1
|
Evren G, Korkom Y, Saboori A, Cakmak I. Exploring the potential of Trichoderma secondary metabolites against Tetranychus urticae (Acari: Tetranychidae). J Invertebr Pathol 2025; 211:108299. [PMID: 40064463 DOI: 10.1016/j.jip.2025.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/12/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
This study aimed to determine 1) the effects of fungal filtrates containing secondary metabolites from five different isolates of four different Trichoderma species (Trichoderma afroharzianum, T. guizhouense, T. harzianum, and T. virens) grown in different liquid media [malt extract broth (MEB), potato dextrose broth (PDB), yeast peptone glucose (YPG), minimal medium (MM), czapek-dox broth (CDB)] on Tetranychus urticae female, and 2) the effects of Trichoderma filtrates obtained from YPG liquid media on the different biological stages of T. urticae in Petri dish and pot experiments. Results showed that the Trichoderma filtrates produced in the YPG medium exhibited the highest mortality rate of 67.6-83.1 % against T. urticae females at 7 days post-application (dpa) compared to other media. In Petri dish experiments, the mortality rates of Trichoderma filtrates on egg, larva, protonymph and deutonymph stages of T. urticae at 7 dpa were 54.0-57.8 %, 71.5-76.0 %, 72.5-79.8 % and 72.8-80.8 %, respectively. Significant differences were observed between the Trichoderma species and control (P < 0.01) but not among the Trichoderma species (P > 0.05). Trichoderma afroharzianum (83 %) and T. virens (84 %) showed the highest mortality rate on T. urticae adult females at 7 dpa and statistically significant differences were observed among Trichoderma species. Pot experiments revealed that the number of viable T. urticae eggs and mobile stages was significantly lower for T. afroharzianum (110.3 eggs, 105.8 mobile stages) and T. virens (118.5 eggs, 115.3 mobile stages) compared to the control (518.9 eggs, 452.5 mobile stages) at 7 dpa. Significant differences were observed between Trichoderma species and control, but not between T. afroharzianum and T. virens. These findings suggest that Trichoderma secondary metabolites are highly effective against economically important pest such as T. urticae, demonstrating their potential as bio-acaricides. Future research should focus on identifying the specific acaricidal compound(s) within these filtrates.
Collapse
Affiliation(s)
- Gökçenur Evren
- Aydin Adnan Menderes University, Faculty of Agriculture, Department of Plant Protection, Aydin, Türkiye.
| | - Yunus Korkom
- Aydin Adnan Menderes University, Faculty of Agriculture, Department of Plant Protection, Aydin, Türkiye.
| | - Alireza Saboori
- Aydin Adnan Menderes University, Faculty of Agriculture, Department of Plant Protection, Aydin, Türkiye; University of Tehran, Faculty of Agriculture, Department of Plant Protection, Jalal Afshar Zoological Museum, Karaj, Iran.
| | - Ibrahim Cakmak
- Aydin Adnan Menderes University, Faculty of Agriculture, Department of Plant Protection, Aydin, Türkiye.
