1
|
Benedicto I, Hamczyk MR, Dorado B, Andrés V. Vascular cell types in progeria: victims or villains? Trends Mol Med 2025:S1471-4914(25)00056-5. [PMID: 40240194 DOI: 10.1016/j.molmed.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 04/18/2025]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an ultrarare genetic disease caused by progerin, a broadly expressed mutant variant of lamin A protein that accelerates aging and leads to premature death typically in adolescence. Progerin affects many organs and reproduces many characteristics of physiological aging, with the main cause of death in HGPS being atherosclerotic cardiovascular disease (CVD). Due to the rarity of HGPS, advances in understanding the disease and progress toward new therapeutic approaches are crucially dependent on preclinical models. We discuss recent research developments from a variety of HGPS experimental systems, with a special focus on in vivo studies of the role of vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) that are key players in atherosclerosis.
Collapse
Affiliation(s)
- Ignacio Benedicto
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| | - Magda R Hamczyk
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000 Aarhus C, Denmark
| | - Beatriz Dorado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| |
Collapse
|
2
|
Lyall M, Kamdar A, Sykes R, Aekbote BL, Gadegaard N, Berry C. Measuring contractile forces in vascular smooth muscle cells. Vascul Pharmacol 2025; 159:107488. [PMID: 40097082 DOI: 10.1016/j.vph.2025.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
Vascular smooth muscle cell (VSMC) contractility mediates blood vessel tone. Abnormalities in VSMC function and in blood vessel tone can contribute to a variety of cardiovascular diseases. This review examines the role of VSMC contractile force in vascular disease, divided into two primary sections. The first section introducing VSMC mechanical contraction and detailing the molecular mechanisms of VSMC contractility in normal and pathological states. The second section exploring methods of measuring contraction in VSMCs, such as Ca2+ imaging, myography, and traction force microscopy, and highlighting where each method is of best use. Understanding the mechanical properties and contractile profiles of VSMCs offers valuable insights into disease mechanisms. By investigating these aspects, this review describes the potential of VSMC contractile forces as diagnostic markers and therapeutic targets in vascular disease.
Collapse
Affiliation(s)
- Maia Lyall
- School of Cardiovascular and Metabolic Health, University of Glasgow, G12 8TA, UK; Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Anna Kamdar
- School of Cardiovascular and Metabolic Health, University of Glasgow, G12 8TA, UK; West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK
| | - Robert Sykes
- School of Cardiovascular and Metabolic Health, University of Glasgow, G12 8TA, UK; West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK
| | - Badri L Aekbote
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Colin Berry
- School of Cardiovascular and Metabolic Health, University of Glasgow, G12 8TA, UK; West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK; Department of Cardiology, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde Health Board, Glasgow G51 4TF, UK.
| |
Collapse
|
3
|
Liu JN, Tian JY, Liu L, Cao Y, Lei X, Zhang XH, Zhang ZQ, He JX, Zheng CX, Ma C, Bai SF, Sui BD, Jin F, Chen J. The landscape of cell regulatory and communication networks in the human dental follicle. Front Bioeng Biotechnol 2025; 13:1535245. [PMID: 39974190 PMCID: PMC11835805 DOI: 10.3389/fbioe.2025.1535245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025] Open
Abstract
Introduction The dental follicle localizes the surrounding enamel organ and dental papilla of the developing tooth germ during the embryonic stage. It can differentiate and develop to form the periodontal ligament, cementum, and alveolar bone tissues. Postnatally, the dental follicle gradually degenerates, but some parts of the dental follicle remain around the impacted tooth. However, the specific cellular components and the intricate regulatory mechanisms governing the postnatal development and biological function of the dental follicle have not been completely understood. Methods We analyzed dental follicles with single-cell RNA sequencing (scRNA-seq) to reveal their cellular constitution molecular signatures by cell cycle analysis, scenic analysis, gene enrichment analysis, and cell communication analysis. Results Ten cell clusters were identified with differential characteristics, among which immune and vessel-related cells, as well as a stem cell population, were revealed as the main cell types. Gene regulatory networks (GRNs) were established and defined four regulon modules underlying dental tissue development and microenvironmental regulation, including vascular and immune responses. Cell-cell communication analysis unraveled crosstalk between vascular and immune cell components in orchestrating dental follicle biological activities, potentially based on COLLAGAN-CD44 ligand-receptor pairs, as well as ANGPTL1-ITGA/ITGB ligand-receptor pairs. Conclusion We establish a landscape of cell regulatory and communication networks in the human dental follicle, providing mechanistic insights into the cellular regulation and interactions in the complex dental follicle tissue microenvironment.
