1
|
Madawala C, Molina C, Kim D, Gamage DK, Sun M, Leibensperger RJ, Mehndiratta L, Lee J, Kaluarachchi CP, Kimble KA, Sandstrom G, Harb C, Dinasquet J, Malfatti F, Prather KA, Deane GB, Stokes MD, Lee C, Slade JH, Stone EA, Grassian VH, Tivanski AV. Effects of Wind Speed on Size-Dependent Morphology and Composition of Sea Spray Aerosols. ACS EARTH & SPACE CHEMISTRY 2024; 8:1609-1622. [PMID: 39166261 PMCID: PMC11331522 DOI: 10.1021/acsearthspacechem.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 08/22/2024]
Abstract
Variable wind speeds over the ocean can have a significant impact on the formation mechanism and physical-chemical properties of sea spray aerosols (SSA), which in turn influence their climate-relevant impacts. Herein, for the first time, we investigate the effects of wind speed on size-dependent morphology and composition of individual nascent SSA generated from wind-wave interactions of natural seawater within a wind-wave channel as a function of size and their particle-to-particle variability. Filter-based thermal optical analysis, atomic force microscopy (AFM), AFM infrared spectroscopy (AFM-IR), and scanning electron microscopy (SEM) were employed in this regard. This study focuses on SSA with sizes within 0.04-1.8 μm generated at two wind speeds: 10 m/s, representing a wind lull scenario over the ocean, and 19 m/s, indicative of the wind speeds encountered in stormy conditions. Filter-based measurements revealed a reduction of the organic mass fraction as the wind speed increases. AFM imaging at 20% relative humidity of individual SSA identified six main morphologies: prism-like, rounded, core-shell, rod, rod inclusion core-shell, and aggregates. At 10 m/s, most SSA were rounded, while at 19 m/s, core-shells became predominant. Based on AFM-IR, rounded SSA at both wind speeds had similar composition, mainly composed of aliphatic and oxygenated species, whereas the shells of core-shells displayed more oxygenated organics at 19 m/s and more aliphatic organics at 10 m/s. Collectively, our observations can be attributed to the disruption of the sea surface microlayer film structure at higher wind speeds. The findings reveal a significant impact of wind speed on morphology and composition of SSA, which should be accounted for accurate assessment of their climate effects.
Collapse
Affiliation(s)
- Chamika
K. Madawala
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Carolina Molina
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Deborah Kim
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | | | - Mengnan Sun
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Raymond J. Leibensperger
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Lincoln Mehndiratta
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Jennie Lee
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | | | - Ke’La A. Kimble
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Greg Sandstrom
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Charbel Harb
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Julie Dinasquet
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Francesca Malfatti
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
- Department
of Life Science, Universita’ degli
Studi di Trieste, Trieste 34127, Italy
| | - Kimberly A. Prather
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Grant B. Deane
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - M. Dale Stokes
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Christopher Lee
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Jonathan H. Slade
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Elizabeth A. Stone
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Vicki H. Grassian
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Alexei V. Tivanski
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
2
|
Greenhalgh T, MacIntyre CR, Baker MG, Bhattacharjee S, Chughtai AA, Fisman D, Kunasekaran M, Kvalsvig A, Lupton D, Oliver M, Tawfiq E, Ungrin M, Vipond J. Masks and respirators for prevention of respiratory infections: a state of the science review. Clin Microbiol Rev 2024; 37:e0012423. [PMID: 38775460 PMCID: PMC11326136 DOI: 10.1128/cmr.00124-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYThis narrative review and meta-analysis summarizes a broad evidence base on the benefits-and also the practicalities, disbenefits, harms and personal, sociocultural and environmental impacts-of masks and masking. Our synthesis of evidence from over 100 published reviews and selected primary studies, including re-analyzing contested meta-analyses of key clinical trials, produced seven key findings. First, there is strong and consistent evidence for airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory pathogens. Second, masks are, if correctly and consistently worn, effective in reducing transmission of respiratory diseases and show a dose-response effect. Third, respirators are significantly more effective than medical or cloth masks. Fourth, mask mandates are, overall, effective in reducing community transmission of respiratory pathogens. Fifth, masks are important sociocultural symbols; non-adherence to masking is sometimes linked to political and ideological beliefs and to widely circulated mis- or disinformation. Sixth, while there is much evidence that masks are not generally harmful to the general population, masking may be relatively contraindicated in individuals with certain medical conditions, who may require exemption. Furthermore, certain groups (notably D/deaf people) are disadvantaged when others are masked. Finally, there are risks to the environment from single-use masks and respirators. We propose an agenda for future research, including improved characterization of the situations in which masking should be recommended or mandated; attention to comfort and acceptability; generalized and disability-focused communication support in settings where masks are worn; and development and testing of novel materials and designs for improved filtration, breathability, and environmental impact.
Collapse
Affiliation(s)
- Trisha Greenhalgh
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - C Raina MacIntyre
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Michael G Baker
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Shovon Bhattacharjee
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, Australia
| | - Abrar A Chughtai
- School of Population Health, University of New South Wales, Sydney, Australia
| | - David Fisman
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Mohana Kunasekaran
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Amanda Kvalsvig
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Deborah Lupton
- Centre for Social Research in Health and Social Policy Research Centre, Faculty of Arts, Design and Architecture, University of New South Wales, Sydney, Australia
| | - Matt Oliver
- Professional Standards Advocate, Edmonton, Canada
| | - Essa Tawfiq
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Mark Ungrin
- Faculty of Veterinary Medicine; Department of Biomedical Engineering, Schulich School of Engineering; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Joe Vipond
- Department of Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Lai J, Coleman KK, Tai SHS, German J, Hong F, Albert B, Esparza Y, Rastogi D, Srikakulapu A, Kalliomäki P, Schanz M, Smith AA, Sierra Maldonado I, Oertel M, Fadul N, Gold TL, McPhaul K, Ma T, Cowling BJ, Milton DK. Relative efficacy of masks and respirators as source control for viral aerosol shedding from people infected with SARS-CoV-2: a controlled human exhaled breath aerosol experimental study. EBioMedicine 2024; 104:105157. [PMID: 38821778 PMCID: PMC11245760 DOI: 10.1016/j.ebiom.2024.105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Tight-fitting masks and respirators, in manikin studies, improved aerosol source control compared to loose-fitting masks. Whether this translates to humans is not known. METHODS We compared efficacy of masks (cloth and surgical) and respirators (KN95 and N95) as source control for SARS-CoV-2 viral load in exhaled breath of volunteers with COVID-19 using a controlled human experimental study. Volunteers (N = 44, 43% female) provided paired unmasked and masked breath samples allowing computation of source-control factors. FINDINGS All masks and respirators significantly reduced exhaled viral load, without fit tests or training. A duckbill N95 reduced exhaled viral load by 98% (95% CI: 97%-99%), and significantly outperformed a KN95 (p < 0.001) as well as cloth and surgical masks. Cloth masks outperformed a surgical mask (p = 0.027) and the tested KN95 (p = 0.014). INTERPRETATION These results suggest that N95 respirators could be the standard of care in nursing homes and healthcare settings when respiratory viral infections are prevalent in the community and healthcare-associated transmission risk is elevated. FUNDING Defense Advanced Research Projects Agency, National Institute of Allergy and Infectious Diseases, Centers for Disease Control and Prevention, the Bill & Melinda Gates Foundation, and The Flu Lab.
Collapse
Affiliation(s)
- Jianyu Lai
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Kristen K Coleman
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - S-H Sheldon Tai
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Jennifer German
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Filbert Hong
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Barbara Albert
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Yi Esparza
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Dewansh Rastogi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| | - Aditya Srikakulapu
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Petri Kalliomäki
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Maria Schanz
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Alycia A Smith
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Isabel Sierra Maldonado
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Molly Oertel
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Naja Fadul
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - T Louie Gold
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Kathleen McPhaul
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, University of Maryland School of Public Health, College Park, MD, USA
| | - Benjamin J Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Donald K Milton
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
| |
Collapse
|
4
|
Realmuto J, Kleinman MT, Sanger T, Lawler MJ, Smith JN. Design and testing of a sew-free origami mask for improvised respiratory protection. NANOTECHNOLOGY 2023; 35:045101. [PMID: 37625393 DOI: 10.1088/1361-6528/acf3f3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
Respiratory aerosols with diameters smaller than 100μm have been confirmed as important vectors for the spread of diseases such as SARS-CoV-2. While disposable and cloth masks afford some protection, they are typically inefficient at filtering these aerosols and require specialized fabrication devices to produce. We describe a fabrication technique that makes use of a folding procedure (origami) to transform any filtration material into a mask. These origami masks can be fabricated by non-experts at minimal cost and effort, provide adequate filtration efficiencies, and are easily scaled to different facial sizes. Using a mannequin fit test simulator, we demonstrate that these masks can provide filtration efficiencies of over 90% while simultaneously providing greater comfort as demonstrated by pressure drops of <20 Pa. We also quantify mask leakage by measuring the variations in filtration efficiency and pressure drop when masks are sealed to the mannequin face compared to when the mask is unsealed but positioned to achieve the best fit. While leakage generally trended with pressure drop, some of the best performing mask media achieved <10% reduction in filtration efficiency due to leakage. Because this mask can provide high filtration efficiencies at low pressure drop compared to commercial alternatives, it is likely to promote greater mask wearing tolerance and acceptance.
