1
|
Kim J, Mizuno F, Matsushita T, Matsushita M, Aoto S, Ishiya K, Kamio M, Naka I, Hayashi M, Kurosaki K, Ueda S, Ohashi J. Genetic analysis of a Yayoi individual from the Doigahama site provides insights into the origins of immigrants to the Japanese Archipelago. J Hum Genet 2025; 70:47-57. [PMID: 39402381 DOI: 10.1038/s10038-024-01295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 01/07/2025]
Abstract
Mainland Japanese have been recognized as having dual ancestry, originating from indigenous Jomon people and immigrants from continental East Eurasia. Although migration from the continent to the Japanese Archipelago continued from the Yayoi to the Kofun period, our understanding of these immigrants, particularly their origins, remains insufficient due to the lack of high-quality genome samples from the Yayoi period, complicating predictions about the admixture process. To address this, we sequenced the whole nuclear genome of a Yayoi individual from the Doigahama site in Yamaguchi prefecture, Japan. A comprehensive population genetic analysis of the Doigahama Yayoi individual, along with ancient and modern populations in East Asia and Northeastern Eurasia, revealed that the Doigahama Yayoi individual, similar to Kofun individuals and modern Mainland Japanese, had three distinct genetic ancestries: Jomon-related, East Asian-related, and Northeastern Siberian-related. Among non-Japanese populations, the Korean population, possessing both East Asian-related and Northeastern Siberian-related ancestries, exhibited the highest degree of genetic similarity to the Doigahama Yayoi individual. The analysis of admixture modeling for Yayoi individuals, Kofun individuals, and modern Japanese respectively supported a two-way admixture model assuming Jomon-related and Korean-related ancestries. These results suggest that between the Yayoi and Kofun periods, the majority of immigrants to the Japanese Archipelago originated primarily from the Korean Peninsula.
Collapse
Affiliation(s)
- Jonghyun Kim
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Fuzuki Mizuno
- Department of Legal Medicine, Toho University School of Medicine, Tokyo, 143-8540, Japan.
| | | | - Masami Matsushita
- The Doigahama Site Anthropological Museum, Yamaguchi, 759-6121, Japan
| | - Saki Aoto
- Medical Genome Center, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Koji Ishiya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Mami Kamio
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Izumi Naka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Michiko Hayashi
- Department of Legal Medicine, Toho University School of Medicine, Tokyo, 143-8540, Japan
| | - Kunihiko Kurosaki
- Department of Legal Medicine, Toho University School of Medicine, Tokyo, 143-8540, Japan
| | - Shintaroh Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Department of Legal Medicine, Toho University School of Medicine, Tokyo, 143-8540, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
2
|
Yamamoto K, Namba S, Sonehara K, Suzuki K, Sakaue S, Cooke NP, Higashiue S, Kobayashi S, Afuso H, Matsuura K, Mitsumoto Y, Fujita Y, Tokuda T, Matsuda K, Gakuhari T, Yamauchi T, Kadowaki T, Nakagome S, Okada Y. Genetic legacy of ancient hunter-gatherer Jomon in Japanese populations. Nat Commun 2024; 15:9780. [PMID: 39532881 PMCID: PMC11558008 DOI: 10.1038/s41467-024-54052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The tripartite ancestral structure is a recently proposed model for the genetic origin of modern Japanese, comprising indigenous Jomon hunter-gatherers and two additional continental ancestors from Northeast Asia and East Asia. To investigate the impact of the tripartite structure on genetic and phenotypic variation today, we conducted biobank-scale analyses by merging Biobank Japan (BBJ; n = 171,287) with ancient Japanese and Eurasian genomes (n = 22). We demonstrate the applicability of the tripartite model to Japanese populations throughout the archipelago, with an extremely strong correlation between Jomon ancestry and genomic variation among individuals. We also find that the genetic legacy of Jomon ancestry underlies an elevated body mass index (BMI). Genome-wide association analysis with rigorous adjustments for geographical and ancestral substructures identifies 132 variants that are informative for predicting individual Jomon ancestry. This prediction model is validated using independent Japanese cohorts (Nagahama cohort, n = 2993; the second cohort of BBJ, n = 72,695). We further confirm the phenotypic association between Jomon ancestry and BMI using East Asian individuals from UK Biobank (n = 2286). Our extensive analysis of ancient and modern genomes, involving over 250,000 participants, provides valuable insights into the genetic legacy of ancient hunter-gatherers in contemporary populations.