Collapse
Affiliation(s)
- Jia-Ning Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jiong-Yi Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuan Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiao Lei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiao-Hui Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zi-Qi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jun-Xi He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chao Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Sheng-Feng Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Fang Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ji Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Li K, Zhang C, Wang LX, Wang X, Wang R. KLF4's role in regulating nitric oxide production and promoting microvascular formation following ischemic stroke. Nitric Oxide 2025; 154:86-104. [PMID: 39557151 DOI: 10.1016/j.niox.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
This study examines KLF4's role in endothelial cells (ECs), emphasizing its effects on nitric oxide (NO) production, microvascular formation, and oxidative stress regulation following ischemic stroke. Through high-throughput sequencing, we identified eight cell subpopulations in carotid artery tissues post-stroke, with KLF4 notably elevated in ECs. KLF4 overexpression in ECs promoted NO synthesis, enhanced endothelial tube formation, mitigated oxidative stress, and improved smooth muscle cells (SMCs) function, collectively boosting blood flow in ischemic regions. These findings highlight KLF4 as pivotal in vascular regeneration and oxidative stress reduction, positioning it as a promising target for cardiovascular and cerebrovascular therapies.
Collapse
Affiliation(s)
- Kuo Li
- No. 2, Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061000, China.
| | - Chuansuo Zhang
- No. 2, Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Li Xuan Wang
- No. 2, Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Xiaoxuan Wang
- No. 2, Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Ruyue Wang
- No. 2, Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061000, China
| |
Collapse
|
5
|
Liu X, Halvorsen S, Blanke N, Downs M, Stein TD, Bigio IJ, Zaia J, Zhang Y. Progressive mechanical and structural changes in anterior cerebral arteries with Alzheimer's disease. Alzheimers Res Ther 2023; 15:185. [PMID: 37891618 PMCID: PMC10605786 DOI: 10.1186/s13195-023-01331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the main cause for dementia. The irreversible neurodegeneration leads to a gradual loss of brain function characterized predominantly by memory loss. Cerebrovascular changes are common neuropathologic findings in aged subjects with dementia. Cerebrovascular integrity is critical for proper metabolism and perfusion of the brain, as cerebrovascular remodeling may render the brain more susceptible to pulse pressure and may be associated with poorer cognitive performance and greater risk of cerebrovascular events. The objective of this study is to provide understanding of cerebrovascular remodeling with AD progression. Anterior cerebral arteries (ACAs) from a total of 19 brain donor participants from controls and pathologically diagnosed AD groups (early-Braak stages I-II; intermediate-Braak stages III-IV; and advanced-Braak stages V-VI) were included in this study. Mechanical testing, histology, advanced optical imaging, and mass spectrometry were performed to study the progressive structural and functional changes of ACAs with AD progression. Biaxial extension-inflation tests showed that ACAs became progressively less compliant, and the longitudinal stress in the intermediate and advanced AD groups was significantly higher than that from the control group. With pathological AD development, the inner and outer diameters of the ACAs remained almost unchanged; however, histology study revealed progressive smooth muscle cell atrophy and loss of elastic fibers which led to compromised structural integrity of the arterial wall. Multiphoton imaging demonstrated elastin degradation at the media-adventitia interface, which led to the formation of an empty band of 21.0 ± 15.4 μm and 32.8 ± 9.24 μm in width for the intermediate and advanced AD groups, respectively. Furthermore, quantitative birefringence microscopy showed disorganized adventitial collagen with AD development. Mass spectrometry analysis provided further evidence of altered collagen content and other extracellular matrix (ECM) molecule and smooth muscle cell changes that were consistent with the mechanical and structural alterations. Collectively, our study provides understanding of the mechanical and structural cerebrovascular deterioration in cerebral arteries with AD, which may be related to neurodegenration and pathology in the brain.