Collapse
Affiliation(s)
- Jonathan Realmuto
- Department of Mechanical Engineering, University of California, Riverside, United States of America
| | - Michael T Kleinman
- Department of Community and Environmental Medicine, University of California, Irvine, United States of America
- School of Medicine, University of California, Irvine, United States of America
| | - Terence Sanger
- School of Medicine, University of California, Irvine, United States of America
- Department of Electrical Engineering and Computer Science, University of California, Irvine, United States of America
| | - Michael J Lawler
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, United States of America
- Department of Chemistry, University of California, Irvine, United States of America
| | - James N Smith
- Department of Chemistry, University of California, Irvine, United States of America
| |
Collapse
|
5
|
Saccente-Kennedy B, Szczepanska A, Harrison J, Archer J, Watson NA, Orton CM, Costello D, Calder JD, Shah PL, Reid JP, Bzdek BR, Epstein R. Mitigation of Respirable Aerosol Particles from Speech and Language Therapy Exercises. J Voice 2023:S0892-1997(23)00124-8. [PMID: 37248120 DOI: 10.1016/j.jvoice.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/05/2023] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Phonation and speech are known sources of respirable aerosol in humans. Voice assessment and treatment manipulate all the subsystems of voice production, and previous work (Saccente-Kennedy et al., 2022) has demonstrated such activities can generate >10 times more aerosol than conversational speech and 30 times more aerosol than breathing. Aspects of voice therapy may therefore be considered aerosol generating procedures and pose a greater risk of potential airborne pathogen (eg, SARS-CoV-2) transmission than typical speech. Effective mitigation measures may be required to ensure safe service delivery for therapist and patient. OBJECTIVE To assess the effectiveness of mitigation measures in reducing detectable respirable aerosol produced by voice assessment/therapy. METHODS We recruited 15 healthy participants (8 cis-males, 7 cis-females), 9 of whom were voice-specialist speech-language pathologists. Optical Particle Sizers (OPS) (Model 3330, TSI) were used to measure the number concentration of respirable aerosol particles (0.3 µm-10 µm) generated during a selection of voice assessment/therapy tasks, both with and without mitigation measures in place. Measurements were performed in a laminar flow operating theatre, with near-zero background aerosol concentration, allowing us to quantify the number concentration of respiratory aerosol particles produced. Mitigation measures included the wearing of Type IIR fluid resistant surgical masks, wrapping the same masks around the end of straws, and the use of heat and moisture exchange microbiological filters (HMEFs) for a water resistance therapy (WRT) task. RESULTS All unmitigated therapy tasks produced more aerosol than unmasked breathing or speaking. Mitigation strategies reduced detectable aerosol from all tasks to a level significantly below, or no different to, that of unmasked breathing. Pooled filtration efficiencies determined that Type IIR surgical masks reduced detectable aerosol by 90%. Surgical masks wrapped around straws reduced detectable aerosol by 96%. HMEF filters were 100% effective in mitigating the aerosol from WRT, the exercise that generated more aerosol than any other task in the unmitigated condition. CONCLUSIONS Voice therapy and assessment causes the release of significant quantities of respirable aerosol. However, simple mitigation strategies can reduce emitted aerosol concentrations to levels comparable to unmasked breathing.
Collapse
Affiliation(s)
- Brian Saccente-Kennedy
- Department of Speech and Language Therapy (ENT), Royal National Ear, Nose and Throat and Eastman Dental Hospitals, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Alicja Szczepanska
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom
| | - Joshua Harrison
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom
| | - Justice Archer
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom
| | - Natalie A Watson
- Department of Ear, Nose and Throat Surgery, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Christopher M Orton
- Department of Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom; Department of Respiratory Medicine, Chelsea and Westminster Hospital, London, United Kingdom; National Heart and Lung Institute, Guy Scadding Building, Imperial College London, London, United Kingdom
| | - Declan Costello
- Ear, Nose and Throat Department, Wexham Park Hospital, United Kingdom
| | - James D Calder
- Department of Bioengineering, Imperial College London, United Kingdom; Fortius Clinic, Fitzhardinge St, London, United Kingdom
| | - Pallav L Shah
- Department of Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom; Department of Respiratory Medicine, Chelsea and Westminster Hospital, London, United Kingdom; National Heart and Lung Institute, Guy Scadding Building, Imperial College London, London, United Kingdom
| | - Jonathan P Reid
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom
| | - Bryan R Bzdek
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom
| | - Ruth Epstein
- Department of Speech and Language Therapy (ENT), Royal National Ear, Nose and Throat and Eastman Dental Hospitals, University College London Hospitals NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
6
|
Stapleton F, Abad JC, Barabino S, Burnett A, Iyer G, Lekhanont K, Li T, Liu Y, Navas A, Obinwanne CJ, Qureshi R, Roshandel D, Sahin A, Shih K, Tichenor A, Jones L. TFOS lifestyle: Impact of societal challenges on the ocular surface. Ocul Surf 2023; 28:165-199. [PMID: 37062429 PMCID: PMC10102706 DOI: 10.1016/j.jtos.2023.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
Societal factors associated with ocular surface diseases were mapped using a framework to characterize the relationship between the individual, their health and environment. The impact of the COVID-19 pandemic and mitigating factors on ocular surface diseases were considered in a systematic review. Age and sex effects were generally well-characterized for inflammatory, infectious, autoimmune and trauma-related conditions. Sex and gender, through biological, socio-economic, and cultural factors impact the prevalence and severity of disease, access to, and use of, care. Genetic factors, race, smoking and co-morbidities are generally well characterized, with interdependencies with geographical, employment and socioeconomic factors. Living and working conditions include employment, education, water and sanitation, poverty and socioeconomic class. Employment type and hobbies are associated with eye trauma and burns. Regional, global socio-economic, cultural and environmental conditions, include remoteness, geography, seasonality, availability of and access to services. Violence associated with war, acid attacks and domestic violence are associated with traumatic injuries. The impacts of conflict, pandemic and climate are exacerbated by decreased food security, access to health services and workers. Digital technology can impact diseases through physical and mental health effects and access to health information and services. The COVID-19 pandemic and related mitigating strategies are mostly associated with an increased risk of developing new or worsening existing ocular surface diseases. Societal factors impact the type and severity of ocular surface diseases, although there is considerable interdependence between factors. The overlay of the digital environment, natural disasters, conflict and the pandemic have modified access to services in some regions.
Collapse
Affiliation(s)
- Fiona Stapleton
- School of Optometry and Vision Science, UNSW, Sydney, NSW, Australia.
| | - Juan Carlos Abad
- Department of Ophthalmology, Antioquia Ophthalmology Clinic-Clofan, Medellin, Antioquia, Colombia
| | - Stefano Barabino
- ASST Fatebenefratelli-Sacco, Ospedale L. Sacco-University of Milan, Milan, Italy
| | - Anthea Burnett
- School of Optometry and Vision Science, UNSW, Sydney, NSW, Australia
| | - Geetha Iyer
- C. J. Shah Cornea Services, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Kaevalin Lekhanont
- Department of Ophthalmology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Tianjing Li
- Department of Ophthalmology, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Yang Liu
- Ophthalmology Department, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Alejandro Navas
- Conde de Valenciana, National Autonomous University of Mexico UNAM, Mexico City, Mexico
| | | | - Riaz Qureshi
- Department of Ophthalmology, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Danial Roshandel
- Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Afsun Sahin
- Department of Ophthalmology, Koc University Medical School, İstanbul, Turkey
| | - Kendrick Shih
- Department of Ophthalmology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Anna Tichenor
- School of Optometry, Indiana University, Bloomington, IN, USA
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
7
|
Coma E, Català M, Méndez-Boo L, Alonso S, Hermosilla E, Alvarez-Lacalle E, Pino D, Medina M, Asso L, Gatell A, Bassat Q, Mas A, Soriano-Arandes A, Fina Avilés F, Prats C. Unravelling the role of the mandatory use of face covering masks for the control of SARS-CoV-2 in schools: a quasi-experimental study nested in a population-based cohort in Catalonia (Spain). Arch Dis Child 2023; 108:131-136. [PMID: 35999036 DOI: 10.1136/archdischild-2022-324172] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/05/2022] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To assess the effectiveness of mandatory use of face covering masks (FCMs) in schools during the first term of the 2021-2022 academic year. DESIGN A retrospective population-based study. SETTING Schools in Catalonia (Spain). POPULATION 599 314 children aged 3-11 years attending preschool (3-5 years, without FCM mandate) and primary education (6-11 years, with FCM mandate). STUDY PERIOD From 13 September to 22 December 2021 (before Omicron variant). INTERVENTIONS A quasi-experimental comparison between children in the last grade of preschool (5 years old), as a control group, and children in year 1 of primary education (6 years old), as an interventional group. MAIN OUTCOME MEASURES Incidence of SARS-CoV-2, secondary attack rates (SARs) and effective reproductive number (R*). RESULTS SARS-CoV-2 incidence was significantly lower in preschool than in primary education, and an increasing trend with age was observed. Six-year-old children showed higher incidence than 5 year olds (3.54% vs 3.1%; OR 1.15 (95% CI 1.08 to 1.22)) and slightly lower but not statistically significant SAR (4.36% vs 4.59%; incidence risk ratio 0.96 (95% CI 0.82 to 1.11)) and R* (0.9 vs 0.93; OR 0.96 (95% CI 0.87 to 1.09)). Results remained consistent using a regression discontinuity design and linear regression extrapolation approaches. CONCLUSIONS We found no significant differences in SARS-CoV-2 transmission due to FCM mandates in Catalonian schools. Instead, age was the most important factor in explaining the transmission risk for children attending school.
