1
|
Iglesias-Jiménez A, Artiaga G, Moreno-Gordaliza E, Milagros Gómez-Gómez M. Metallomic evaluation of selenium nanoparticles and selenomethionine for the attenuation of cisplatin-induced nephrotoxicity. Eur J Pharm Biopharm 2025:114737. [PMID: 40345401 DOI: 10.1016/j.ejpb.2025.114737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/23/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Nephrotoxicity is one of the most limiting side effects in oncologic patients treated with cisplatin and is still clinically unresolved. In this work, chitosan-stabilised selenium nanoparticles (Ch-SeNPs) and selenomethionine (SeMet) have been evaluated as nephroprotectors of cisplatin using renal proximal tubule epithelial cells (RPTEC/TERT1) as a model. Moreover, the antineoplastic efficacy of cisplatin co-administered with these selenocompounds has been tested in cervical cancer cells (HeLa). Cell viability, cell localisation of Ch-SeNPs and changes in the morphology and cell ultrastructure, Pt and Se cellular internalisation and cisplatin binding to DNA, and speciation of Pt and Se in the cytosolic extracts were evaluated by MTT assays, transmission electron microscopy coupled to energy dispersive X-ray spectroscopy (TEM-EDS), inductively coupled plasma mass spectrometry (ICP-MS), and both size exclusion chromatography (SEC) and anion exchange chromatography (AEC) coupled to either ICP-MS or UV-Vis. Differences in the pharmacological activity of the two selenospecies were observed. SeMet exerted a moderate protection on kidney cells while reducing their degree of cisplatin intracellular accumulation and DNA binding in both cell lines, but the antitumour effect of cisplatin was not significantly altered. Conversely, Ch-SeNPs did not impair the Pt-drug uptake or DNA binding in any cell type; and even increased its antitumour effect, which might enable using lower doses of cisplatin without loss of anticancer efficacy, which would result in decreased risk of renotoxicity. Furthermore, cells incubated either with SeMet or SeNPs showed higher levels of selenoproteins, which might enhance cellular defences against the reactive oxygen species (ROS) involved in cisplatin renotoxicity. Hence, both selenocompounds are envisioned as potential coadjuvants to reduce the risk of kidney impairment in future treatments with cisplatin.
Collapse
Affiliation(s)
- Alejandro Iglesias-Jiménez
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| | - Gema Artiaga
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| | - Estefanía Moreno-Gordaliza
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| | - M Milagros Gómez-Gómez
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| |
Collapse
|
2
|
Liu S, Abu Bakar Saddique M, Liang Y, Guan G, Su H, Hu B, Yang S, Luo X, Ren M. Microalgae: A good carrier for biological selenium enrichment. BIORESOURCE TECHNOLOGY 2025; 416:131768. [PMID: 39521184 DOI: 10.1016/j.biortech.2024.131768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Selenium is a crucial micronutrient for human well-being, with significant contributions to antioxidant, anti-ageing, and antiviral activities. However, over one billion people globally struggle with selenium deficiency, leading to a pressing need for selenium supplementation. Conventional selenium-enrich food from plants and animals provides challenges in achieving precise selenium supplementation. Thus, it is crucial to discover selenium carriers that can be cultured in a controlled environment. Multiple studies have shown that microalgae are excellent carriers for selenium enrichment due to their rapid growth, suitability for plant consumption, ease of industrialization, high efficiency in converting organic selenium, and many others. This review focuses on single-celled microalgae, comprehensively reviewing their metabolic pathway, biological transformation, and valuable forms of selenium. Additionally, it forecasts the current application status and prospects of selenium-enriched microalgae in agriculture and global human health. This review provides a reference for the industrial supply of precise selenium-rich raw materials.
Collapse
Affiliation(s)
- Shuang Liu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China; Chengdu Agricultural Science and Technology Center, Chengdu 610000, China
| | - Muhammad Abu Bakar Saddique
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China; Chengdu Agricultural Science and Technology Center, Chengdu 610000, China
| | - Yiming Liang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China; Chengdu Agricultural Science and Technology Center, Chengdu 610000, China
| | - Ge Guan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China; Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001 China
| | - Haotian Su
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China; Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001 China
| | - Beibei Hu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China; Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001 China
| | - Songqi Yang
- Gansu Microalgae Technology Innovation Center, Hexi University, Zhangye 734000, China
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China; Chengdu Agricultural Science and Technology Center, Chengdu 610000, China.