Collapse
Affiliation(s)
- Xiaozhu Liu
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Samuel Halvorsen
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Nathan Blanke
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Margaret Downs
- Department of Biochemistry and Cell Biology, Boston University, Avedisian School of Medicine, Chobanian &, Boston, MA, USA
| | - Thor D Stein
- Pathology and Laboratory Medicine, Boston University, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA, USA
| | - Irving J Bigio
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Joseph Zaia
- Department of Biochemistry and Cell Biology, Boston University, Avedisian School of Medicine, Chobanian &, Boston, MA, USA
| | - Yanhang Zhang
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Division of Materials Science & Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
6
|
Liu X, Halvorsen S, Blanke N, Downs M, Stein TD, Bigio IJ, Zaia J, Zhang Y. Progressive Mechanical and Structural Changes in Anterior Cerebral Arteries with Alzheimer's Disease. RESEARCH SQUARE 2023:rs.3.rs-3283587. [PMID: 37693508 PMCID: PMC10491325 DOI: 10.21203/rs.3.rs-3283587/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Alzheimer disease (AD) is a neurodegenerative disease and the main cause for dementia. The irreversible neurodegeneration leads to a gradual loss of brain function characterized predominantly by memory loss. Cerebrovascular changes are common neuropathologic findings in aged subjects with dementia. Cerebrovascular integrity is critical for proper metabolism and perfusion of the brain, as cerebrovascular remodeling may render the brain more susceptible to pulse pressure and may be associated with poorer cognitive performance and greater risk of cerebrovascular events. The objective of this study is to provide understanding of cerebrovascular remodeling with AD progression. A total of 28 brain donor participants with human anterior cerebral artery (ACA) from controls and pathologically diagnosed AD groups (early - Braak stages I-II; intermediate - Braak stages III-IV; and advanced - Braak stages V-VI) were included in this study. Mechanical testing, histology, advanced optical imaging, and mass spectrometry were performed to study the progressive structural and functional changes of ACAs with AD progression. Biaxial extension-inflation tests showed that ACAs became progressively less compliant, and the longitudinal stress in the intermediate& advanced AD groups was significantly higher than that from the control group. With pathological AD development, the inner and outer diameter of ACA remained almost unchanged; however, histology study revealed progressive smooth muscle cell atrophy and loss of elastic fibers which led to compromised structural integrity of the arterial wall. Multiphoton imaging demonstrated elastin degradation at the media-adventitia interface, which led to the formation of an empty band of 21.0 ± 15.4 μm and 32.8 ± 9.24 μm in width for the intermediate& advanced AD groups, respectively. Furthermore, quantitative birefringence microscopy showed disorganized adventitial collagen with AD development. Mass spectrometry analysis provided further evidence of altered collagen content and other extracellular matrix (ECM) molecule and smooth muscle cell changes that were consistent with the mechanical and structural alterations. Collectively, our study provides understanding of the mechanical and structural cerebrovascular deterioration in cerebral arteries with AD, which may be related to neurodegenration and pathology in the brain.