Collapse
Affiliation(s)
- Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Children's health and Genetics, Division of Health Sciences, Osaka University Graduate School of Medicine, Suite, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Shinichi Namba
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ken Suzuki
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Saori Sakaue
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Niall P Cooke
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Shuzo Kobayashi
- Tokushukai Group, Tokyo, Japan
- Department of Kidney Disease & Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | | | | | | | | | | | - Koichi Matsuda
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo, Japan
| | - Takashi Gakuhari
- Institute for the Study of Ancient Civilizations and Cultural Resources, Kanazawa University, Kanazawa, Japan
- Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Shigeki Nakagome
- School of Medicine, Trinity College Dublin, Dublin, Ireland.
- Institute for the Study of Ancient Civilizations and Cultural Resources, Kanazawa University, Kanazawa, Japan.
- Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Japan.
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan.
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Premium Research Institute for Human Metaverse (WPI-PRIMe), Osaka University, Suita, Japan.
| |
Collapse
|
3
|
Borisova TV, Cherdonova AM, Pshennikova VG, Teryutin FM, Morozov IV, Bondar AA, Baturina OA, Kabilov MR, Romanov GP, Solovyev AV, Fedorova SA, Barashkov NA. High prevalence of m.1555A > G in patients with hearing loss in the Baikal Lake region of Russia as a result of founder effect. Sci Rep 2024; 14:15342. [PMID: 38961196 PMCID: PMC11222474 DOI: 10.1038/s41598-024-66254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Mitochondrial forms account approximately 1-2% of all nonsyndromic cases of hearing loss (HL). One of the most common causative variants of mtDNA is the m.1555A > G variant of the MT-RNR1 gene (OMIM 561000). Currently the detection of the m.1555A > G variant of the MT-RNR1 gene is not included in all research protocols. In this study this variant was screened among 165 patients with HL from the Republic of Buryatia, located in the Baikal Lake region of Russia. In our study, the total contribution of the m.1555A > G variant to the etiology of HL was 12.7% (21/165), while the update global prevalence of this variant is 1.8% (863/47,328). The m.1555A > G variant was notably more prevalent in Buryat (20.2%) than in Russian patients (1.3%). Mitogenome analysis in 14 unrelated Buryat families carrying the m.1555A > G variant revealed a predominant lineage: in 13 families, a cluster affiliated with sub-haplogroup A5b (92.9%) was identified, while one family had the D5a2a1 lineage (7.1%). In a Russian family with the m.1555A > G variant the lineage affiliated with sub-haplogroup F1a1d was found. Considering that more than 90% of Buryat families with the m.1555A > G variant belong to the single maternal lineage cluster we conclude that high prevalence of this variant in patients with HL in the Baikal Lake region can be attributed to a founder effect.
Collapse
Affiliation(s)
- Tuyara V Borisova
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
| | - Aleksandra M Cherdonova
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
| | - Vera G Pshennikova
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yaroslavskogo 6/3, 677000, Yakutsk, Russia
| | - Fedor M Teryutin
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yaroslavskogo 6/3, 677000, Yakutsk, Russia
| | - Igor V Morozov
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 8, 630090, Novosibirsk, Russia
- Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Alexander A Bondar
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 8, 630090, Novosibirsk, Russia
| | - Olga A Baturina
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 8, 630090, Novosibirsk, Russia
| | - Marsel R Kabilov
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 8, 630090, Novosibirsk, Russia
| | - Georgii P Romanov
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
| | - Aisen V Solovyev
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
| | - Sardana A Fedorova
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yaroslavskogo 6/3, 677000, Yakutsk, Russia
| | - Nikolay A Barashkov
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia.