| |
Collapse
|
2
|
Stock SP, Hazir S. The bacterial symbionts of Entomopathogenic nematodes and their role in symbiosis and pathogenesis. J Invertebr Pathol 2025; 211:108295. [PMID: 40032241 DOI: 10.1016/j.jip.2025.108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Entomopathogenic bacteria in the genera Xenorhabdus and Photorhabdus are mutualistically associated with entomopathogenic nematodes (EPN) Steinernema and Heterorhabditis, respectively. Together they form an insecticidal partnership which has been shown to kill a wide range of insect species. The spectrum of dependence in this symbiotic partnership is diverse, ranging from a tight, obligate relationship to a facultative one. A body of evidence suggests that the reproductive fitness of the nematode-bacterium partnership is tightly associated and interdependent. Furthermore, maintenance of their virulence is also critical to the conversion of the insect host as a suitable environment where this partnership can be perpetuated. Disruption of the symbiotic partnership can have detrimental effects on the fitness of both partners. The nematode-bacterial symbiont-insect partnership represents a model system in ecology and evolutionary biology and amenable to investigate beneficial and antagonistic interactions between invertebrates and microbes. Furthermore, the EPN's bacterial symbionts are also viewed as a model system to study the biosynthesis, structure and function of various natural products. Their ability to produce up to 25 different natural product classes is outstanding among the Morganellaceae. These natural products show biological activity, most likely originating from important functions during the life cycle of both the nematodes and their symbionts. Tools and high throughput technologies have been developed to identify ubiquitous and rare molecules and study their function and assess their potential as novel biological activities. We herein summarize the symbiotic relationship between EPN and their bacterial symbionts, focusing on their fitness and their ability to successfully access and utilize an insect host. We also recapitulate the history of natural products research highlighting recent findings and the synthetic biology approaches that are currently implemented to identify non-natural derivatives from Xenorhabdus and Photorhabdus with improved biological activity.
Collapse
Affiliation(s)
- S Patricia Stock
- Department of Horticulture, Oregon State University, Agriculture and Life Sciences Bldg. Rm 4007B 2750 SW Campus Way, Corvallis, OR 97331, USA.
| | - Selçuk Hazir
- Aydin Adnan Menderes University, Faculty of Science, Department of Biology, Aydin, Turkey
| |
Collapse
|
3
|
Sajnaga E, Kazimierczak W, Karaś MA, Jach ME. Exploring Xenorhabdus and Photorhabdus Nematode Symbionts in Search of Novel Therapeutics. Molecules 2024; 29:5151. [PMID: 39519791 PMCID: PMC11547657 DOI: 10.3390/molecules29215151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Xenorhabdus and Photorhabdus bacteria, which live in mutualistic symbiosis with entomopathogenic nematodes, are currently recognised as an important source of bioactive compounds. During their extraordinary life cycle, these bacteria are capable of fine regulation of mutualism and pathogenesis towards two different hosts, a nematode and a wide range of insect species, respectively. Consequently, survival in a specific ecological niche favours the richness of biosynthetic gene clusters and respective metabolites with a specific structure and function, providing templates for uncovering new agrochemicals and therapeutics. To date, numerous studies have been published on the genetic ability of Xenorhabdus and Photorhabdus bacteria to produce biosynthetic novelty as well as distinctive classes of their metabolites with their activity and mechanism of action. Research shows diverse techniques and approaches that can lead to the discovery of new natural products, such as extract-based analysis, genetic engineering, and genomics linked with metabolomics. Importantly, the exploration of members of the Xenorhabdus and Photorhabdus genera has led to encouraging developments in compounds that exhibit pharmaceutically important properties, including antibiotics that act against Gram- bacteria, which are extremely difficult to find. This article focuses on recent advances in the discovery of natural products derived from these nematophilic bacteria, with special attention paid to new valuable leads for therapeutics.