Collapse
Affiliation(s)
| | | | | | - Margaret Downs
- Boston University Chobanian & Avedisian School of Medicine
| | | | | | - Joseph Zaia
- Boston University Chobanian & Avedisian School of Medicine
| | | |
Collapse
|
7
|
Wang QW, Xu JY, Li HX, Su YD, Song JW, Song ZP, Song SS, Dong B, Wang SX, Li B. A simple and accurate method to quantify real-time contraction of vascular smooth muscle cell in vitro. Vascul Pharmacol 2023; 149:107146. [PMID: 36724828 DOI: 10.1016/j.vph.2023.107146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Vascular smooth muscle cells (VSMCs) constitute the medial layer of the blood vessel wall. Their contractile state regulates blood flow in physiological and pathological conditions. Current methods for assessing the contractility of VSMCs are not amenable to the high-throughput screening of pharmaceutical compounds. This study aimed to develop a method to address this shortcoming in the field. Real-time contraction was visualized in living VSMCs using the exogenous expression of green fluorescent protein (GFP). Image-Pro Plus software (IPPS) was used to measure various morphological cell indices. In phenylephrine-treated VSMCs, GFP fluorescence imaging was more accurate than brightfield imaging or phalloidin staining in representing VSMC morphology, as measured using IPPS. Among the multiple indices of VSMC shape, area and mean-diameter were more sensitive than length in reflecting the morphological changes in VSMC. We developed a new index, compound length, by combining the mean-diameter and length to differentiate contracted and uncontracted VSMCs. Based on the compound length, we further generated a contraction index to define a single-VSMC contractile status as single-VSMC contraction-index (SVCI). Finally, compound length and SVCI were validated to effectively assess cell contraction in VSMCs challenged with U46619 and KCl. In conclusion, GFP-based indices of compound length and SVCI can accurately quantify the real-time contraction of VSMCs. In future, the new method will be applied to high-throughput drug screening or basic cardiovascular research.
Collapse
Affiliation(s)
- Qian-Wen Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jia-Yao Xu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hui-Xin Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu-Dong Su
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jia-Wen Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhi-Peng Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Sha-Sha Song
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, Shandong, China.
| | - Bin Li
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
8
|
Clark-Patterson GL, Buchanan LM, Ogola BO, Florian-Rodriguez M, Lindsey SH, De Vita R, Miller KS. Smooth muscle contribution to vaginal viscoelastic response. J Mech Behav Biomed Mater 2023; 140:105702. [PMID: 36764168 DOI: 10.1016/j.jmbbm.2023.105702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Smooth muscle cells contribute to the mechanical function of various soft tissues, however, their contribution to the viscoelastic response when subjected to multiaxial loading remains unknown. The vagina is a fibromuscular viscoelastic organ that is exposed to prolonged and increased pressures with daily activities and physiologic processes such as vaginal birth. The vagina changes in geometry over time under prolonged pressure, known as creep. Vaginal smooth muscle cells may contribute to creep. This may be critical for the function of vaginal and other soft tissues that experience fluctuations in their biomechanical environment. Therefore, the objective of this study was to develop methods to evaluate the contribution of smooth muscle to vaginal creep under multiaxial loading using extension - inflation tests. The vaginas from wildtype mice (C57BL/6 × 129SvEv; 3-6 months; n = 10) were stimulated with various concentrations of potassium chloride then subjected to the measured in vivo pressure (7 mmHg) for 100 s. In a different cohort of mice (n = 5), the vagina was stimulated with a single concentration of potassium chloride then subjected to 5 and 15 mmHg. A laser micrometer measured vaginal outer diameter in real-time. Immunofluorescence evaluated the expression of alpha-smooth muscle actin and myosin heavy chain in the vaginal muscularis (n = 6). When smooth muscle contraction was activated, vaginal creep behavior increased compared to the relaxed state. However, increased pressure decreased the active creep response. This study demonstrated that extension - inflation protocols can be used to evaluate smooth muscle contribution to the viscoelastic response of tubular soft tissues.
Collapse
Affiliation(s)
| | - Lily M Buchanan
- University of Texas at Dallas, Department of Bioengineering, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| | - Benard O Ogola
- Augusta University, Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA, 30912, USA.
| | - Maria Florian-Rodriguez
- University of Texas Southwestern Medical Center, Department of Obstetrics and Gynecology, Division of Female Pelvic Medicine and Reconstructive Surgery and Cecil H and Ida Green Center for Reproductive Biological Sciences, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9032, USA.
