1
|
Prasad Kumara PAAS, Cooper PR, Cathro P, Gould M, Dias G, Ratnayake J. Bioceramics in Endodontics: Limitations and Future Innovations-A Review. Dent J (Basel) 2025; 13:157. [PMID: 40277487 PMCID: PMC12026347 DOI: 10.3390/dj13040157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Bioceramic materials for endodontic treatments have gradually transformed over the years into materials with enhanced biocompatibility and chemical and mechanical properties compared to earlier generations. In endodontics procedures, these materials are used as restorative material in applications such as root-end fillings, pulp capping, perforations repair, and apexification repair procedures. However, they have far from ideal mechanical and handling properties, biocompatibility issues, aesthetic concerns due to tooth discolouration, limited antibacterial activity, and affordability, which are amongst several key limitations. Notably, bioceramic materials are popular due to their biocompatibility, sealing ability, and durability, consequently surpassing traditional materials such as gutta-percha and zinc oxide-eugenol sealers. A lack of recent advancements in the field, combined with nanomaterials, has improved the formulations of these materials to overcome these limitations. The existing literature emphasises the benefits of bioceramics while underreporting their poor mechanical properties, handling difficulties, cost, and various other drawbacks. The key gaps identified in the literature are the insufficient coverage of emerging materials, narrow scope, limited insights into future developments, and underreporting of failures and complications of the existing materials. Consequently, this review aims to highlight the key limitations of various endodontic materials, primarily focusing on calcium silicate, calcium phosphate, and bioactive glass-based materials, which are the most abundantly used materials in dentistry. Based on the literature, bioceramic materials in endodontics have significantly improved over recent years, with different combinations of materials and technology compared to earlier generations while preserving many of their original properties, with some having affordable costs. This review also identified key innovations that could shape the future of endodontic materials, highlighting the ongoing evolution and advancements in endodontic treatments.
Collapse
Affiliation(s)
| | - Paul Roy Cooper
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand; (P.A.A.S.P.K.); (P.C.); (M.G.)
| | - Peter Cathro
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand; (P.A.A.S.P.K.); (P.C.); (M.G.)
| | - Maree Gould
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand; (P.A.A.S.P.K.); (P.C.); (M.G.)
| | - George Dias
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand;
| | - Jithendra Ratnayake
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand; (P.A.A.S.P.K.); (P.C.); (M.G.)
| |
Collapse
|
2
|
Saroj S, Vijayalakshmi U. Structural, morphological and biological assessment of magnetic hydroxyapatite with superior hyperthermia potential for orthopedic applications. Sci Rep 2025; 15:3234. [PMID: 39863634 PMCID: PMC11762292 DOI: 10.1038/s41598-025-87111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth. In this study, iron-doped HA was synthesized using a refluxing-based sol-gel route with varying concentrations of iron (1-9 M%). Samples were analyzed using an X-ray diffractometer (XRD), UV-Vis Spectrophotometer, Fourier-transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM) and Scanning Electron Microscope (SEM). The biological assessment was carried out by hemolytic assay, anti-bacterial activity and in-vitro biocompatibility. XRD data confirmed the evolution of the hexagonal HA crystal structure with the reduction in the crystallinity and the crystallite size. All the characteristic bands were confirmed using FT-IR which also further proved the existence of A-type carbonated apatite. The UV-Vis spectra confirmed the reduction in the band gap energies owing to the substitution of iron. The SEM results showed a change in the shape of the samples with increasing iron concentration. The magnetic behavior of samples also altered from diamagnetic to ferromagnetic behavior due to the doping of iron with enhanced heating efficiency. All the samples were found to be hemocompatible. The antibacterial efficacy was found to be higher for E. coli (gram-negative) bacteria compared to S. aureus (gram-positive) bacteria. Moreover, the superior cell viability of MG-63 (osteoblast-like) cells was observed in Fe-doped HA, attributed to MTT assay which revealed the enhanced cell viability of osteoblast-like cells in the Fe-doped HA. These results strongly emphasize the potential of the developed samples for bone regeneration applications.