Collapse
Affiliation(s)
- Ermengol Coma
- Sistemes d'Informació dels Serveis d'Atenció Primària (SISAP), Institut Català de la Salut, Barcelona, Catalonia, Spain
| | - Martí Català
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Leonardo Méndez-Boo
- Sistemes d'Informació dels Serveis d'Atenció Primària (SISAP), Institut Català de la Salut, Barcelona, Catalonia, Spain
| | - Sergio Alonso
- Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Catalonia, Spain
| | - Eduardo Hermosilla
- Sistemes d'Informació dels Serveis d'Atenció Primària (SISAP), Institut Català de la Salut, Barcelona, Catalonia, Spain.,IDIAP Jordi Gol, Barcelona, Catalonia, Spain
| | - Enric Alvarez-Lacalle
- Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Catalonia, Spain
| | - David Pino
- Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Catalonia, Spain
| | - Manuel Medina
- Sistemes d'Informació dels Serveis d'Atenció Primària (SISAP), Institut Català de la Salut, Barcelona, Catalonia, Spain
| | - Laia Asso
- Departament de Salut, Generalitat de Catalunya, Barcelona, Catalonia, Spain
| | - Anna Gatell
- Equip Pediatria Territorial Alt Penedès-Garraf, Institut Català de la Salut, Barcelona, Catalonia, Spain
| | - Quique Bassat
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Manhica, Maputo, Mozambique.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues (Barcelona), Catalonia, Spain.,ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Catalonia, Spain
| | - Ariadna Mas
- Direcció Assistencial d'Atenció Primària i a la Comunitat, Institut Català de la Salut, Barcelona, Catalonia, Spain
| | - Antoni Soriano-Arandes
- Paediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain .,Department of Infectious Diseases, Vall d'Hebron Research Institute, Barcelona, Catalonia, Spain
| | - Francesc Fina Avilés
- Sistemes d'Informació dels Serveis d'Atenció Primària (SISAP), Institut Català de la Salut, Barcelona, Catalonia, Spain
| | - Clara Prats
- Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Catalonia, Spain
| |
Collapse
|
8
|
Gomes da Silva P, Gonçalves J, Torres Franco A, Rodriguez E, Diaz I, Orduña Domingo A, Garcinuño Pérez S, March Roselló GA, Dueñas Gutiérrez CJ, São José Nascimento M, Sousa SI, Garcia Encina P, Mesquita JR. Environmental Dissemination of SARS-CoV-2 in a University Hospital during the COVID-19 5th Wave Delta Variant Peak in Castile-León, Spain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1574. [PMID: 36674328 PMCID: PMC9866319 DOI: 10.3390/ijerph20021574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The dominant SARS-CoV-2 Delta variant (B.1.617.2) became the main circulating variant among countries by mid 2021. Attention was raised to the increased risk of airborne transmission, leading to nosocomial outbreaks even among vaccinated individuals. Considering the increased number of COVID-19 hospital admissions fueled by the spread of the variant, with Spain showing the highest COVID-19 rates in mainland Europe by July 2021, the aim of this study was to assess SARS-CoV-2 environmental contamination in different areas of a University Hospital in the region of Castile-León, Spain, during the peak of the 5th wave of COVID-19 in the country (July 2021). Air samples were collected from sixteen different areas of the Hospital using a Coriolis® μ air sampler. Surface samples were collected in these same areas using sterile flocked plastic swabs. RNA extraction followed by a one-step RT-qPCR were performed for detection of SARS-CoV-2 RNA. Of the 21 air samples, only one was positive for SARS-CoV-2 RNA, from the emergency waiting room. Of the 40 surface samples, 2 were positive for SARS-CoV-2 RNA, both from the microbiology laboratory. These results may be relevant for risk assessment of nosocomial infection within healthcare facilities, thus helping prevent and minimize healthcare staff's exposure to SARS-CoV-2, reinforcing the importance of always wearing appropriate and well-fit masks at all times and proper PPE when in contact with infected patients.
Collapse
Affiliation(s)
- Priscilla Gomes da Silva
- ICBAS—School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, 1800-412 Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 1800-412 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 1800-412 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 1800-412 Porto, Portugal
| | - José Gonçalves
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina S/N., 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - Andrés Torres Franco
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina S/N., 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - Elisa Rodriguez
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina S/N., 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - Israel Diaz
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina S/N., 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - Antonio Orduña Domingo
- Microbiology Service, Valladolid University Clinical Hospital (HCUV), Faculty of Medicine, University of Valladolid, 47011 Valladolid, Spain
| | | | | | - Carlos Jesús Dueñas Gutiérrez
- Internal Medicine, Infectious Diseases Section, Valladolid University Clinical Hospital (HCUV), 47011 Valladolid, Spain
| | | | - Sofia I.V. Sousa
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 1800-412 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 1800-412 Porto, Portugal
| | - Pedro Garcia Encina
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina S/N., 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - João R. Mesquita
- ICBAS—School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, 1800-412 Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 1800-412 Porto, Portugal
| |
Collapse
|
9
|
Mumma J, Liu F, Ng NL, Morgan J, Lane M, Gannon P. Designing better cloth masks: The effect of fabric and attachment-style on discomfort. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2023; 20:23-32. [PMID: 36344309 DOI: 10.1080/15459624.2022.2145013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cloth masks are a tool for controlling community transmission during pandemics, as well as during other outbreak situations. However, cloth masks vary in their designs, and the consequences of this variability for their effectiveness as source control have received little attention, particularly in terms of user discomfort and problematic mask-wearing behaviors. In the present studies, common design parameters of cloth masks were systematically varied to ascertain their effect(s) on the subjective discomfort and frequency of problematic mask-wearing behaviors, which detract from the effectiveness of cloth masks as source control. The type of fabric comprising a mask (flannel or twill made of 100% cotton) and the attachment-style of a mask (i.e., ear loops or fabric ties) were varied in adults (18 to 65 years) and children (ages 6 to 11 years). For adults, ear loops were less comfortable than ties (p = .035) and were associated with greater face- (p = .005) and mask-touching (p = .001). Children, however, found flannel masks to be more breathable than twill masks (p = .007) but touched their masks more frequently when wearing a mask made of flannel than twill (p = .033). Common design parameters of cloth masks not only affect user discomfort and behavior but do so differently in adults and children. To improve the effectiveness of cloth masks as source control, the present studies highlight the importance of measuring the effect(s) of design decisions on user discomfort and behavior in different populations.
Collapse
Affiliation(s)
- Joel Mumma
- School of Medicine, Department of Infectious Diseases, Emory University, Atlanta, Georgia
| | - Fobang Liu
- School of Chemical and Biological Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Nga Lee Ng
- School of Chemical and Biological Engineering, Georgia Institute of Technology, Atlanta, Georgia
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | | | - Morgan Lane
- School of Medicine, Department of Infectious Diseases, Emory University, Atlanta, Georgia
| | - Paige Gannon
- School of Medicine, Department of Infectious Diseases, Emory University, Atlanta, Georgia
| |
Collapse
|
10
|
Vis-UV Upconverting bacteriostatic hydrophobic bacterial cellulose film for personal protective masks. Carbohydr Polym 2022; 297:119967. [DOI: 10.1016/j.carbpol.2022.119967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/26/2022] [Accepted: 08/07/2022] [Indexed: 11/21/2022]
|
11
|
Kaluarachchi C, Or VW, Lan Y, Hasenecz ES, Kim D, Madawala CK, Dorcé GP, Mayer KJ, Sauer JS, Lee C, Cappa CD, Bertram TH, Stone EA, Prather KA, Grassian VH, Tivanski AV. Effects of Atmospheric Aging Processes on Nascent Sea Spray Aerosol Physicochemical Properties. ACS EARTH & SPACE CHEMISTRY 2022; 6:2732-2744. [PMID: 36425339 PMCID: PMC9677592 DOI: 10.1021/acsearthspacechem.2c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The effects of atmospheric aging on single-particle nascent sea spray aerosol (nSSA) physicochemical properties, such as morphology, composition, phase state, and water uptake, are important to understanding their impacts on the Earth's climate. The present study investigates these properties by focusing on the aged SSA (size range of 0.1-0.6 μm) and comparing with a similar size range nSSA, both generated at a peak of a phytoplankton bloom during a mesocosm study. The aged SSAs were generated by exposing nSSA to OH radicals with exposures equivalent to 4-5 days of atmospheric aging. Complementary filter-based thermal optical analysis, atomic force microscopy (AFM), and AFM photothermal infrared spectroscopy were utilized. Both nSSA and aged SSA showed an increase in the organic mass fraction with decreasing particle sizes. In addition, aging results in a further increase of the organic mass fraction, which can be attributed to new particle formation and oxidation of volatile organic compounds followed by condensation on pre-existing particles. The results are consistent with single-particle measurements that showed a relative increase in the abundance of aged SSA core-shells with significantly higher organic coating thickness, relative to nSSA. Increased hygroscopicity was observed for aged SSA core-shells, which had more oxygenated organic species. Rounded nSSA and aged SSA had similar hygroscopicity and no apparent changes in the composition. The observed changes in aged SSA physicochemical properties showed a significant size-dependence and particle-to-particle variability. Overall, results showed that the atmospheric aging can significantly influence the nSSA physicochemical properties, thus altering the SSA effects on the climate.