| | - Sarah H Lindsey
- Tulane University School of Medicine, Department of Pharmacology, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Raffaella De Vita
- Virginia Tech,Department of Biomedical Engineering and Mechanics, 330 A Kelly Hall, 325 Stanger St, Blacksburg, VA, 24061, USA.
| | - Kristin S Miller
- Tulane University, Department of Biomedical Engineering, 6823 St Charles Ave, New Orleans, LA, 70118, USA; University of Texas at Dallas, Department of Bioengineering, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
9
|
Hamczyk MR, Nevado RM. Vascular smooth muscle cell aging: Insights from Hutchinson-Gilford progeria syndrome. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2023; 35:42-51. [PMID: 35125249 DOI: 10.1016/j.arteri.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/13/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023]
Abstract
Vascular smooth muscle cells (VSMCs) constitute the principal cellular component of the medial layer of arteries and are responsible for vessel contraction and relaxation in response to blood flow. Alterations in VSMCs can hinder vascular system function, leading to vascular stiffness, calcification and atherosclerosis, which in turn may result in life-threatening complications. Pathological changes in VSMCs typically correlate with chronological age; however, there are certain conditions and diseases, such as Hutchinson-Gilford progeria syndrome (HGPS), that can accelerate this process, resulting in premature vascular aging. HGPS is a rare genetic disorder characterized by severe VSMC loss, accelerated atherosclerosis and death from myocardial infarction or stroke during the adolescence. Because experiments with mouse models have demonstrated that alterations in VSMCs are responsible for early atherosclerosis in HGPS, studies on this disease can provide insights into the mechanisms of vascular aging and assess the relative contribution of VSMCs to this process.
Collapse
Affiliation(s)
- Magda R Hamczyk
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| | - Rosa M Nevado
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| |
Collapse
|
10
|
Coll-Bonfill N, Mahajan U, Shashkova EV, Lin CJ, Mecham RP, Gonzalo S. Progerin induces a phenotypic switch in vascular smooth muscle cells and triggers replication stress and an aging-associated secretory signature. GeroScience 2022; 45:965-982. [PMID: 36482259 PMCID: PMC9886737 DOI: 10.1007/s11357-022-00694-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome is a premature aging disease caused by LMNA gene mutation and the production of a truncated prelamin A protein "progerin" that elicits cellular and organismal toxicity. Progerin accumulates in the vasculature, being especially detrimental for vascular smooth muscle cells (VSMC). Vessel stiffening and aortic atherosclerosis in HGPS patients are accompanied by VSMC depletion in the medial layer, altered extracellular matrix (ECM), and thickening of the adventitial layer. Mechanisms whereby progerin causes massive VSMC loss and vessel alterations remain poorly understood. Mature VSMC retain phenotypic plasticity and can switch to a synthetic/proliferative phenotype. Here, we show that progerin expression in human and mouse VSMC causes a switch towards the synthetic phenotype. This switch elicits some level of replication stress in normal cells, which is exacerbated in the presence of progerin, leading to telomere fragility, genomic instability, and ultimately VSMC death. Calcitriol prevents replication stress, telomere fragility, and genomic instability, reducing VSMC death. In addition, RNA-seq analysis shows induction of a profibrotic and pro-inflammatory aging-associated secretory phenotype upon progerin expression in human primary VSMC. Our data suggest that phenotypic switch-induced replication stress might be an underlying cause of VSMC loss in progeria, which together with loss of contractile features and gain of profibrotic and pro-inflammatory signatures contribute to vascular stiffness in HGPS.
Collapse
Affiliation(s)
- Nuria Coll-Bonfill
- grid.262962.b0000 0004 1936 9342Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St Louis, MO 63104 USA
| | - Urvashi Mahajan
- grid.262962.b0000 0004 1936 9342Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St Louis, MO 63104 USA
| | - Elena V. Shashkova
- grid.262962.b0000 0004 1936 9342Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St Louis, MO 63104 USA
| | - Chien-Jung Lin
- grid.4367.60000 0001 2355 7002Cell Biology and Physiology Department & Department of Medicine, Washington University School of Medicine, St Louis, MO 63108 USA ,grid.262962.b0000 0004 1936 9342Department of Internal Medicine, Cardiovascular Division, Saint Louis University School of Medicine, St Louis, MO 63104 USA
| | - Robert P. Mecham
- grid.4367.60000 0001 2355 7002Cell Biology and Physiology Department & Department of Medicine, Washington University School of Medicine, St Louis, MO 63108 USA
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St Louis, MO, 63104, USA.