Collapse
Affiliation(s)
- Smrithi Saroj
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - U Vijayalakshmi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
3
|
Lee Y, Shin S, Kim MJ. Production of CaCO 3-single-coated probiotics and evaluation of their spectroscopic properties, morphological characteristics, viability, and intestinal delivery efficiency. Food Chem 2024; 457:140076. [PMID: 38879960 DOI: 10.1016/j.foodchem.2024.140076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
The intake of probiotics offers various health benefits; however, their efficacy depends on the maintenance of viability during industrial processing and digestion. Probiotic viability can be compromised during encapsulation, freeze-drying, storage, and digestion, necessitating multiple coatings. This complicates production and raises costs. In this study, CaCO3-single-coated probiotics (CSCPs) were prepared, an approach rarely reported before. Through instrumental analyses, the encapsulation of probiotics within CaCO3 was confirmed, ensuring their high viability. This proposed technology effectively preserves the viability of probiotics during the encapsulation and freeze-drying processes, resulting in minimal cell loss. Moreover, CSCPs demonstrated exceptional viability performance under simulated gastric and intestinal conditions. Notably, 100% of these microorganisms reached the intestines, delivering over 10 billion CFUs of probiotics in a viable state. This study highlights the potential of CSCPs as a feasible solution for overcoming probiotic encapsulation challenges and optimizing therapeutic benefits.
Collapse
Affiliation(s)
- Youjeong Lee
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - Seonmi Shin
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - Myoung-Jin Kim
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea.
| |
Collapse
|
4
|
Qi ML, Long Z, Liu XC, Zhang H, Li J, Yao S. Crystallization of smooth amorphous calcium phosphate microspheres to core-shell hydroxyapatite microspheres. RSC Adv 2024; 14:25369-25377. [PMID: 39139250 PMCID: PMC11320051 DOI: 10.1039/d4ra04078c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Calcium phosphates (Ca-P) represent a significant class of biological minerals found in natural hard tissues. Crystallization through phase transformation of a metastable precursor is an effective strategy to guide the growth of crystalline Ca-P with exceptional functionality. Despite extensive research on Ca-P, the exact process during the crystallization of amorphous particles to hydroxyapatite (HA) remains elusive. Herein, pure HA microspheres with a core-shell structure are crystallized via dissolution and re-crystallization of smooth amorphous calcium phosphate (ACP) microspheres. The transformation is initiated with the increase of the hydrothermal treatment time in the presence of sodium trimetaphosphate and l-glutamic. The underlying mechanisms along with the kinetics of such transformation are explored. Nanocrystalline areas are formed on the smooth ACP microspheres and crystallization advances via nanometre-sized clusters formed by directional arrangement of nanocrystalline whiskers. Our findings shed light on a crucial but unclear stage in the genesis of HA crystals, specifically under the conditions of hydrothermal synthesis.
Collapse
Affiliation(s)
- Mei-Li Qi
- School of Civil Engineering, Shandong Jiaotong University Ji'nan 250357 China
- Jinan Key Laboratory for Low-Carbon and Eco-Friendly Road Materials, Shandong Jiaotong University Ji'nan 250357 China
| | - Zhaoxuan Long
- School of Civil Engineering, Shandong Jiaotong University Ji'nan 250357 China
| | - Xiao-Cun Liu
- School of Civil Engineering, Shandong Jiaotong University Ji'nan 250357 China
- Jinan Key Laboratory for Low-Carbon and Eco-Friendly Road Materials, Shandong Jiaotong University Ji'nan 250357 China
| | - Haijun Zhang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200092 China
| | - Jin Li
- School of Civil Engineering, Shandong Jiaotong University Ji'nan 250357 China
- Jinan Key Laboratory for Low-Carbon and Eco-Friendly Road Materials, Shandong Jiaotong University Ji'nan 250357 China
| | - Shengkun Yao
- Shandong Provincial Engineering and Technical Center of Light Manipulations and Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University Ji'nan 250014 China
- Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University Ji'nan 250358 China
| |
Collapse
|
5
|
Shaikh S, Gupta S, Mishra A, Sheikh PA, Singh P, Kumar A. Laser-assisted synthesis of nano-hydroxyapatite and functionalization with bone active molecules for bone regeneration. Colloids Surf B Biointerfaces 2024; 237:113859. [PMID: 38547794 DOI: 10.1016/j.colsurfb.2024.113859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 03/17/2024] [Indexed: 04/08/2024]