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yaroslavskogo 6/3, 677000, Yakutsk, Russia.
| |
Collapse
|
4
|
Mizuno F, Tokanai F, Kumagai M, Ishiya K, Sugiyama S, Hayashi M, Kurosaki K, Ueda S. Bioarchaeological study of ancient Teotihuacans based on complete mitochondrial genome sequences and diet isotopes. Ann Hum Biol 2023; 50:390-398. [PMID: 37812249 DOI: 10.1080/03014460.2023.2261844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND The Teotihuacan civilisation was the largest one in ancient Mesoamerica. The Teotihuacan city was born in the north-eastern Basin of Mexico around the second century BC, reached its peak in the fourth century AD, and had cultural influence throughout Mesoamerica. At its peak, the size of the city reached more than 20 km2, and the total population is estimated to have increased from 100,000 to 200,000. However, knowledge of the genetic background of the Teotihuacan people is still limited. AIM We aimed to determine the mitogenome sequences of the Teotihuacan human remains and compare the ancient and present Mesoamericans. In addition, we aimed to identify the food habits of ancient Teotihuacans. SUBJECTS AND METHODS We determined the mitogenome sequences of human remains dated to 250-636 cal AD using target enrichment-coupled next generation sequencing. We also performed stable isotope analysis. RESULTS We successfully obtained nearly full-length sequences newly unearthed from a civilian dwelling in the Teotihuacan site. Teotihuacan mitochondrial DNA was classified into the haplogroups in present and ancient Mesoamericans. In addition, Teotihuacan individuals had a diet dependent on C4 plants such as maize. CONCLUSION Genetic diversity varied among the Teotihuacans.
Collapse
Affiliation(s)
- Fuzuki Mizuno
- Department of Legal Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Fuyuki Tokanai
- Center for Accelerator Mass Spectrometry, Yamagata University Advanced Analysis Center, Yamagata, Japan
| | - Masahiko Kumagai
- National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Koji Ishiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Chiyoda, Japan
| | - Saburo Sugiyama
- Research Institute for the Dynamics of Civilizations, Okayama University, Okayama, Japan
| | - Michiko Hayashi
- Department of Legal Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Kunihiko Kurosaki
- Department of Legal Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Shintaroh Ueda
- Department of Legal Medicine, Toho University School of Medicine, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Shibutani A, Aono T, Nagaya Y. Starch granules from human teeth: New clues on the Epi-Jomon diet. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.907666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study examined starch granules from the dental calculus of specimens from the Epi-Jomon (Zoku-Jomon in Japanese, ca. 350 BCE–350 CE) period in Japan for taxonomic identification of plant food items and the reconstruction of human socioeconomic practices. Dental calculus was extracted from 21 individuals across six Epi-Jomon sites in Hokkaido. Moreover, 12 starch granules and starch clusters were recovered from nine individuals. The morphologies of the extracted starch granules were then classified into five types: elliptical, angular circular, polygonal, pentagonal, and damaged. Morphometric analysis indicated that a small portion of these starch granules may have derived from acorns, nuts, and bulb or tuber plants, with one starch granule supposedly from rice. Although extracted starch granules are poor predictors of food diversity at the individual level, the results can identify potential food sources of the surveyed population. This is the first study to determine how well plant microremains in dental calculus reflect a plant diet in the Epi-Jomon population. The starch granules discovered at the surveyed sites provide essential information about the utilization of plant species and cultural contacts in Hokkaido during this period. This is of great significance in reconstructing the Epi-Jomon subsistence patterns in Hokkaido and exploring cultural interactions between hunting-gathering-fishing and agrarian societies.