| |
Collapse
|
11
|
Roberts E, Xu T, Assoian RK. Cell contractility and focal adhesion kinase control circumferential arterial stiffness. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2022; 4:28-39. [PMID: 36222505 PMCID: PMC9782408 DOI: 10.1530/vb-22-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
Abstract
Arterial stiffening is a hallmark of aging and cardiovascular disease. While it is well established that vascular smooth muscle cells (SMCs) contribute to arterial stiffness by synthesizing and remodeling the arterial extracellular matrix, the direct contributions of SMC contractility and mechanosensors to arterial stiffness, and particularly the arterial response to pressure, remain less well understood despite being a long-standing question of biomedical importance. Here, we have examined this issue by combining the use of pressure myography of intact carotid arteries, pharmacologic inhibition of contractility, and genetic deletion of SMC focal adhesion kinase (FAK). Biaxial inflation-extension tests performed at physiological pressures showed that acute inhibition of cell contractility with blebbistatin or EGTA altered vessel geometry and preferentially reduced circumferential, as opposed to axial, arterial stiffness in wild-type mice. Similarly, genetic deletion of SMC FAK, which attenuated arterial contraction to KCl, reduced vessel wall thickness and circumferential arterial stiffness in response to pressure while having minimal effect on axial mechanics. Moreover, these effects of FAK deletion were lost by treating arteries with blebbistatin or by inhibiting myosin light-chain kinase. The expression of arterial fibrillar collagens, the integrity of arterial elastin, or markers of SMC differentiation were not affected by the deletion of SMC FAK. Our results connect cell contractility and SMC FAK to the regulation of arterial wall thickness and directionally specific arterial stiffening.
Collapse
Affiliation(s)
- Emilia Roberts
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tina Xu
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard K Assoian
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Seime T, van Wanrooij M, Karlöf E, Kronqvist M, Johansson S, Matic L, Gasser TC, Hedin U. Biomechanical Assessment of Macro-Calcification in Human Carotid Atherosclerosis and Its Impact on Smooth Muscle Cell Phenotype. Cells 2022; 11:3279. [PMID: 36291144 PMCID: PMC9600867 DOI: 10.3390/cells11203279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 12/13/2023] Open
Abstract
Intimal calcification and vascular stiffening are predominant features of end-stage atherosclerosis. However, their role in atherosclerotic plaque instability and how the extent and spatial distribution of calcification influence plaque biology remain unclear. We recently showed that extensive macro calcification can be a stabilizing feature of late-stage human lesions, associated with a reacquisition of more differentiated properties of plaque smooth muscle cells (SMCs) and extracellular matrix (ECM) remodeling. Here, we hypothesized that biomechanical forces related to macro-calcification within plaques influence SMC phenotype and contribute to plaque stabilization. We generated a finite element modeling (FEM) pipeline to assess plaque tissue stretch based on image analysis of preoperative computed tomography angiography (CTA) of carotid atherosclerotic plaques to visualize calcification and soft tissues (lipids and extracellular matrix) within the lesions. Biomechanical stretch was significantly reduced in tissues in close proximity to macro calcification, while increased levels were observed within distant soft tissues. Applying this data to an in vitro stretch model on primary vascular SMCs revealed upregulation of typical markers for differentiated SMCs and contractility under low stretch conditions but also impeded SMC alignment. In contrast, high stretch conditions in combination with calcifying conditions induced SMC apoptosis. Our findings suggest that the load bearing capacities of macro calcifications influence SMC differentiation and survival and contribute to atherosclerotic plaque stabilization.