Abstract
The main goal of bone tissue engineering research is to replace the allogenic and autologous bone graft substitutes that can promote bone repair. Owing to excellent biocompatibility and osteoconductivity, hydroxyapatite is in extensive research and high demand for both medical and non-medical applications. Although various methods have been developed for the synthesis of hydroxyapatite, in the present study we have shown the use of nanosecond laser energy in the wet precipitation method of nano-hydroxyapatite (nHAP) synthesis without using ammonium solution or any other chemicals for pH maintenance. Here, the present study aimed to fabricate the nanohydroxyapatite using a nanosecond laser. The X-ray diffraction and Fourier transform infrared spectroscopy have confirmed the hydroxyapatite formation under laser irradiation in less time without aging. A transmission electron microscopy confirmed the nano size of synthesized nHAP, which is comparable to conventional nHAP. The length and width of the laser-assisted nHAP were found to be in the range of 50-200 nm and 15-20 nm, respectively, at various laser parameters. The crystallite size obtained by Debye Scherrer formulae was found to be in the range of ∼ 16-36 nm. In addition, laser-assisted nHAP based composite cryogel (nanohydroxyapatite/gelatin/collagen I) was synthesized and impregnated with bioactive molecules (bone morphogenic protein and zoledronic acid) that demonstrated significant osteogenic potential both in vitro in cell experiment and in vivo rat muscle pouch model (abdomen and tibia muscles). Dual-energy X-ray analysis, micro-CT, and histological analysis confirmed ectopic bone regeneration. Micro-CT based histomorphometry showed a higher amount (more than 10-fold) of mineralization for animal groups implanted with composite cryogels loaded with bioactive molecules compared to only composite cryogels groups. Our findings thus demonstrate a controlled and rapid synthetic method for the synthesis of nHAP with various physical, chemical, and biological properties exhibited as comparable to conventionally synthesized nHAP.
Collapse
Affiliation(s)
- Shazia Shaikh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Sneha Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ankita Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Parvaiz A Sheikh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Prerna Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Center for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, India; The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India; Center of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India.
| |
Collapse
|
6
|
Ngokwe ZB, Wolfoviz-Zilberman A, Sharon E, Zabrovsky A, Beyth N, Houri-Haddad Y, Kesler-Shvero D. Trans-Cinnamaldehyde-Fighting Streptococcus mutans Using Nature. Pharmaceutics 2024; 16:113. [PMID: 38258123 PMCID: PMC10818508 DOI: 10.3390/pharmaceutics16010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 01/24/2024] Open
Abstract
Streptococcus mutans (S. mutans) is the main cariogenic bacterium with acidophilic properties, in part due to its acid-producing and -resistant properties. As a result of this activity, hard tooth structures may demineralize and form caries. Trans-cinnamaldehyde (TC) is a phytochemical from the cinnamon plant that has established antibacterial properties for Gram-positive and -negative bacteria. This research sought to assess the antibacterial and antibiofilm effects of trans-cinnamaldehyde on S. mutans. TC was diluted to a concentration range of 156.25-5000 μg/mL in dimethyl sulfoxide (DMSO) 0.03-1%, an organic solvent. Antibacterial activity was monitored by testing the range of TC concentrations on 24 h planktonic growth compared with untreated S. mutans. The subminimal bactericidal concentrations (MBCs) were used to evaluate the bacterial distribution and morphology in the biofilms. Our in vitro data established a TC MBC of 2500 μg/mL against planktonic S. mutans using a microplate spectrophotometer. Furthermore, the DMSO-only controls showed no antibacterial effect against planktonic S. mutans. Next, the sub-MBC doses exhibited antibiofilm action at TC doses of ≥625 μg/mL on hydroxyapatite discs, as demonstrated through biofilm analysis using spinning-disk confocal microscopy (SDCM) and high-resolution scanning electron microscopy (HR-SEM). Our findings show that TC possesses potent antibacterial and antibiofilm properties against S. mutans. Our data insinuate that the most effective sub-MBC of TC to bestow these activities is 625 μg/mL.
