifungal activity.
Collapse
|