Collapse
Affiliation(s)
| | - Victor W. Or
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Yiling Lan
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Elias S. Hasenecz
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Deborah Kim
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Chamika K. Madawala
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Glorianne P. Dorcé
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Kathryn J. Mayer
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Jonathan S. Sauer
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Christopher Lee
- Scripps
Institution of Oceanography, University
of California, San Diego, La Jolla, California 92093, United States
| | - Christopher D. Cappa
- Department
of Civil and Environmental Engineering, University of California, Davis, California 95616, United States
| | - Timothy H. Bertram
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Elizabeth A. Stone
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Kimberly A. Prather
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
- Scripps
Institution of Oceanography, University
of California, San Diego, La Jolla, California 92093, United States
| | - Vicki H. Grassian
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
- Scripps
Institution of Oceanography, University
of California, San Diego, La Jolla, California 92093, United States
| | - Alexei V. Tivanski
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
12
|
Viala R, Creton M, Jousserand M, Soubrié T, Néchab J, Crenn V, Léglise J. Experimental and numerical investigation on aerosols emission in musical practice and efficiency of reduction means. JOURNAL OF AEROSOL SCIENCE 2022; 166:106051. [PMID: 36061037 PMCID: PMC9420034 DOI: 10.1016/j.jaerosci.2022.106051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/27/2022] [Accepted: 07/10/2022] [Indexed: 06/07/2023]
Abstract
Early in the CoViD-19 pandemic, musical practices, especially singing and playing wind instruments, have been pointed out as having a high risk disease transmission due to aerosol production. However, characterization of these emission sources was not consolidated. This study focuses on the generation of aerosols and potential reduction in the context of playing wind instruments and singing. Aerosol concentration reduction means are evaluated using aerosol measurements in clean room and Computational Fluid Dynamics. Measurements at the bell of a clarinet and in front of singers are performed with or without a protection (bell cover for clarinet and surgical mask for singers). Numerical results on clarinet suggest that most of the supermicron ( ≥ 1 μ m ) particles are trapped on the walls of the instruments, which act as a filter, depending on toneholes configurations (closed or opened) changing the frequency of sound produced. Experimental results are consistent since almost only submicron particles contribute to the measured number concentration during playing clarinet. First of all, the high inter and intra-individuals variability is highlighted, with high coefficients of variation. This study highlights the impact of fingerings on the generated particles and the efficiency of protections such as bell cover (from 3 to 100 times), depending on the played note and players. Results for singers show that surgical masks significantly reduce the aerosol concentration (from 8 to 170 times) in front of the mouth. The evolution of aerosol concentration is also correlated with sound intensity.
Collapse
Affiliation(s)
- Romain Viala
- Institut Technologique Européen des Métiers de la Musique, ITEMM, 71 Avenue Olivier Messiaen, 72000, Le Mans, France
- Laboratoire d'Acoustique de l'Université du Mans - LAUM CNRS 6613 - Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 09, France
| | - Milena Creton
- Buffet Crampon, 5 rue Maurice Berteaux, 78711 Mantes-La-Ville, France
| | | | - Tristan Soubrié
- ANDHEO, Centre ONERA, 29 Avenue de la Division Leclerc, 92322 Châtillon, France
| | - Julien Néchab
- ANDHEO, Centre ONERA, 29 Avenue de la Division Leclerc, 92322 Châtillon, France
| | | | | |
Collapse
|
13
|
Poydenot F, Abdourahamane I, Caplain E, Der S, Haiech J, Jallon A, Khoutami I, Loucif A, Marinov E, Andreotti B. Risk assessment for long- and short-range airborne transmission of SARS-CoV-2, indoors and outdoors. PNAS NEXUS 2022; 1:pgac223. [PMID: 36712338 PMCID: PMC9802175 DOI: 10.1093/pnasnexus/pgac223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022]
Abstract
Preventive measures to reduce infection are needed to combat the COVID-19 pandemic and prepare for a possible endemic phase. Current prophylactic vaccines are highly effective to prevent disease but lose their ability to reduce viral transmission as viral evolution leads to increasing immune escape. Long-term proactive public health policies must therefore complement vaccination with available nonpharmaceutical interventions aiming to reduce the viral transmission risk in public spaces. Here, we revisit the quantitative assessment of airborne transmission risk, considering asymptotic limits that considerably simplify its expression. We show that the aerosol transmission risk is the product of three factors: a biological factor that depends on the viral strain, a hydrodynamical factor defined as the ratio of concentration in viral particles between inhaled and exhaled air, and a face mask filtering factor. The short-range contribution to the risk, present both indoors and outdoors, is related to the turbulent dispersion of exhaled aerosols by air drafts and by convection (indoors), or by the wind (outdoors). We show experimentally that airborne droplets and CO2 molecules present the same dispersion. As a consequence, the dilution factor, and therefore the risk, can be measured quantitatively using the CO2 concentration, regardless of the room volume, the flow rate of fresh air, and the occupancy. We show that the dispersion cone leads to a concentration in viral particles, and therefore a short-range transmission risk, inversely proportional to the squared distance to an infected person and to the flow velocity. The aerosolization criterion derived as an intermediate result, which compares the Stokes relaxation time to the Lagrangian time-scale, may find application for a broad class of aerosol-borne pathogens and pollutants.
Collapse
Affiliation(s)
- Florian Poydenot
- Laboratoire de Physique de l’Ecole Normale Supérieure (LPENS), CNRS UMR 8023, Ecole Normale Supérieure, Université PSL, Sorbonne Université, and Université Paris Cité, 24 rue Lhomond, 75005 Paris, France
| | - Ismael Abdourahamane
- Laboratoire de Physique de l’Ecole Normale Supérieure (LPENS), CNRS UMR 8023, Ecole Normale Supérieure, Université PSL, Sorbonne Université, and Université Paris Cité, 24 rue Lhomond, 75005 Paris, France
| | - Elsa Caplain
- Laboratoire de Physique de l’Ecole Normale Supérieure (LPENS), CNRS UMR 8023, Ecole Normale Supérieure, Université PSL, Sorbonne Université, and Université Paris Cité, 24 rue Lhomond, 75005 Paris, France
| | - Samuel Der
- Laboratoire de Physique de l’Ecole Normale Supérieure (LPENS), CNRS UMR 8023, Ecole Normale Supérieure, Université PSL, Sorbonne Université, and Université Paris Cité, 24 rue Lhomond, 75005 Paris, France
| | - Jacques Haiech
- Cogitamus Laboratory and CNRS UMR 7242 BSC, 300 Bd Sébastien Brant, CS 10413, 67412 Illkirch Cedex, France
| | - Antoine Jallon
- Laboratoire de Physique de l’Ecole Normale Supérieure (LPENS), CNRS UMR 8023, Ecole Normale Supérieure, Université PSL, Sorbonne Université, and Université Paris Cité, 24 rue Lhomond, 75005 Paris, France
| | - Inés Khoutami
- Laboratoire de Physique de l’Ecole Normale Supérieure (LPENS), CNRS UMR 8023, Ecole Normale Supérieure, Université PSL, Sorbonne Université, and Université Paris Cité, 24 rue Lhomond, 75005 Paris, France
| | - Amir Loucif
- Laboratoire de Physique de l’Ecole Normale Supérieure (LPENS), CNRS UMR 8023, Ecole Normale Supérieure, Université PSL, Sorbonne Université, and Université Paris Cité, 24 rue Lhomond, 75005 Paris, France
| | - Emil Marinov
- Laboratoire de Physique de l’Ecole Normale Supérieure (LPENS), CNRS UMR 8023, Ecole Normale Supérieure, Université PSL, Sorbonne Université, and Université Paris Cité, 24 rue Lhomond, 75005 Paris, France
| | - Bruno Andreotti
- Laboratoire de Physique de l’Ecole Normale Supérieure (LPENS), CNRS UMR 8023, Ecole Normale Supérieure, Université PSL, Sorbonne Université, and Université Paris Cité, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
14
|
Schmitt J, Wang J. A critical review on the role of leakages in the facemask protection against SARS-CoV-2 infection with consideration of vaccination and virus variants. INDOOR AIR 2022; 32:e13127. [PMID: 36305058 PMCID: PMC9828278 DOI: 10.1111/ina.13127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 05/28/2023]
Abstract
The protection provided by facemasks has been extensively investigated since the beginning of the SARS-CoV-2 outbreak, focusing mostly on the filtration efficiency of filter media for filtering face pieces (FFP), surgical masks, and cloth masks. However, faceseal leakage is a major contributor to the number of potentially infectious airborne droplets entering the respiratory system of a susceptible individual. The identification of leaking spots and the quantification of leaking flows are crucial to estimate the protection provided by facemasks. This study presents a critical review on the measurement and calculation of facemask leakages and a quantitative analysis of their role in the risk of SARS-CoV-2 infection. It shows that the pairing between the mask dimensions and the wearer's face is essential to improve protection efficiency, especially for FFP2 masks, and summarizes the most common leaking spots at the interface between the mask and the wearer's face. Leakage is a crucial factor in the calculation of the protection provided by facemasks and outweighs the filtration performances. The fit factors measured among mask users were summarized for different types of face protection. The reviewed data were integrated into a computational model to compare the mitigation impact of facemasks with vaccination with consideration of new variants of SARS-CoV-2. Combining a high adoption rate of facemasks and a high vaccination rate is crucial to efficiently control the spread of highly infectious variants.