Collapse
Affiliation(s)
- Zilefac Brian Ngokwe
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Z.B.N.); (A.W.-Z.); (E.S.); (A.Z.); (N.B.); (Y.H.-H.)
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Amit Wolfoviz-Zilberman
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Z.B.N.); (A.W.-Z.); (E.S.); (A.Z.); (N.B.); (Y.H.-H.)
| | - Esi Sharon
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Z.B.N.); (A.W.-Z.); (E.S.); (A.Z.); (N.B.); (Y.H.-H.)
| | - Asher Zabrovsky
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Z.B.N.); (A.W.-Z.); (E.S.); (A.Z.); (N.B.); (Y.H.-H.)
| | - Nurit Beyth
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Z.B.N.); (A.W.-Z.); (E.S.); (A.Z.); (N.B.); (Y.H.-H.)
| | - Yael Houri-Haddad
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Z.B.N.); (A.W.-Z.); (E.S.); (A.Z.); (N.B.); (Y.H.-H.)
| | - Dana Kesler-Shvero
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Z.B.N.); (A.W.-Z.); (E.S.); (A.Z.); (N.B.); (Y.H.-H.)
| |
Collapse
|
7
|
Ambrosio JAR, Marmo VLM, Gonçalves EP, Pinto JG, Ferreira-Strixino J, Raniero LJ, Beltrame M, Simioni AR. Hydroxyapatite microspheres used as a drug delivery system for gliosarcoma strain 9l/Lacz treatment by photodynamic therapy protocols. Photodiagnosis Photodyn Ther 2023; 44:103830. [PMID: 37852406 DOI: 10.1016/j.pdpdt.2023.103830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/14/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Hydroxyapatite (HAp) presents similarities with the human bone structure and presents properties such as biodegradability, biocompatibility, and osteoconductivity, which favors its use in prostheses implants and enables its use as a vehicle for the delivery of photosensitizers (PS) from systems of release (DDS) for photodynamic therapy applications Methods: In this work was to synthesized hydroxyapatite microspheres (meHAp), encapsulated with chloroaluminium phthalocyanine (ClAlPc), for DDS. meHAp was synthesized using vaterite as a template. The drug was encapsulated by mixing meHAp and a 50.0 mg.mL-1 ClAlPc solution. Photochemical, photophysical, and photobiological studies characterized the system. RESULTS The images from the SEM analysis showed the spherical form of the particles. All spectroscopic results showed excellent photophysical parameters of the drug studied when served in the meHAp system. The incorporation efficiency was 57.8 %. The trypan blue exclusion test results showed a significant reduction (p < 0.05) in cell viability for the groups treated with PDT at all concentrations above 250 μg.mL-1. In 9 L/lacZ gliosarcoma cells, PDT mediated at concentrations from 250 to 62.5 µg.mL-1 reduced cell viability by more than 98 %. In the cell internalization study, it was possible to observe the internalization of phthalocyanines at 37 °C, with the accumulation of PS in the cytoplasm and inside the nucleus in the two tested concentrations. CONCLUSIONS From all the results presented throughout the article, the meHAp system shows promise for use as a modified release system (DSD) in photodynamic therapy.
Collapse
Affiliation(s)
- Jessica A R Ambrosio
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil
| | - Vitor L M Marmo
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil
| | - Erika P Gonçalves
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil
| | - Juliana G Pinto
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil
| | - Juliana Ferreira-Strixino
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil
| | - Leandro J Raniero
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil
| | - Milton Beltrame
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil
| | - Andreza R Simioni
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil.