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China; Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001 China.
| |
Collapse
|
3
|
Lashani E, Moghimi H, Turner RJ, Amoozegar MA. Characterization and biological activity of selenium nanoparticles biosynthesized by Yarrowia lipolytica. Microb Biotechnol 2024; 17:e70013. [PMID: 39364622 PMCID: PMC11450378 DOI: 10.1111/1751-7915.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/28/2024] [Indexed: 10/05/2024] Open
Abstract
In this research, biogenic selenium nanoparticles were produced by the fungi Yarrowia lipolytica, and the biological activity of its nanoparticles was studied for the first time. The electron microscopy analyses showed the production of nanoparticles were intracellular and the resulting particles were extracted and characterized by XRD, zeta potential, FESEM, EDX, FTIR spectroscopy and DLS. These analyses showed amorphous spherical nanoparticles with an average size of 110 nm and a Zeta potential of -34.51 ± 2.41 mV. Signatures of lipids and proteins were present in the capping layer of biogenic selenium nanoparticles based on FTIR spectra. The antimicrobial properties of test strains showed that Serratia marcescens, Klebsiella pneumonia, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis were inhibited at concentrations between 160 and 640 μg/mL, while the growth of Candida albicans was hindered by 80 μg/mL of biogenic selenium nanoparticles. At concentrations between 0.5 and 1.5 mg/mL of biogenic selenium nanoparticles inhibited up to 50% of biofilm formation of Klebsiella pneumonia, Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa. Additionally, the concentration of 20-640 μg/mL of these bioSeNPs showed antioxidant activity. Evaluating the cytotoxicity of these nanoparticles on the HUVEC and HepG2 cell lines did not show any significant toxicity within MIC concentrations of SeNPs. This defines that Y. lipolytica synthesized SeNPs have strong potential to be exploited as antimicrobial agents against pathogens of WHO concern.
Collapse
Affiliation(s)
- Elham Lashani
- Extremophiles Laboratory, Department of Microbiology, School of Biology, College of ScienceUniversity of TehranTehranIran
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of ScienceUniversity of TehranTehranIran
| | - Raymond J. Turner
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology, College of ScienceUniversity of TehranTehranIran
| |
Collapse
|
4
|
Saad S, Abdelghany AM, Abou-ElWafa GS, Aldesuquy HS, Eltanahy E. Bioactivity of selenium nanoparticles biosynthesized by crude phycocyanin extract of Leptolyngbya sp. SSI24 cultivated on recycled filter cake wastes from sugar-industry. Microb Cell Fact 2024; 23:211. [PMID: 39061030 PMCID: PMC11282635 DOI: 10.1186/s12934-024-02482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Beet filter cake (BFC) is a food-grade solid waste produced by the sugar industry, constituting a permanent source of pollution. Cyanobacteria are considered a sustainable resource for various bioactive compounds such as phycocyanin pigment with valuable applications. This study aimed to use beet filter cake extract (BFCE) as an alternative medium for the economic cultivation of cyanobacterium Leptolyngbya sp. SSI24 PP723083, then biorefined the bioactive component such as phycocyanin pigment that could be used in the production of selenium nanoparticles. RESULTS The results of the batch experiment displayed that the highest protein content was in BG11medium (47.9%); however, the maximum carbohydrate and lipid content were in 25% BFCE (15.25 and 10.23%, respectively). In addition, 75% BFCE medium stimulated the phycocyanin content (25.29 mg/g) with an insignificant variation compared to BG11 (22.8 mg/g). Moreover, crude phycocyanin extract from Leptolyngbya sp SSI24 cultivated on BG11 and 75% BFCE successfully produced spherical-shaped selenium nanoparticles (Se-NPs) with mean sizes of 95 and 96 nm in both extracts, respectively. Moreover, XRD results demonstrated that the biosynthesized Se-NPs have a crystalline nature. In addition, the Zeta potential of the biosynthesized Se-NPs equals - 17 mV and - 15.03 mV in the control and 75% BFCE treatment, respectively, indicating their stability. The biosynthesized Se-NPs exhibited higher effectiveness against Gram-positive bacteria than Gram-negative bacteria. Moreover, the biosynthesized Se-NPs from BG11 had higher antioxidant activity with IC50 of 60 ± 0.7 compared to 75% BFCE medium. Further, Se-NPs biosynthesized from phycocyanin extracted from Leptolyngbya sp cultivated on 75% BFCE exhibited strong anticancer activity with IC50 of 17.31 ± 0.63 µg/ml against the human breast cancer cell line. CONCLUSIONS The BFCE-supplemented medium can be used for the cultivation of cyanobacterial strain for the phycocyanin accumulation that is used for the green synthesis of selenium nanoparticles that have biological applications.