Collapse
Affiliation(s)
- Jean Schmitt
- Department of Civil, Environmental and Geomatic Engineering, ETH ZurichInstitute of Environmental EngineeringZurichSwitzerland
- Laboratory for Advanced Analytical Technologies, EmpaSwiss Federal Laboratories for Materials Science and TechnologyDubendorfSwitzerland
| | - Jing Wang
- Department of Civil, Environmental and Geomatic Engineering, ETH ZurichInstitute of Environmental EngineeringZurichSwitzerland
- Laboratory for Advanced Analytical Technologies, EmpaSwiss Federal Laboratories for Materials Science and TechnologyDubendorfSwitzerland
| |
Collapse
|
15
|
Gedge DA, Chilcott RP, Williams J. Quantifying the Risk to Health Care Workers of Cough as an Aerosol Generating Event in an Ambulance Setting: A Research Report. Prehosp Disaster Med 2022; 37:515-519. [PMID: 35713106 PMCID: PMC9280060 DOI: 10.1017/s1049023x22000917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/12/2022] [Accepted: 04/30/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION AND OBJECTIVE United Kingdom Health Security Agency (UKHSA) guidance related to mask use for health care workers in a non-aerosol generating procedure (AGP) setting has remained as Level 2 water repellent paper mask (surgical mask) only. Energetic respiratory events, such as coughing, can generate vast numbers of droplets and aerosols. Coughing, considered to be a non-AGP event, frequently occurs in the relatively small, confined space of an ambulance (∼25 m3). The report seeks to explore whether existing research can provide an indication of the risk to ambulance staff, via aerosol transmission, of an acute respiratory infection (ARI) during a coughing event within the clinical setting of an ambulance. METHODS International bibliographic databases were searched (CINAHL Plus, SCOPUS, PubMed, and CENTRAL) using appropriate search strings and a combination of relevant medical subject headings with appropriate truncation. Methodological filters were not applied. Papers without an English language abstract were excluded from the review. Grey literature was sought by searching specialist databases OpenGrey and GreyNet, as well as key organizations' websites. The initial search identified 2,405 articles. Following screening, along with forward and backward citation of key papers identified within the literature search, 36 papers were deemed eligible for the scoping review. DISCUSSION Attempts to replicate a clinical environment to investigate the risk of transmission of airborne viruses to health care workers during a coughing event provided evidence for the generation of respirable aerosol particles and thus potential transmission of pathogens. In cases of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), potential to infect versus true airborne transmission is a debate that continues, but there is general consensus that a large variation of cough characteristics and aerosol generation amongst individuals exists. Studies widely endorsed face masks as a source control device, but there were conflicting views about the impact of mask leakage. CONCLUSION Further research is required to provide clarity of the risk to health care workers when caring for a coughing patient in the confined clinical ambulance setting and to provide an evidence base to assist in the determination of appropriate respiratory protective equipment (RPE).
Collapse
Affiliation(s)
- Dale A. Gedge
- University of Hertfordshire, School of Health and Social Work, Hatfield, Hertfordshire, United Kingdom
- Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, Norfolk, United Kingdom
| | - Robert P. Chilcott
- University of Hertfordshire, Toxicology Research Group, Hatfield, Hertfordshire, United Kingdom
| | - Julia Williams
- University of Hertfordshire, School of Health and Social Work, Hatfield, Hertfordshire, United Kingdom
| |
Collapse
|
16
|
Saccani C, Pellegrini M, Guzzini A. Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.105914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The research community agrees that the main indirect way the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads among people who do not keep social distance is through the emission of infected respiratory droplets. Infected people exhale droplets of different sizes and emission velocities while breathing, talking, sneezing, or coughing. Complex two-phase flow modeling considering evaporation and condensation phenomena describes droplets’ trajectories under the specific thermofluid dynamic boundary conditions, including air temperature, relative humidity, and velocity. However, public health organizations simply suggest a safe distance in the range of 1–2 m regardless of the effect of boundary conditions on droplets’ motion. This chapter aims to highlight open research questions to be addressed and clarify how framework conditions can influence safe distance in an indoor environment and which technical countermeasures (such as face masks wearing or heating, ventilation, and air conditioning (HVAC) control) can be adopted to minimize the infection risk.
Collapse
|
17
|
Veltrup R, Kniesburges S, Döllinger M, Falk S, Mueller SK. Evaluation of Respiratory Particle Emission during Otorhinolaryngological Procedures in the Context of the SARS-CoV-2 Pandemic. Diagnostics (Basel) 2022; 12:diagnostics12071603. [PMID: 35885507 PMCID: PMC9315468 DOI: 10.3390/diagnostics12071603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Understanding the risk of infection by routine medical examination is important for the protection of the medical personnel. In this study we investigated respiratory particles emitted by patients during routine otolaryngologic procedures and assessed the risks for the performing physician. We developed two experimental setups to measure aerosol and droplet emission during rigid/flexible laryngoscopy, rhinoscopy, pharyngoscopy, otoscopy, sonography and patient interview for subjects with and without masks. A high-speed-camera setup was used to detect ballistic droplets (approx. > 100 µm) and an aerosol-particle-sizer was used to detect aerosol particles in the range of 0.3 µm to 10 µm. Aerosol particle counts were highly increased for coughing and slightly increased for heavy breathing in subjects without masks. The highest aerosol particle counts occurred during rigid laryngoscopy. During laryngoscopy and rhinoscopy, the examiner was exposed to increased particle emission due to close proximity to the patient’s face and provoked events such as coughing. However, even during sonography or otoscopy without a mask, aerosol particles were expelled close to the examiner. The physician’s exposure to respiratory particles can be reduced by deliberate choice of examination technique depending on medical indication and the use of appropriate equipment for the examiners and the patients (e.g., FFP2 masks for both).
Collapse
|
18
|
Bhattacharjee S, Bahl P, Chughtai AA, Heslop D, MacIntyre CR. Face masks and respirators: Towards sustainable materials and technologies to overcome the shortcomings and challenges. NANO SELECT 2022. [DOI: 10.1002/nano.202200101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Shovon Bhattacharjee
- Biosecurity Program The Kirby Institute, Faculty of Medicine University of New South Wales Kensington Sydney Australia
- Department of Applied Chemistry and Chemical Engineering Faculty of Engineering and Technology Noakhali Science and Technology University Noakhali Bangladesh
| | - Prateek Bahl
- School of Mechanical & Manufacturing Engineering University of New South Wales Sydney Australia
| | - Abrar Ahmad Chughtai
- School of Population Health Faculty of Medicine University of New South Wales Kensington Sydney Australia
| | - David Heslop
- School of Population Health Faculty of Medicine University of New South Wales Kensington Sydney Australia
| | - C. Raina MacIntyre
- Biosecurity Program The Kirby Institute, Faculty of Medicine University of New South Wales Kensington Sydney Australia
- College of Public Service and Community Solutions and College of Health Solutions Arizona State University Tempe Arizona USA
| |
Collapse
|
19
|
Investigation of the Role of Face Shape on the Flow Dynamics and Effectiveness of Face Masks. FLUIDS 2022. [DOI: 10.3390/fluids7060209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Due to the COVID-19 pandemic, face masks have been used extensively in society. The effectiveness of face masks depends on their material, design, and fit. With much research being focused on quantifying the role of the material, the design and fit of masks have been an afterthought at most. Recent studies, on the other hand, have shown that the mask fit is a significant factor to consider when specifying the effectiveness of the face mask. Moreover, the fit is highly dependent on face topology. Differences in face types and anthropometrics lead to different face mask fit. Here, computational fluid dynamics simulations employing a novel model for porous membranes (i.e., masks) are used to study the leakage pattern of a cough through a face mask on different faces. The three faces studied (female, male, and child) are characteristic faces identified in a previous population study. The female face is observed to have the most leakage through the periphery of the mask, which results in the lowest fitted filtration efficiency of the three faces. The male and child faces had similar gap profiles, leakage and fitted filtration efficiencies. However, the flow of the three faces differs significantly. The effect of the porosity of the mask was also studied. While all faces showed the same general trend with changing porosity, the effect on the child’s face was more significant.