Collapse
Affiliation(s)
- Ewa Sajnaga
- Department of Biomedicine and Environmental Research, John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland;
| | - Waldemar Kazimierczak
- Department of Biomedicine and Environmental Research, John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland;
| | - Magdalena Anna Karaś
- Department of Genetics and Microbiology, Institute of Biological Science, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Monika Elżbieta Jach
- Department of Molecular Biology, John Paul II Catholic University of Lublin, Konstantynów 1H, 20-708 Lublin, Poland;
| |
Collapse
|
4
|
Touray M, Ulug D, Gulsen SH, Cimen H, Hazir C, Bode HB, Hazir S. Natural products from Xenorhabdus and Photorhabdus show promise as biolarvicides against Aedes albopictus. PEST MANAGEMENT SCIENCE 2024; 80:4231-4242. [PMID: 38619291 DOI: 10.1002/ps.8127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND In the perpetual struggle to manage mosquito populations, there has been increasing demand for the development of biopesticides to supplant/complement current products. The insecticidal potential of Xenorhabdus and Photorhabdus has long been recognized and is of interest for the control of important mosquitoes like Aedes albopictus which vectors over 20 different arboviruses of global public health concern. RESULTS The larvicidal effects of cell-free supernatants, cell growth cultures and cell mass of an extensive list of Xenorhabdus and Photorhabdus spp. was investigated. They were quite effective against Ae. albopictus causing larval mortality ranging between 52-100%. Three Photorhabdus spp. and 13 Xenorhabdus spp. release larvicidal compounds in cell-free supernatants. Cell growth culture of all tested species exhibited larvicidal activity, except for Xenorhabdus sp. TS4. Twenty-one Xenorhabdus and Photorhabdus bacterial cells (pellet) exhibited oral toxicity (59-91%) against exposed larvae. The effect of bacterial supernatants on the mosquito eggs were also assessed. Bacterial supernatants inhibited the hatching of mosquito eggs; when unhatched eggs were transferred to clean water, they all hatched. Using the easyPACId approach, the larvicidal compounds in bacterial supernatant were identified as fabclavine from X. szentirmaii and xencoumacin from X. nematophila (causing 98 and 70% mortality, respectively, after 48 h). Xenorhabdus cabanillasii and X. hominickii fabclavines were as effective as commercial Bacillus thuringiensis subsp. israelensis and spinosad products within 5 days post-application (dpa). CONCLUSION Fabclavine and xenocoumacin can be developed into novel biolarvicides, can be used as a model to synthesize other compounds or/and can be combined with other commercial biolarvicides. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Mustapha Touray
- Department of Biology, Faculty of Science, Aydin Adnan Menderes University, Aydın, Turkey
| | - Derya Ulug
- Department of Biology, Faculty of Science, Aydin Adnan Menderes University, Aydın, Turkey
| | - Sebnem Hazal Gulsen
- Department of Biology, Faculty of Science, Aydin Adnan Menderes University, Aydın, Turkey
- Department of Plant and Animal Production, Kocarli Vocational School, Aydin Adnan Menderes University, Aydın, Turkey
| | - Harun Cimen
- Recombinant DNA and Recombinant Protein Center, Aydın Adnan Menderes University, Aydın, Turkey
| | - Canan Hazir
- Aydin Health Services Vocational School, Adnan Menderes University, Aydın, Turkey
| | - Helge B Bode
- Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, Marburg, Germany
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt, Germany
- Center for Synthetic Microbiology, Phillips University Marburg, Marburg, Germany
- Department of Chemistry, Phillips University Marburg, Marburg, Germany
- Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Selcuk Hazir
- Department of Biology, Faculty of Science, Aydin Adnan Menderes University, Aydın, Turkey
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
5
|
Ulug D, Touray M, Hazal Gulsen S, Cimen H, Hazir C, Bode HB, Hazir S. A taste of a toxin paradise: Xenorhabdus and Photorhabdus bacterial secondary metabolites against Aedes aegypti larvae and eggs. J Invertebr Pathol 2024; 205:108126. [PMID: 38734162 DOI: 10.1016/j.jip.2024.108126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Aedes-transmitted arboviral infections such as Dengue, Yellow Fever, Zika and Chikungunya are increasing public health problems. Xenorhabdus and Photorhabdus bacteria are promising sources of effective compounds with important biological activities. This study investigated the effects of cell-free supernatants of X. szentirmaii, X. cabanillasii and P. kayaii against Ae. aegypti eggs and larvae and identified the bioactive larvicidal compound in X. szentirmaii using The EasyPACId method. Among the three tested bacterial species, X. cabanillasii exhibited the highest (96%) egg hatching inhibition and larvicidal activity (100% mortality), whereas P. kayaii was the least effective species in our study. EasyPACId method revealed that bioactive larvicidal compound in the bacterial supernatant was fabclavine. Fabclavines obtained from promoter exchange mutants of different bacterial species such as X. cabanillasii, X. budapestensis, X. indica, X. szentirmaii, X. hominckii and X. stockiae were effective against mosquito larvae. Results show that these bacterial metabolites have potential to be used in integrated pest management (IPM) programmes of mosquitoes.