| |
Collapse
|
8
|
Jindal A, Patil N, Bains A, Sridhar K, Stephen Inbaraj B, Tripathi M, Chawla P, Sharma M. Recent Trends in Cereal- and Legume-Based Protein-Mineral Complexes: Formulation Methods, Toxicity, and Food Applications. Foods 2023; 12:3898. [PMID: 37959017 PMCID: PMC10649166 DOI: 10.3390/foods12213898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Minerals play an important role in maintaining human health as the deficiency of these minerals can lead to serious health issues. To address these deficiencies, current research efforts are actively investigating the utilization of protein-mineral complexes as eco-friendly, non-hazardous, suitable mineral fortifiers, characterized by minimal toxicity, for incorporation into food products. Thus, we reviewed the current challenges in incorporating the cereal-legume protein-inorganic minerals complexes' structure, binding properties, and toxicity during fortification on human health. Moreover, we further reviewed the development of protein-mineral complexes, characterization, and their food applications. The use of inorganic minerals has been associated with several toxic effects, leading to tissue-level toxicity. Cereal- and legume-based protein-mineral complexes effectively reduced the toxicity, improved bone mineral density, and has antioxidant properties. The characterization techniques provided a better understanding of the binding efficiency of cereal- and legume-based protein-mineral complexes. Overall, understanding the mechanism and binding efficiency underlying protein-mineral complex formation provided a novel insight into the design of therapeutic strategies for mineral-related diseases with minimal toxicity.
Collapse
Affiliation(s)
- Aprajita Jindal
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (A.J.); (N.P.)
| | - Nikhil Patil
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (A.J.); (N.P.)
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore 641021, India
| | | | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (A.J.); (N.P.)
| | | |
Collapse
|
9
|
Sui C, Robinson TE, Williams RL, Eisenstein NM, Grover LM. Triggered metabolism of adenosine triphosphate as an explanation for the chemical heterogeneity of heterotopic ossification. Commun Chem 2023; 6:227. [PMID: 37857687 PMCID: PMC10587346 DOI: 10.1038/s42004-023-01015-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
Heterotopic ossification (HO), the pathological formation of bone in soft tissues, is a debilitating condition, as well as one of the few instances of de novo bone formation in adults. Chemical mapping of HO tissue showed distinct islands of calcium phosphate within phosphate-deficient, calcium-rich regions, suggesting a transition to apatitic bone mineral from a non-phosphatic precursor. The transition of amorphous calcium carbonate (ACC), a generally suggested bone-mineral precursor, in physiological conditions was thus investigated. Here, we show that adenosine triphosphate (ATP), present in high amounts in forming bone, stabilised ACC for weeks in physiological conditions and that enzymatic degradation of ATP triggered rapid crystallisation into apatite, through an amorphous calcium phosphate phase. It is suggested that this localised enzymatic degradation could explain the chemical heterogeneity seen in HO and may also represent a pathway to physiological bone mineralisation.
Collapse
Affiliation(s)
- Cong Sui
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Thomas E Robinson
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Richard L Williams
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Neil M Eisenstein
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Liam M Grover
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
10
|
Murphy B, Morris MA, Baez J. Development of Hydroxyapatite Coatings for Orthopaedic Implants from Colloidal Solutions: Part 1-Effect of Solution Concentration and Deposition Kinetics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2577. [PMID: 37764606 PMCID: PMC10535049 DOI: 10.3390/nano13182577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
This study introduces and explores the use of supersaturated solutions of calcium and phosphate ions to generate well-defined hydroxyapatite coatings for orthopaedic implants. The deposition of hydroxyapatite is conducted via several solutions of metastable precursors that precipitate insoluble hydroxyapatite minerals at a substrate-solution interface. Solutions of this nature are intrinsically unstable, but this paper outlines process windows in terms of time, temperature, concentration and pH in which coating deposition is controlled via the stop/go reaction. To understand the kinetics of the deposition process, comparisons based on ionic strength, particle size, electron imaging, elemental analyses and mass of the formed coating for various deposition solutions are carried out. This comprehensive dataset enables the measurement of deposition kinetics and identification of an optimum solution and its reaction mechanism. This study has established stable and reproducible process windows, which are precisely controlled, leading to the successful formation of desired hydroxyapatite films. The data demonstrate that this process is a promising and highly repeatable method for forming hydroxyapatites with desirable thickness, morphology and chemical composition at low temperatures and low capital cost compared to the existing techniques.