Collapse
|
20
|
Hazard JM, Cappa CD. Performance of Valved Respirators to Reduce Emission of Respiratory Particles Generated by Speaking. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2022; 9:557-560. [PMID: 37552726 PMCID: PMC9115886 DOI: 10.1021/acs.estlett.2c00210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 08/10/2023]
Abstract
Wearing of face coverings serves two purposes: reducing the concentration of ambient particles inhaled and reducing the emission of respiratory particles generated by the wearer. The efficiency of different face coverings depends on the material, design, and fit. Face coverings such as N95 respirators, when worn properly, are highly efficient at filtering ambient particles during inhalation. Some N95 respirators, as well as other face covering types, include a one-way valve to allow easier exhalation while still maintaining a high efficiency of filtration of inhaled ambient particles. The extent to which these valves decrease the efficiency of filtration of emitted respiratory particles is, however, not well established. Here, we show that different valved N95s exhibit highly variable filtration efficiencies for exhaled respiratory particles. As such, valved N95s may not provide reliable source control of respired particles and their use should be discouraged in situations in which such source control is needed.
Collapse
Affiliation(s)
- Jessica M. Hazard
- Department of Civil and Environmental Engineering, University of
California, Davis, California 95616, United
States
| | - Christopher D. Cappa
- Department of Civil and Environmental Engineering, University of
California, Davis, California 95616, United
States
| |
Collapse
|
21
|
A comparison of respiratory particle emission rates at rest and while speaking or exercising. COMMUNICATIONS MEDICINE 2022; 2:44. [PMID: 35603287 PMCID: PMC9053213 DOI: 10.1038/s43856-022-00103-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
Background The coronavirus disease-19 (COVID-19) pandemic led to the prohibition of group-based exercise and the cancellation of sporting events. Evaluation of respiratory aerosol emissions is necessary to quantify exercise-related transmission risk and inform mitigation strategies. Methods Aerosol mass emission rates are calculated from concurrent aerosol and ventilation data, enabling absolute comparison. An aerodynamic particle sizer (0.54–20 μm diameter) samples exhalate from within a cardiopulmonary exercise testing mask, at rest, while speaking and during cycle ergometer-based exercise. Exercise challenge testing is performed to replicate typical gym-based exercise and very vigorous exercise, as determined by a preceding maximally exhaustive exercise test. Results We present data from 25 healthy participants (13 males, 12 females; 36.4 years). The size of aerosol particles generated at rest and during exercise is similar (unimodal ~0.57–0.71 µm), whereas vocalization also generated aerosol particles of larger size (i.e. was bimodal ~0.69 and ~1.74 µm). The aerosol mass emission rate during speaking (0.092 ng s−1; minute ventilation (VE) 15.1 L min−1) and vigorous exercise (0.207 ng s−1, p = 0.726; VE 62.6 L min−1) is similar, but lower than during very vigorous exercise (0.682 ng s−1, p < 0.001; VE 113.6 L min−1). Conclusions Vocalisation drives greater aerosol mass emission rates, compared to breathing at rest. Aerosol mass emission rates in exercise rise with intensity. Aerosol mass emission rates during vigorous exercise are no different from speaking at a conversational level. Mitigation strategies for airborne pathogens for non-exercise-based social interactions incorporating vocalisation, may be suitable for the majority of exercise settings. However, the use of facemasks when exercising may be less effective, given the smaller size of particles produced. SARS-CoV-2, the virus that causes COVID-19, and other respiratory viruses are transmitted via respiratory particles emitted while breathing or speaking. Transmission of these viruses will depend in part on the rate at which these particles are emitted. Here, we studied respiratory particle sizes and emission rates in healthy people while breathing at rest, while speaking and during exercise on a static bicycle. We find that speaking generates larger particles and exercise generates smaller particles. The particle emission rate during speaking and typical gym-based exercise was similar but lower than values measured during very vigorous exercise. These findings help us to understand the emission of respiratory particles during different activities, and suggest that preventative measures for COVID-19 such as social distancing, used for non-exercise-based social interactions involving speaking, may be suitable for the majority of exercise settings. Orton and Symons et al. compare respiratory particle sizes and emission rates by sampling exhalates from participants at rest, and while speaking or exercising. They find that vocalisation produces larger particles and that while emission rates are similar between speaking and vigorous exercise, very vigorous exercise leads to higher rates.
Collapse
|
22
|
Chiera S, Cristoforetti A, Benedetti L, Nollo G, Borro L, Mazzei L, Tessarolo F. A Simple Method to Quantify Outward Leakage of Medical Face Masks and Barrier Face Coverings: Implication for the Overall Filtration Efficiency. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3548. [PMID: 35329234 PMCID: PMC8955475 DOI: 10.3390/ijerph19063548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 12/28/2022]
Abstract
Face masking proved essential to reduce transmission of COVID-19 and other respiratory infections in indoor environments, but standards and literature do not provide simple quantitative methods for quantifying air leakage at the face seal. This study reports an original method to quantify outward leakage and how wearing style impacts on leaks and filtration efficiency. The amount of air leakage was evaluated on four medical masks and four barrier face coverings, exploiting a theoretical model and an instrumented dummy head in a range of airflows between 30 and 160 L/min. The fraction of air leaking at the face seal of the medical masks and barrier face coverings ranged from 43% to 95% of exhaled air at 30 L/min and reduced to 10-85% at 160 L/min. Filter breathability was the main driver affecting both leak fraction and total filtration efficiency that varied from 5% to 53% and from 15% to 84% at 30 and 160 L/min, respectively. Minor changes were related to wearing style, supporting indications on the correct mask use. The fraction of air leaking from medical masks and barrier face coverings during exhalation is relevant and varies according to design and wearing style. The use of highly breathable filter materials reduces air leaks and improve total filtration efficiency.
Collapse
Affiliation(s)
- Silvia Chiera
- Department of Industrial Engineering, University of Trento, 38123 Trento, Italy; (S.C.); (A.C.); (L.B.); (G.N.)
| | - Alessandro Cristoforetti
- Department of Industrial Engineering, University of Trento, 38123 Trento, Italy; (S.C.); (A.C.); (L.B.); (G.N.)
| | - Luca Benedetti
- Department of Industrial Engineering, University of Trento, 38123 Trento, Italy; (S.C.); (A.C.); (L.B.); (G.N.)
| | - Giandomenico Nollo
- Department of Industrial Engineering, University of Trento, 38123 Trento, Italy; (S.C.); (A.C.); (L.B.); (G.N.)
| | - Luca Borro
- 3DLab, Imaging Department, Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | | | - Francesco Tessarolo
- Department of Industrial Engineering, University of Trento, 38123 Trento, Italy; (S.C.); (A.C.); (L.B.); (G.N.)
- Healthcare Research and Innovation Program (IRCS-FBK-PAT), Bruno Kessler Foundation, 38123 Trento, Italy
| |
Collapse
|
23
|
McNeill VF. Airborne Transmission of SARS-CoV-2: Evidence and Implications for Engineering Controls. Annu Rev Chem Biomol Eng 2022; 13:123-140. [PMID: 35300517 DOI: 10.1146/annurev-chembioeng-092220-111631] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally, causing a pandemic (coronavirus disease 2019, or COVID-19) with dire consequences, including widespread death, long-term illness, and societal and economic disruption. Although initially uncertain, evidence is now overwhelming that SARS-CoV-2 is transmitted primarily through small respiratory droplets and aerosols emitted by infected individuals. As a result, many effective nonpharmaceutical interventions for slowing virus transmission operate by blocking, filtering, or diluting respiratory aerosol, particularly in indoor environments. In this review, we discuss the evidence for airborne transmission of SARS-CoV-2 and implications for engineering solutions to reduce transmission risk. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- V Faye McNeill
- Department of Chemical Engineering and Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA;
| |
Collapse
|
24
|
Wang C, Han J. Will the COVID-19 pandemic end with the Delta and Omicron variants? ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2215-2225. [PMID: 35069059 PMCID: PMC8760078 DOI: 10.1007/s10311-021-01369-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Affiliation(s)
- Chaoqi Wang
- School of Human Settlements and Environmental Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Jie Han
- School of Human Settlements and Environmental Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| |
Collapse
|
25
|
Mumma JM, Jordan E, Ayeni O, Kaufman N, Wheatley MJ, Grindle A, Morgan J. Development and validation of the discomfort of cloth Masks-12 (DCM-12) scale. APPLIED ERGONOMICS 2022; 98:103616. [PMID: 34688120 PMCID: PMC8527896 DOI: 10.1016/j.apergo.2021.103616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 05/13/2023]
Abstract
During the COVID-19 pandemic, the use of face masks by the public has helped to slow the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the community. Cloth masks have been recommended because of their effectiveness, availability, and reusability. Like other types of face masks, however, user discomfort while wearing cloth masks is thought to engender behaviors that limit the effectiveness of cloth masks as source control (e.g., adjusting or removing one's mask temporarily while in public). To design cloth masks that are more tolerable, a measurement instrument for assessing subjective user discomfort is needed. Across two studies, we identified and confirmed a two-dimensional factor structure underlying the discomfort of cloth masks - discomfort related to the breathability and discomfort related to the tightness of the mask against the face and head. Additionally, we provide replicable evidence that both factor-subscales predict the self-reported frequencies of problematic mask-wearing behaviors.