Collapse
Affiliation(s)
- Derya Ulug
- Department of Biology, Faculty of Science, Aydin Adnan Menderes University, 09100, Aydin, Türkiye.
| | - Mustapha Touray
- Department of Biology, Faculty of Science, Aydin Adnan Menderes University, 09100, Aydin, Türkiye
| | - Sebnem Hazal Gulsen
- Department of Plant and Animal Production, Kocarli Vocational School, Aydin Adnan Menderes University, 09100 Aydin, Türkiye
| | - Harun Cimen
- Recombinant DNA and Recombinant Protein Application and Research Center, Aydin Adnan Menderes University, 09100, Aydin, Türkiye
| | - Canan Hazir
- Aydin Health Services Vocational School, Adnan Menderes University, 09100 Aydin, Türkiye
| | - Helge B Bode
- Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043 Marburg, Germany; Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; Center for Synthetic Microbiology, Phillips University Marburg, 35043 Marburg, Germany; Department of Chemistry, Phillips University Marburg, 35043 Marburg, Germany; Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, 60325, Germany
| | - Selcuk Hazir
- Department of Biology, Faculty of Science, Aydin Adnan Menderes University, 09100, Aydin, Türkiye
| |
Collapse
|
6
|
Han Y, Zhang S, Wang Y, Gao J, Han J, Yan Z, Ta Y, Wang Y. Enhancing the yield of Xenocoumacin 1 in Xenorhabdus nematophila YL001 by optimizing the fermentation process. Sci Rep 2024; 14:13506. [PMID: 38866882 PMCID: PMC11169479 DOI: 10.1038/s41598-024-63794-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Xenocoumacin 1 (Xcn 1), antibiotic discovered from secondary metabolites of Xenorhabdus nematophila, had the potential to develop into a new pesticide due to its excellent activity against bacteria, oomycetes and fungi. However, the current low yield of Xcn1 limits its development and utilization. To improve the yield of Xcn1, response surface methodology was used to determine the optimal composition of fermentation medium and one factor at a time approach was utilized to optimize the fermentation process. The optimal medium composed of in g/L: proteose peptone 20.8; maltose 12.74; K2HPO4 3.77. The optimal fermentation conditions were that 25 °C, initial pH 7.0, inoculum size 10%, culture medium 75 mL in a 250 mL shake flask with an agitation rate of 150 rpm for 48 h. Xenorhabdus nematophila YL001 was produced the highest Xcn1 yield (173.99 mg/L) when arginine was added to the broth with 3 mmol/L at the 12th h. Compared with Tryptic Soy Broth medium, the optimized fermentation process resulted in a 243.38% increase in Xcn1 production. The obtained results confirmed that optimizing fermentation technology led to an increase in Xcn1 yield. This work would be helpful for efficient Xcn1 production and lay a foundation for its industrial production.