Collapse
Affiliation(s)
- Sara Saad
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Amr Mohamed Abdelghany
- Spectroscopy Department, Physics Research Institute, National Research Center, Giza, 12311, Egypt
| | | | | | - Eladl Eltanahy
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
5
|
Mikhailova EO. Selenium Nanoparticles: Green Synthesis and Biomedical Application. Molecules 2023; 28:8125. [PMID: 38138613 PMCID: PMC10745377 DOI: 10.3390/molecules28248125] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Selenium nanoparticles (SeNPs) are extremely popular objects in nanotechnology. "Green" synthesis has special advantages due to the growing necessity for environmentally friendly, non-toxic, and low-cost methods. This review considers the biosynthesis mechanism of bacteria, fungi, algae, and plants, including the role of various biological substances in the processes of reducing selenium compounds to SeNPs and their further packaging. Modern information and approaches to the possible biomedical use of selenium nanoparticles are presented: antimicrobial, antiviral, anticancer, antioxidant, anti-inflammatory, and other properties, as well as the mechanisms of these processes, that have important potential therapeutic value.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
6
|
Verma S, Suman P, Mandal S, Kumar R, Sahana N, Siddiqui N, Chakdar H. Assessment and identification of bioactive metabolites from terrestrial Lyngbya spp. responsible for antioxidant, antifungal, and anticancer activities. Braz J Microbiol 2023; 54:2671-2687. [PMID: 37688688 PMCID: PMC10689636 DOI: 10.1007/s42770-023-01111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/20/2023] [Indexed: 09/11/2023] Open
Abstract
Lyngbya from fresh and marine water produces an array of pharmaceutically bioactive therapeutic compounds. However, Lyngbya from agricultural soil is still poorly investigated. Hence, in this study, the bioactive potential of different Lyngbya spp. extract was explored. Intracellular petroleum ether extract of L. hieronymusii K81 showed the highest phenolic content (626.22 ± 0.65 μg GAEs g-1 FW), while intracellular ethyl acetate extract of L. aestuarii K97 (74.02 ± 0.002 mg QEs g-1 FW) showed highest flavonoid content. Highest free radical scavenging activity in terms of ABTS•+ was recorded in intracellular methanolic extract of Lyngbya sp. K5 (97.85 ± 0.068%), followed by L. wollei K80 (97.22 ± 0.059%) while highest DPPH• radical scavenging activity observed by intracellular acetone extract of Lyngbya sp. K5 (54.59 ± 0.165%). All the extracts also showed variable degrees of antifungal activities against Fusarium udum, F. oxysporum ciceris, Colletotrichum capsici, and Rhizoctonia solani. Further, extract of L. wollei K80 and L. aestuarii K97 showed potential anticancer activities against MCF7 (breast cancer) cell lines. GC-MS analyses of intracellular methanolic extract of L. wollei K80 showed the dominance of PUFAs with 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z) as the most abundant bioactive compound. On the other hand, the extracellular ethyl acetate extract of L. aestuarii K97 was rich in alkanes and alkenes with 1-hexyl-2-nitrocyclohexane as the most predominant compound. Extracts of Lyngbya spp. rich in novel secondary metabolites such as PUFAs, alkanes, and alkenes can be further explored as an alternative and low-cost antioxidant and potential apoptogens for cancer therapy.
Collapse
Affiliation(s)
- Shaloo Verma
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Prabhat Suman
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Somnath Mandal
- Department of Biochemistry, Uttar Banga Krishi Vishwavidyalaya (UBKV), Cooch Behar, West Bengal, 736165, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Nandita Sahana
- Department of Biochemistry, Uttar Banga Krishi Vishwavidyalaya (UBKV), Cooch Behar, West Bengal, 736165, India
| | - Nahid Siddiqui
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India.