Collapse
Affiliation(s)
- Joel M Mumma
- Emory University School of Medicine, Division of Infectious Diseases, Department of Medicine, 1364 Clifton Road Northeast, GG17A, Atlanta, GA, 30322, USA.
| | - Ellen Jordan
- Emory University School of Medicine, Division of Infectious Diseases, Department of Medicine, Atlanta, GA, USA
| | - Oluwateniola Ayeni
- Emory University School of Medicine, Division of Infectious Diseases, Department of Medicine, Atlanta, GA, USA
| | - Noah Kaufman
- Emory University School of Medicine, Division of Infectious Diseases, Department of Medicine, Atlanta, GA, USA
| | | | | | | |
Collapse
|
26
|
McGowan A, Laveneziana P, Bayat S, Beydon N, Boros P, Burgos F, Fležar M, Franczuk M, Galarza MA, Kendrick AH, Lombardi E, Makonga-Braaksma J, McCormack MC, Plantier L, Stanojevic S, Steenbruggen I, Thompson B, Coates AL, Wanger J, Cockcroft DW, Culver B, Sylvester K, De Jongh F. International consensus on lung function testing during the COVID-19 pandemic and beyond. ERJ Open Res 2022; 8:00602-2021. [PMID: 35261912 PMCID: PMC8607240 DOI: 10.1183/23120541.00602-2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 10/31/2021] [Indexed: 11/05/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has negatively affected the delivery of respiratory diagnostic services across the world due to the potential risk of disease transmission during lung function testing. Community prevalence, reoccurrence of COVID-19 surges and the emergence of different variants of SARS-CoV-2 have impeded attempts to restore services. Finding consensus on how to deliver safe lung function services for both patients attending and for staff performing the tests are of paramount importance. This international statement presents the consensus opinion of 23 experts in the field of lung function and respiratory physiology balanced with evidence from the reviewed literature. It describes a robust roadmap for restoration and continuity of lung function testing services during the COVID-19 pandemic and beyond. Important strategies presented in this consensus statement relate to the patient journey when attending for lung function tests. We discuss appointment preparation, operational and environmental issues, testing room requirements including mitigation strategies for transmission risk, requirement for improved ventilation, maintaining physical distance and use of personal protection equipment. We also provide consensus opinion on precautions relating to specific tests, filters, management of special patient groups and alternative options to testing in hospitals. The pandemic has highlighted how vulnerable lung function services are and forces us to re-think how long-term mitigation strategies can protect our services during this and any possible future pandemic. This statement aspires to address the safety concerns that exist and provide strategies to make lung function tests and the testing environment safer when tests are required.
Collapse
Affiliation(s)
- Aisling McGowan
- Dept of Respiratory and Sleep Diagnostics, Connolly Hospital, Dublin, Ireland
- School of Physics, Clinical and Optometric Sciences, Technological University Dublin, Dublin, Ireland
| | - Pierantonio Laveneziana
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- AP-HP, Groupe Hospitalier Universitaire APHP–Sorbonne Université, Service des Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée (Département R3S), Paris, France
| | - Sam Bayat
- Centre Hospitalier Universitaire de Grenoble Alpes, Unité d'Explorations Fonctionnelles, Cardiorespiratoires, Grenoble, France
- Université Grenoble Alpes – INSERM UA7, Rayonnement Synchrotron pour la Recherche Biomédicale (STROBE), Grenoble, France
| | - Nicole Beydon
- Unité Fonctionnelle de Physiologie-Explorations Fonctionnelles Respiratoires, AP-HP Sorbonne Université, Hôpital Armand-Trousseau, Paris, France
| | - P.W. Boros
- Lung Pathophysiology Dept, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Felip Burgos
- Department of Pulmonary Medicine, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Universitat de Barcelona, CIBERES, Barcelona, Spain
| | - Matjaž Fležar
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Monika Franczuk
- Lung Pathophysiology Dept, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Maria-Alejandra Galarza
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- AP-HP, Groupe Hospitalier Universitaire APHP–Sorbonne Université, Service des Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée (Département R3S), Paris, France
| | - Adrian H. Kendrick
- Dept of Respiratory Medicine, University Hospitals Bristol & Weston NHS Trust, Bristol, UK
- University of West of England, Bristol, UK
- School of Physiology, Pharmacology and Neurophysiology, University of Bristol, Bristol, UK
| | - Enrico Lombardi
- Pediatric Pulmonary Unit, Anna Meyer Pediatric University Hospital, Florence, Italy
| | | | - Meredith C. McCormack
- Pulmonary Function Laboratory, Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Laurent Plantier
- Pulmonology and Lung Function Testing, CHRU de Tours, Tours, France
- University of Tours, CEPR/Inserm UMR1100, Tours, France
| | - Sanja Stanojevic
- Dept of Community Health and Epidemiology, Dalhousie University, New Brunswick, NS, Canada
| | | | - Bruce Thompson
- Faculty of Health, Arts and Design, Swinburne University of Technology, Victoria, Australia
| | - Allan L. Coates
- Division of Respiratory Medicine, Dept of Pediatrics, Physiology and Environmental Medicine, Research Institute, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jack Wanger
- Pulmonary Function Testing and Clinical Trial Consultant, Rochester, MN, USA
| | - Donald W. Cockcroft
- Division of Respirology, Critical Care and Sleep Medicine, Dept of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bruce Culver
- Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Karl Sylvester
- Cambridge Respiratory Physiology, Cambridge University Hospital, Cambridge, UK
- Royal Papworth Hospital, Cambridge, UK
| | - Frans De Jongh
- Lung Function Lab, Medisch Spectrum Twente, Enschede, The Netherlands
| |
Collapse
|
27
|
Ribaric NL, Vincent C, Jonitz G, Hellinger A, Ribaric G. Hidden hazards of SARS-CoV-2 transmission in hospitals: A systematic review. INDOOR AIR 2022; 32:e12968. [PMID: 34862811 DOI: 10.1111/ina.12968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/17/2021] [Accepted: 11/19/2021] [Indexed: 05/04/2023]
Abstract
Despite their considerable prevalence, dynamics of hospital-associated COVID-19 are still not well understood. We assessed the nature and extent of air- and surface-borne SARS-CoV-2 contamination in hospitals to identify hazards of viral dispersal and enable more precise targeting of infection prevention and control. PubMed, ScienceDirect, Web of Science, Medrxiv, and Biorxiv were searched for relevant articles until June 1, 2021. In total, 51 observational cross-sectional studies comprising 6258 samples were included. SARS-CoV-2 RNA was detected in one in six air and surface samples throughout the hospital and up to 7.62 m away from the nearest patients. The highest detection rates and viral concentrations were reported from patient areas. The most frequently and heavily contaminated types of surfaces comprised air outlets and hospital floors. Viable virus was recovered from the air and fomites. Among size-fractionated air samples, only fine aerosols contained viable virus. Aerosol-generating procedures significantly increased (ORair = 2.56 (1.46-4.51); ORsurface = 1.95 (1.27-2.99)), whereas patient masking significantly decreased air- and surface-borne SARS-CoV-2 contamination (ORair = 0.41 (0.25-0.70); ORsurface = 0.45 (0.34-0.61)). The nature and extent of hospital contamination indicate that SARS-CoV-2 is likely dispersed conjointly through several transmission routes, including short- and long-range aerosol, droplet, and fomite transmission.