Collapse
Affiliation(s)
- Yunfei Han
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, College of Plant Protection, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Shujing Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, 58 People's Avenue, Haikou, 570228, Hainan, China
| | - Yang Wang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, College of Plant Protection, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jiangtao Gao
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, College of Plant Protection, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jinhua Han
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, College of Plant Protection, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Zhiqiang Yan
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, College of Plant Protection, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Yongquan Ta
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, College of Plant Protection, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Yonghong Wang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
- Shaanxi Research Center of Biopesticide Engineering & Technology, College of Plant Protection, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Yuan B, Li B, Shen H, Duan J, Jia F, Maimaiti Y, Li Y, Li G. Identification of fabclavine derivatives, Fcl-7 and Fcl-8, from Xenorhabdus budapestensis as major antifungal natural products against Rhizoctonia solani. J Appl Microbiol 2023; 134:lxad190. [PMID: 37656887 DOI: 10.1093/jambio/lxad190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/30/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
AIMS Black scurf disease, caused by Rhizoctonia solani, is a severe soil-borne and tuber-borne disease, which occurs and spreads in potato growing areas worldwide and poses a serious threat to potato production. New biofungicide is highly desirable for addressing the issue, and natural products (NPs) from Xenorhabdus spp. provide prolific resources for biofungicide development. In this study, we aim to identify antifungal NPs from Xenorhabdus spp. for the management of this disease. METHODS AND RESULTS Out of the 22 Xenorhabdus strains investigated, Xenorhabdus budapestensis 8 (XBD8) was determined to be the most promising candidate with the measured IC50 value of its cell-free supernatant against R. solani as low as 0.19 ml l-1. The major antifungal compound in XBD8 started to be synthesized in the middle logarithmic phase and reached a stable level at stationary phase. Core gene deletion coupled with high-resolution mass spectrometry analysis determined the major antifungal NPs as fabclavine derivatives, Fcl-7 and 8, which showed broad-spectrum bioactivity against important pathogenic fungi. Impressively, the identified fabclavine derivatives effectively controlled black scurf disease in both greenhouse and field experiments, significantly improving tuber quality and increasing with marketable tuber yield from 29 300 to 35 494 kg ha-1, comparable with chemical fungicide fludioxonil. CONCLUSIONS The fabclavine derivatives Fcl-7 and 8 were determined as the major antifungal NPs in XBD8, which demonstrated a bright prospect for the management of black scurf disease.
Collapse
Affiliation(s)
- Baoming Yuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Plant Protection, Hebei Agricultural University, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding 071000, China
| | - Beibei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium
| | - Hongfei Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiaqi Duan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fenglian Jia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yushanjiang Maimaiti
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Research Institute of plant protection Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 83009, China
| | - Yaning Li
- College of Plant Protection, Hebei Agricultural University, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding 071000, China
| | - Guangyue Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Li B, Yuan B, Duan J, Qin Y, Shen H, Ren J, Francis F, Chen M, Li G. Identification of Fcl-29 as an Effective Antifungal Natural Product against Fusarium graminearum and Combinatorial Engineering Strategy for Improving Its Yield. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5554-5564. [PMID: 36995163 DOI: 10.1021/acs.jafc.2c09012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum, whose occurrence and prevalence causes 10-70% wheat production loss, is one of the most destructive diseases influencing the production of wheat globally. To identify the potential natural products (NPs) against F. graminearum, we screened 59 Xenorhabdus strains and discovered that the cell-free supernatant (CFS) of X. budapestensis 14 (XBD14) displays the highest bioactivity. Multiple genetic methods coupled with HRMS/MS analysis determined the major antifungal NP to be Fcl-29, a fabclavine derivative. Fcl-29 was found to effectively control FHB of wheat in the field test and demonstrated broad-spectrum antifungal activity against important pathogenic fungi. The production of Fcl-29 was dramatically improved by 33.82-fold with the combinatorial strategy of genetic engineering (1.66-fold) and fermentation engineering (20.39-fold). The exploration of a new biofungicide in global plant protection is now possible.