Collapse
|
6
|
Gelabert P, Blazyte A, Chang Y, Fernandes DM, Jeon S, Hong JG, Yoon J, Ko Y, Oberreiter V, Cheronet O, Özdoğan KT, Sawyer S, Yang S, Greytak EM, Choi H, Kim J, Kim JI, Jeong C, Bae K, Bhak J, Pinhasi R. Northeastern Asian and Jomon-related genetic structure in the Three Kingdoms period of Gimhae, Korea. Curr Biol 2022; 32:3232-3244.e6. [PMID: 35732180 DOI: 10.1016/j.cub.2022.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/05/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022]
Abstract
The genetic history of prehistoric and protohistoric Korean populations is not well understood because only a small number of ancient genomes are available. Here, we report the first paleogenomic data from the Korean Three Kingdoms period, a crucial point in the cultural and historic formation of Korea. These data comprise eight shotgun-sequenced genomes from ancient Korea (0.7×-6.1× coverage). They were derived from two archeological sites in Gimhae: the Yuha-ri shell mound and the Daesung-dong tumuli, the latter being the most important funerary complex of the Gaya confederacy. All individuals are from between the 4th and 5th century CE and are best modeled as an admixture between a northern China Bronze Age genetic source and a source of Jomon-related ancestry that shares similarities with the present-day genomes from Japan. The observed substructure and proportion of Jomon-related ancestry suggest the presence of two genetic groups within the population and diversity among the Gaya population. We could not correlate the genomic differences between these two groups with either social status or sex. All the ancient individuals' genomic profiles, including phenotypically relevant SNPs associated with hair and eye color, facial morphology, and myopia, imply strong genetic and phenotypic continuity with modern Koreans for the last 1,700 years.
Collapse
Affiliation(s)
- Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| | - Asta Blazyte
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Yongjoon Chang
- Daegu National Museum, 321 Cheongho-ro, Suseong-gu, Daegu 42111, Republic of Korea
| | - Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; CIAS, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Sungwon Jeon
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea; Clinomics Inc., UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Jin Geun Hong
- Jeonju National Museum, 249 Ssukgogae-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 55070, Republic of Korea
| | - Jiyeon Yoon
- Gongju National Museum, 34 Gwangwangdanji-gil, Gongju-si, Chungcheongnam-do 32535, Republic of Korea
| | - Youngmin Ko
- National Museum of Korea, 137 Seobinggo-ro, Yongsan-gu, Seoul 04383, Republic of Korea
| | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Kadir T Özdoğan
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Songhyok Yang
- National Museum of Korea, 137 Seobinggo-ro, Yongsan-gu, Seoul 04383, Republic of Korea
| | | | - Hansol Choi
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Jungeun Kim
- Personal Genomics Institute (PGI), Genome Research Foundation (GRF), Cheongju 28160, Republic of Korea
| | - Jong-Il Kim
- Department of Archaeology and Art History, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Choongwon Jeong
- Seoul National University, School of Biological Sciences, 599 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kidong Bae
- National Museum of Korea, 137 Seobinggo-ro, Yongsan-gu, Seoul 04383, Republic of Korea.
| | - Jong Bhak
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea; Clinomics Inc., UNIST-gil 50, Ulsan 44919, Republic of Korea.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| |
Collapse
|
7
|
WAKU DAISUKE, GAKUHARI TAKASHI, KOGANEBUCHI KAE, YONEDA MINORU, KONDO OSAMU, MASUYAMA TADAYUKI, YAMADA YASUHIRO, OOTA HIROKI. Complete mitochondrial genome sequencing reveals double-buried Jomon individuals excavated from the Ikawazu shell-mound site were not in a mother–child relationship. ANTHROPOL SCI 2022. [DOI: 10.1537/ase.220129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- DAISUKE WAKU
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo
| | - TAKASHI GAKUHARI
- Center for Cultural Resource Studies, College of Human and Social Sciences, Kanazawa University, Kanazawa
| | - KAE KOGANEBUCHI
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo
| | - MINORU YONEDA
- The University Museum, The University of Tokyo, Tokyo
| | - OSAMU KONDO
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo
| | | | - YASUHIRO YAMADA
- Department of Philosophy, History and Cultural Studies, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo
| | - HIROKI OOTA
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo
| |
Collapse
|