Collapse
Affiliation(s)
- Noach Leon Ribaric
- Faculty of Medicine, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Charles Vincent
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Günther Jonitz
- German Medical Association, Berlin, Germany
- State Chamber of Physicians Berlin, Berlin, Germany
| | - Achim Hellinger
- Department of General, Visceral, Endocrine and Oncologic Surgery, Fulda Hospital, University Medicine Marburg Campus Fulda, Fulda, Germany
| | - Goran Ribaric
- Johnson & Johnson Institute, Norderstedt, Germany
- MedTech Europe, Antimicrobial Resistance (AMR) and Healthcare Associated Infections (HAI) Sector Group, Brussels, Belgium
| |
Collapse
|
28
|
Kriegel M, Hartmann A, Buchholz U, Seifried J, Baumgarte S, Gastmeier P. SARS-CoV-2 Aerosol Transmission Indoors: A Closer Look at Viral Load, Infectivity, the Effectiveness of Preventive Measures and a Simple Approach for Practical Recommendations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:220. [PMID: 35010484 PMCID: PMC8750733 DOI: 10.3390/ijerph19010220] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
There is uncertainty about the viral loads of infectious individuals required to transmit COVID-19 via aerosol. In addition, there is a lack of both quantification of the influencing parameters on airborne transmission and simple-to-use models for assessing the risk of infection in practice, which furthermore quantify the influence of non-medical preventive measures. In this study, a dose-response model was adopted to analyze 25 documented outbreaks at infection rates of 4-100%. We show that infection was only possible if the viral load was higher than 108 viral copies/mL. Based on mathematical simplifications of our approach to predict the probable situational attack rate (PARs) of a group of persons in a room, and valid assumptions, we provide simplified equations to calculate, among others, the maximum possible number of persons and the person-related virus-free air supply flow necessary to keep the number of newly infected persons to less than one. A comparison of different preventive measures revealed that testing contributes the most to the joint protective effect, besides wearing masks and increasing ventilation. In addition, we conclude that absolute volume flow rate or person-related volume flow rate are more intuitive parameters for evaluating ventilation for infection prevention than air exchange rate.
Collapse
Affiliation(s)
- Martin Kriegel
- Hermann-Rietschel-Institut, Technical University of Berlin, 10623 Berlin, Germany;
| | - Anne Hartmann
- Hermann-Rietschel-Institut, Technical University of Berlin, 10623 Berlin, Germany;
| | - Udo Buchholz
- Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353 Berlin, Germany; (U.B.); (J.S.)
| | - Janna Seifried
- Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353 Berlin, Germany; (U.B.); (J.S.)
| | | | - Petra Gastmeier
- Institute for Hygiene and Environmental Medicine, Charité-University Medicine Berlin, 12203 Berlin, Germany;
| |
Collapse
|
29
|
Elastomeric Respirators for COVID-19 and the Next Respiratory Virus Pandemic: Essential Design Elements. Anesthesiology 2021; 135:951-962. [PMID: 34666348 DOI: 10.1097/aln.0000000000004005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Respiratory viruses are transmitted via respiratory particles that are emitted when people breath, speak, cough, or sneeze. These particles span the size spectrum from visible droplets to airborne particles of hundreds of nanometers. Barrier face coverings ("cloth masks") and surgical masks are loose-fitting and provide limited protection from airborne particles since air passes around the edges of the mask as well as through the filtering material. Respirators, which fit tightly to the face, provide more effective respiratory protection. Although healthcare workers have relied primarily on disposable filtering facepiece respirators (such as N95) during the COVID-19 pandemic, reusable elastomeric respirators have significant potential advantages for the COVID-19 and future respiratory virus pandemics. However, currently available elastomeric respirators were not designed primarily for healthcare or pandemic use and require further development to improve their suitability for this application. The authors believe that the development, implementation, and stockpiling of improved elastomeric respirators should be an international public health priority.
Collapse
|
30
|
Wang Q, Han J, Chang H, Wang C, Lichtfouse E. Society organization, not pathogenic viruses, is the fundamental cause of pandemics. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 20:1545-1551. [PMID: 34744549 PMCID: PMC8556818 DOI: 10.1007/s10311-021-01346-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Qianqian Wang
- Institute of Global Environmental Change, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Jie Han
- Institute of Global Environmental Change, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Hong Chang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030 Heilongjiang People’s Republic of China
| | - Chaoqi Wang
- Institute of Global Environmental Change, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Eric Lichtfouse
- Aix-Marseille University, CNRS, IRD, INRAE, CEREGE, 13100 Aix en Provence, France
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| |
Collapse
|
31
|
Radney JG, Weaver JL, Vicenzi EP, Staymates ME, Zangmeister CD. Filter Inserts Impact Cloth Mask Performance against Nano- to Micro-Sized Particles. ACS NANO 2021; 15:12860-12868. [PMID: 34251793 DOI: 10.1021/acsnano.1c05182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The United States Centers for Disease Control and Prevention and World Health Organization recognize that wearing cloth face coverings can slow the transmission of respiratory diseases via source control. Adding a partial layer of material with a high filtration efficiency (FE, e.g., polypropylene sheets that meet the HEPA standard) as an insert can potentially provide additional personal protection; however, data on the necessary areal coverage are sparse. The relationship between insert area ratio (IAR) relative to fabric area, FE, differential pressure (ΔP, a surrogate for breathability), and quality factor (QF, a ratio including FE and ΔP) utilizing two fabrics (rayon and 100% cotton lightweight flannel) and three insert materials (HEPA vacuum bag, sterilization wrap and paper coffee filter) was investigated. The effect of inserts on particle flows mimicking human exhalation is semiquantitatively and qualitatively examined using flow visualization techniques. The following was found: (1) The relationship between FE, ΔP, and QF is complex, and a trade-off exists between personal protection from filtration during inhalation and source control from leakage during exhalation; (2) FE and ΔP of the composite covering increase with IAR, and the rate is dependent upon insert type; (3) improvements (decrements) in the QF of the composite assemblage require inserts with a higher (lower) QF than the fabric and larger differences yield greater gains (losses); (4) the increased ΔP from an insert results in increased leakage during exhalation; (5) to minimize leaks, ΔP must be as low as possible; and (6) small relative areas not covered by an insert (i.e., IAR slightly smaller than 1) strongly deteriorate the benefits of an insert similar to small leaks in a covering.
Collapse
Affiliation(s)
- James G Radney
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jamie L Weaver
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Museum Conservation Institute, Smithsonian Institution, Suitland, Maryland 20746, United States
| | - Edward P Vicenzi
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Museum Conservation Institute, Smithsonian Institution, Suitland, Maryland 20746, United States
| | - Matthew E Staymates
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Christopher D Zangmeister
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
32
|
Puius YA, Bartash RM, Zingman BS. Maintaining mask momentum in transplant recipients. Transpl Infect Dis 2021; 23:e13697. [PMID: 34324251 PMCID: PMC8420158 DOI: 10.1111/tid.13697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022]
Abstract
The widespread use of facemasks has been a crucial element in the control of the SARS‐CoV‐2 pandemic. With mounting evidence for mask efficacy against respiratory infectious diseases and greater acceptability of this intervention, it is proposed that masking should continue after the pandemic has abated to protect some of our most vulnerable patients, recipients of stem cell and solid organ transplants. This may involve not only masking these high‐risk patients, but possibly their close contacts and the healthcare workers involved in their care. We review the evidence for mask efficacy in prevention of respiratory viruses other than SARS‐CoV‐2 and address the burden of disease in transplant recipients. Although we acknowledge that there are limited data on masking to prevent infection in transplant recipients, we propose a framework for the study and implementation of routine masking as a part of infection prevention interventions after transplantation.
Collapse
Affiliation(s)
- Yoram A Puius
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, USA.,Division of Cardiothoracic and Vascular Surgery, Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rachel M Bartash
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, USA
| | - Barry S Zingman
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
33
|
Arumuru V, Samantaray SS, Pasa J. Double masking protection vs. comfort-A quantitative assessment. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:077120. [PMID: 34335010 PMCID: PMC8320463 DOI: 10.1063/5.0058571] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/05/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 has forced humankind to adopt face masks as an integral part of everyday life. This preventive measure is an effective source control technique to curb the spread of COVID-19 and other similar diseases. The virus responsible for causing COVID-19 has undergone several mutations in the recent past, including B.1.1.7, B.1.351, P.1, and N501Y, B.1.617, with a higher infectious rate. These viruses' variants are mainly responsible for the recent spike in COVID-19 cases and associated steep rise in mortality rate worldwide. Under these circumstances, the Center for Disease Control (CDC) and health experts recommend double masking, which mainly includes a surgical mask and a cotton mask for the general public. This combination provides an additional layer of protection and masks fitment to minimize the leakage of droplets expelled during coughing, sneezing, talking, and breathing. This leakage may cause airborne transmission of the virus. In the present study, we report a systematic quantitative unsteady pressure measurement supplement with flow visualization to quantify the effectiveness of a single and double mask. We have also evaluated double masking consisting of a surgical mask and an N-95 mask used by medical professionals. A simple knot improves the surgical mask fitment significantly, and hence, the leakage of droplets is minimized. The leakage of the droplets was reduced to a large extent by using a double mask combination of a two-layer cotton mask over the surgical mask with a knot. The double mask combination of surgical + N-95 and two-layer cotton + N-95 masks showed the most promising results, and no leakage of the droplets is observed in the forward direction. A double mask combination of surgical and N-95 mask offers 8.6% and 5.6% lower mean and peak pressures compared to surgical, and cotton mask. The best results are observed with cotton and N-95 masks with 54.6% and 23% lower mean and peak pressures than surgical and cotton masks; hence, this combination will offer more comfort to the wearer.
Collapse
Affiliation(s)
- Venugopal Arumuru
- Applied Fluids Group, School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, India
| | - Sidhartha Sankar Samantaray
- Applied Fluids Group, School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, India
| | - Jangyadatta Pasa
- Applied Fluids Group, School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, India
| |
Collapse
|