Collapse
Affiliation(s)
- Beibei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium
| | - Baoming Yuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiaqi Duan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youcai Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongfei Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium
| | - Minghua Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guangyue Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Vicente-Díez I, Pou A, Campos-Herrera R. The deterrent ability of Xenorhabdus nematophila and Photorhabdus laumondii compounds as a potential novel tool for Lobesia botrana (Lepidoptera: Tortricidae) management. J Invertebr Pathol 2023; 198:107911. [PMID: 36921888 DOI: 10.1016/j.jip.2023.107911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
The grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae), is a critical pest for vineyards and causes significant economic losses in wine-growing areas worldwide. Identifying and developing novel semiochemical cues (e.g. volatile bacterial compounds) which modify the ovipositional and trophic behaviour of L. botrana in vineyard fields could be a novel control alternative in viticulture. Xenorhabdus spp. and Photorhabdus spp. are becoming one of the best-studied bacterial species due to their potential interest in producing toxins and deterrent factors. In this study, we investigated the effect of the deterrent compounds produced by Xenorhabdus nematophila and Photorhabdus laumondii on the ovipositional moth behaviour and the larval feeding preference of L. botrana. Along with the in-vitro bioassays performed, we screened the potential use of 3 d cell-free bacterial supernatants and 3 and 5 d unfiltered bacterial ferments. In addition, we tested two application systems: (i) contact application of the bacterial compounds and (ii) volatile bacterial compounds application. Our findings indicate that the deterrent effectiveness varied with bacterial species, the use of bacterial cell-free supernatants or unfiltered fermentation product, and the culture times. Grapes soaked in the 3 d X. nematophila and P. laumondii ferments had ∼ 55% and ∼ 95% fewer eggs laid than the control, respectively. Likewise, the volatile compounds emitted by the 5 d P. laumondii fermentations resulted in ∼ 100% avoidance of L. botrana ovipositional activity for three days. Furthermore, both bacterial fermentation products have larval feeding deterrent effects (∼65% of the larva chose the control grapes), and they significantly reduced the severity of damage caused by third instar larva in treated grapes. This study provides insightful information about a novel bacteria-based tool which can be used as an eco-friendly and economical alternative in both organic and integrated control of L. botrana in vineyard.
Collapse
Affiliation(s)
- Ignacio Vicente-Díez
- Instituto de Ciencias de la Vid y del Vino (ICVV, Gobierno de La Rioja, CSIC, Universidad de La Rioja), Finca La GRajera, Ctra. Burgos Km. 6 Salida 13 Lo-20, Logroño 26007, Spain
| | - Alicia Pou
- Instituto de Ciencias de la Vid y del Vino (ICVV, Gobierno de La Rioja, CSIC, Universidad de La Rioja), Finca La GRajera, Ctra. Burgos Km. 6 Salida 13 Lo-20, Logroño 26007, Spain
| | - Raquel Campos-Herrera
- Instituto de Ciencias de la Vid y del Vino (ICVV, Gobierno de La Rioja, CSIC, Universidad de La Rioja), Finca La GRajera, Ctra. Burgos Km. 6 Salida 13 Lo-20, Logroño 26007, Spain.
| |
Collapse
|
10
|
Huang X, Sun Y, Liu S, Li Y, Li C, Sun Y, Ding X, Xia L, Hu Y, Hu S. Recombineering using RecET-like recombinases from Xenorhabdus and its application in mining of natural products. Appl Microbiol Biotechnol 2022; 106:7857-7866. [DOI: 10.1007/s00253-022-12258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
11
|
Toxicity of Photorhabdus luminescens and Xenorhabdus bovienii bacterial metabolites to pecan aphids (Hemiptera: Aphididae) and the lady beetle Harmonia axyridis (Coleoptera: Coccinellidae). J Invertebr Pathol 2022; 194:107806. [DOI: 10.1016/j.jip.2022.107806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022]
|
12
|
Gulsen SH, Tileklioglu E, Bode E, Cimen H, Ertabaklar H, Ulug D, Ertug S, Wenski SL, Touray M, Hazir C, Bilecenoglu DK, Yildiz I, Bode HB, Hazir S. Antiprotozoal activity of different Xenorhabdus and Photorhabdus bacterial secondary metabolites and identification of bioactive compounds using the easyPACId approach. Sci Rep 2022; 12:10779. [PMID: 35750682 PMCID: PMC9232601 DOI: 10.1038/s41598-022-13722-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/26/2022] [Indexed: 12/20/2022] Open
Abstract
Natural products have been proven to be important starting points for the development of new drugs. Bacteria in the genera Photorhabdus and Xenorhabdus produce antimicrobial compounds as secondary metabolites to compete with other organisms. Our study is the first comprehensive study screening the anti-protozoal activity of supernatants containing secondary metabolites produced by 5 Photorhabdus and 22 Xenorhabdus species against human parasitic protozoa, Acanthamoeba castellanii, Entamoeba histolytica, Trichomonas vaginalis, Leishmania tropica and Trypanosoma cruzi, and the identification of novel bioactive antiprotozoal compounds using the easyPACId approach (easy Promoter Activated Compound Identification) method. Though not in all species, both bacterial genera produce antiprotozoal compounds effective on human pathogenic protozoa. The promoter exchange mutants revealed that antiprotozoal bioactive compounds produced by Xenorhabdus bacteria were fabclavines, xenocoumacins, xenorhabdins and PAX peptides. Among the bacteria assessed, only P. namnaoensis appears to have acquired amoebicidal property which is effective on E. histolytica trophozoites. These discovered antiprotozoal compounds might serve as starting points for the development of alternative and novel pharmaceutical agents against human parasitic protozoa in the future.