Collapse
Affiliation(s)
- Till Seime
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, 17164 Stockholm, Sweden
| | - Max van Wanrooij
- Solid Mechanics, School of Engineering Sciences, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Eva Karlöf
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, 17164 Stockholm, Sweden
| | - Malin Kronqvist
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, 17164 Stockholm, Sweden
| | - Staffan Johansson
- Biochemistry & Cell & Tumor Biology, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | - Ljubica Matic
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, 17164 Stockholm, Sweden
| | - T. Christian Gasser
- Solid Mechanics, School of Engineering Sciences, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Ulf Hedin
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, 17164 Stockholm, Sweden
| |
Collapse
|
13
|
Wang M, Lin S, Mequanint K. Electrospun Biodegradable α-Amino Acid-Substituted Poly(organophosphazene) Fiber Mats for Stem Cell Differentiation towards Vascular Smooth Muscle Cells. Polymers (Basel) 2022; 14:polym14081555. [PMID: 35458303 PMCID: PMC9025042 DOI: 10.3390/polym14081555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Mesenchymal stem cells, derived from human-induced pluripotent stem cells (iPSC), are valuable for generating smooth muscle cells (SMCs) for vascular tissue engineering applications. In this study, we synthesized biodegradable α-amino acid-substituted poly(organophosphazene) polymers and electrospun nano-fibrous scaffolds (~200 nm diameter) to evaluate their suitability as a matrix for differentiation of iPSC-derived mesenchymal stem cells (iMSC) into mature contractile SMCs. Both the polymer synthesis approach and the electrospinning parameters were optimized. Three types of cells, namely iMSC, bone marrow derived mesenchymal stem cells (BM-MSC), and primary human coronary artery SMC, attached and spread on the materials. Although L-ascorbic acid (AA) and transforming growth factor-beta 1 (TGF-β1) were able to differentiate iMSC along the smooth muscle lineage, we showed that the electrospun fibrous mats provided material cues for the enhanced differentiation of iMSCs. Differentiation of iMSC to SMC was characterized by increased transcriptional levels of early to late-stage smooth muscle marker proteins on electrospun fibrous mats. Our findings provide a feasible strategy for engineering functional vascular tissues.
Collapse
|
14
|
von Kleeck R, Castagnino P, Assoian RK. Progerin mislocalizes myocardin-related transcription factor in Hutchinson-Guilford Progeria syndrome. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2022; 4:1-10. [PMID: 35441125 PMCID: PMC9012937 DOI: 10.1530/vb-21-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/15/2022] [Indexed: 01/24/2023]
Abstract
Hutchinson-Guilford Progeria syndrome (HGPS) is a rare genetic disease of premature aging and early death due to cardiovascular disease. The arteries of HGPS children and mice are pathologically stiff, and HGPS mice also display reduced arterial contractility. We recently showed that reduced contractility is an early event in HGPS and linked to an aberrantly low expression of smooth muscle myosin heavy chain (smMHC). Here, we have explored the basis for reduced smMHC abundance and asked whether it is a direct effect of progerin expression or a longer-term adaptive response. Myh11, the gene encoding for smMHC, is regulated by myocardin-related transcription factors (MRTFs), and we show that HGPS aortas have a reduced MRTF signature. Additionally, smooth muscle cells (SMCs) isolated from HGPS mice display reduced MRTF nuclear localization. Acute progerin expression in WT SMCs phenocopied both the decrease in MRTF nuclear localization and expression of Myh11 seen in HGPS. Interestingly, RNA-mediated depletion of MRTF-A in WT SMCs reproduced the preferential inhibitory effect of progerin on Myh11 mRNA relative to Acta2 mRNA. Our results show that progerin expression acutely disrupts MRTF localization to the nucleus and suggest that the consequent decrease in nuclear coactivator activity can help to explain the reduction in smMHC abundance and SMC contractility seen in HGPS.
Collapse
Affiliation(s)
- Ryan von Kleeck
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia Pennsylvania, USA
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paola Castagnino
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia Pennsylvania, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard K Assoian
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia Pennsylvania, USA
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|