Collapse
Affiliation(s)
- Bríd Murphy
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| | - Mick A. Morris
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| | - Jhonattan Baez
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| |
Collapse
|
11
|
Słota D, Piętak K, Florkiewicz W, Jampilek J, Tomala A, Urbaniak MM, Tomaszewska A, Rudnicka K, Sobczak-Kupiec A. Clindamycin-Loaded Nanosized Calcium Phosphates Powders as a Carrier of Active Substances. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091469. [PMID: 37177013 PMCID: PMC10180150 DOI: 10.3390/nano13091469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Bioactive calcium phosphate ceramics (CaPs) are one of the building components of the inorganic part of bones. Synthetic CaPs are frequently used as materials for filling bone defects in the form of pastes or composites; however, their porous structure allows modification with active substances and, thus, subsequent use as a drug carrier for the controlled release of active substances. In this study, four different ceramic powders were compared: commercial hydroxyapatite (HA), TCP, brushite, as well as HA obtained by wet precipitation methods. The ceramic powders were subjected to physicochemical analysis, including FTIR, XRD, and determination of Ca/P molar ratio or porosity. These techniques confirmed that the materials were phase-pure, and the molar ratios of calcium and phosphorus elements were in accordance with the literature. This confirmed the validity of the selected synthesis methods. CaPs were then modified with the antibiotic clindamycin. Drug release was determined on HPLC, and antimicrobial properties were tested against Staphylococcus aureus. The specific surface area of the ceramic has been demonstrated to be a factor in drug release efficiency.
Collapse
Affiliation(s)
- Dagmara Słota
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Karina Piętak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Wioletta Florkiewicz
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Agnieszka Tomala
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Mateusz M Urbaniak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
- Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-237 Łódź, Poland
| | - Agata Tomaszewska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
- Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-237 Łódź, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| |
Collapse
|
12
|
Sahadat Hossain M, Shaikh MAA, Jahan SA, Mahmud M, Bin Mobarak M, Rahaman MS, Uddin MN, Ahmed S. Exploring the biomedical competency of gamma-radiation aided hydroxyapatite and its composite fabricated with nano-cellulose and chitosan. RSC Adv 2023; 13:9654-9664. [PMID: 36994085 PMCID: PMC10041542 DOI: 10.1039/d3ra00476g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
The well-known biomaterial Ca-hydroxyapatite (Hap) in its pristine form holds the top ranking position in the field of biomedical research and extensive investigation is continuing across the globe to enhance its competency. Hence, having the intention to introduce superior physiognomies (e.g. cytotoxicity, haemocompatibility, and bioactivity coupled with antimicrobial and antioxidant activity) in Hap, in this research work, we exposed Hap to 200 kGy γ-radiation. As a result, γ-radiated Hap exhibited extreme antimicrobial (more than 98%) and moderate (∼34%) antioxidant properties. On the other hand, cytotoxicity and haemocompatibility of γ-radiated Hap were in good agreement with the ISO 10993-5 and ISO 10993-4 standards respectively. Since, bone and joint infections as well as degenerative disorders e.g. osteoarthritis, osteomyelitis, bone injury, and spinal problems have emerged as serious issues and urge a remedial way out, application of γ-radiated Hap could be a promising solution in this regard.
Collapse
Affiliation(s)
- Md Sahadat Hossain
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Md Aftab Ali Shaikh
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Shirin Akter Jahan
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Monika Mahmud
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Mashrafi Bin Mobarak
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Md Saifur Rahaman
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission Dhaka 1349 Bangladesh
| | - Md Najem Uddin
- BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Samina Ahmed
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
- BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| |
Collapse
|
13
|
Hossain MS, Uddin MN, Sarkar S, Ahmed S. Crystallographic dependency of waste cow bone, hydroxyapatite, and β-tricalcium phosphate for biomedical application. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Sudibyo H, Pecchi M, Harwood H, Khare M, Karunwi S, Tan G, Tester JW. Thermodynamics and Kinetics of Struvite Crystallization from Hydrothermal Liquefaction Aqueous-Phase Considering Hydroxyapatite and Organics Coprecipitation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hanifrahmawan Sudibyo
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Energy Systems Institute, Cornell University, Ithaca, New York 14853, United States
- Chemical Engineering Department, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Matteo Pecchi
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Energy Systems Institute, Cornell University, Ithaca, New York 14853, United States
| | - Henry Harwood
- Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Monona Khare
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Samuel Karunwi
- Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Gabrielle Tan
- Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jefferson William Tester
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Energy Systems Institute, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|