Collapse
Affiliation(s)
- Sebnem Hazal Gulsen
- Department of Biology, Faculty of Arts and Science, Aydin Adnan Menderes University, Aydin, Türkiye
| | - Evren Tileklioglu
- Department of Parasitology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Türkiye
| | - Edna Bode
- Max-Planck-Institute for Terrestrial Microbiology Department, Natural Products in Organismic Interactions, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Harun Cimen
- Department of Biology, Faculty of Arts and Science, Aydin Adnan Menderes University, Aydin, Türkiye
| | - Hatice Ertabaklar
- Department of Parasitology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Türkiye
| | - Derya Ulug
- Department of Biology, Faculty of Arts and Science, Aydin Adnan Menderes University, Aydin, Türkiye
| | - Sema Ertug
- Department of Parasitology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Türkiye
| | - Sebastian L Wenski
- Max-Planck-Institute for Terrestrial Microbiology Department, Natural Products in Organismic Interactions, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Mustapha Touray
- Department of Biology, Faculty of Arts and Science, Aydin Adnan Menderes University, Aydin, Türkiye
| | - Canan Hazir
- Aydin Health Services Vocational School, Aydin Adnan Menderes University, 09100, Aydin, Türkiye
| | | | - Ibrahim Yildiz
- Department of Parasitology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Türkiye
| | - Helge B Bode
- Max-Planck-Institute for Terrestrial Microbiology Department, Natural Products in Organismic Interactions, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany. .,Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany. .,Senckenberg Gesellschaft für Naturforschung, 60325, Frankfurt, Germany.
| | - Selcuk Hazir
- Department of Biology, Faculty of Arts and Science, Aydin Adnan Menderes University, Aydin, Türkiye.
| |
Collapse
|
13
|
Natural products from Photorhabdus and Xenorhabdus: mechanisms and impacts. Appl Microbiol Biotechnol 2022; 106:4387-4399. [PMID: 35723692 DOI: 10.1007/s00253-022-12023-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/21/2022]
Abstract
Insects and fungal pathogens pose constant problems to public health and agriculture, especially in resource-limited parts of the world; and the use of chemical pesticides continues to be the main methods for the control of these organisms. Photorhabdus spp. and Xenorhabdus spp., (Fam; Morganellaceae), enteric symbionts of Steinernema, and Heterorhabditis nematodes are naturally found in soil on all continents, except Antarctic, and on many islands throughout the world. These bacteria produce diverse secondary metabolites that have important biological and ecological functions. Secondary metabolites include non-ribosomal peptides, polyketides, and/or hybrid natural products that are synthesized using polyketide synthetase (PRS), non-ribosomal peptide synthetase (NRPS), or similar enzymes and are sources of new pesticide/drug compounds and/or can serve as lead molecules for the design and synthesize of new alternatives that could replace current ones. This review addresses the effects of these bacterial symbionts on insect pests, fungal phytopathogens, and animal pathogens and discusses the substances, mechanisms, and impacts on agriculture and public health. KEY POINTS: • Insects and fungi are a constant menace to agricultural and public health. • Chemical-based control results in resistance development. • Photorhabdus and Xenorhabdus are compelling sources of biopesticides.
Collapse
|