| |
Collapse
|
7
|
Asif N, Amir M, Fatma T. Recent advances in the synthesis, characterization and biomedical applications of zinc oxide nanoparticles. Bioprocess Biosyst Eng 2023; 46:1377-1398. [PMID: 37294320 PMCID: PMC10251335 DOI: 10.1007/s00449-023-02886-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Zinc oxide nanoparticles (ZnONPs) have become the widely used metal oxide nanoparticles and drawn the interest of global researchers due to their biocompatibility, low toxicity, sustainability and cost-effective properties. Due to their unique optical and chemical properties, it emerges as a potential candidate in the fields of optical, electrical, food packaging and biomedical applications. Biological methods using green or natural routes are more environmentally friendly, simple and less use of hazardous techniques than chemical and/or physical methods in the long run. In addition, ZnONPs are less harmful and biodegradable while having the ability to greatly boost pharmacophore bioactivity. They play an important role in cell apoptosis because they enhance the generation of reactive oxygen species (ROS) and release zinc ions (Zn2+), causing cell death. Furthermore, these ZnONPs work well in conjunction with components that aid in wound healing and biosensing to track minute amounts of biomarkers connected to a variety of illnesses. Overall, the present review discusses the synthesis and most recent developments of ZnONPs from green sources including leaves, stems, bark, roots, fruits, flowers, bacteria, fungi, algae and protein, as well as put lights on their biomedical applications such as antimicrobial, antioxidant, antidiabetic, anticancer, anti-inflammatory, antiviral, wound healing, and drug delivery, and modes of action associated. Finally, the future perspectives of biosynthesized ZnONPs in research and biomedical applications are discussed.
Collapse
Affiliation(s)
- Nida Asif
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohammad Amir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Tasneem Fatma
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
8
|
Nowruzi B, Jalil BS, Metcalf JS. Antifungal screening of selenium nanoparticles biosynthesized by microcystin-producing Desmonostoc alborizicum. BMC Biotechnol 2023; 23:41. [PMID: 37759248 PMCID: PMC10538242 DOI: 10.1186/s12896-023-00807-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Metal nanoparticles exhibit excellent antifungal abilities and are seen as a good substitute for controlling different kinds of fungi. Of all known taxa, cyanobacteria have received significant consideration as nanobiofactories, as a result of the cellular assimilation of heavy metals from the environment. The cellular bioactive enzymes, polysaccharides and pigments can be used as reducers and coatings during biosynthesis. The probability of the antifungal activity of selenium nanoparticles (SeNPs) to prevent plant fungi that can affect humans was evaluated and a toxic Iranian cyanobacterial strain of Desmonostoc alborizicum was used to study the biotechnology of SeNP synthesis for the first time. Characterization of nanoparticles with a UV-Vis spectrophotometer showed the formation of SeNPs in the range of 271-275 nm with the appearance of an orange color. Morphological examination of nanoparticles with Transmission Electron Microscopy (TEM), revealed the spherical shape of nanoparticles. The results of X-Ray Diffraction (XRD) showed 7 peaks and a hexagonal structure of average crystal size equal to 58.8 nm. The dispersion index of SeNPs was reported as 0.635, which indicated the homogeneity of the nanoparticle droplet size. The zeta potential of the nanoparticles was + 22.7. Fourier-transform infrared spectroscopy (FTIR) analysis exhibited a sharp and intense peak located at the wave number of 404 cm- 1, related to the SeNPs synthesized in this research. The results of the antifungal activity of SeNPs showed among the investigated fungi, Pythium ultimum had the highest resistance to SeNPs (14.66 ± 0.52 µg/ml), while Alternaria alternata showed the highest sensitivity (9.66 ± 0.51 µg/ml) (p < 0.05). To the best of our knowledge this is the first report concerning the characterization and antifungal screening of SeNPs biosynthesized by Iranian cyanobacteria, which could be used as effective candidates in medical applications.
Collapse
Affiliation(s)
- Bahareh Nowruzi
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran city, Iran.
| | - Bilal Saad Jalil
- Iraqi ministry of higher education and scientific research, Karbala University, Karbala city, Iraq
| | - James S Metcalf
- Department of Biological Sciences, Bowling Green State University, Bowling Green city, OH, 43403, USA
- Brain Chemistry Labs, Box 3464, Jackson, WY, 83001 city, USA
| |
Collapse
|
9
|
Serov DA, Khabatova VV, Vodeneev V, Li R, Gudkov SV. A Review of the Antibacterial, Fungicidal and Antiviral Properties of Selenium Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5363. [PMID: 37570068 PMCID: PMC10420033 DOI: 10.3390/ma16155363] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
The resistance of microorganisms to antimicrobial drugs is an important problem worldwide. To solve this problem, active searches for antimicrobial components, approaches and therapies are being carried out. Selenium nanoparticles have high potential for antimicrobial activity. The relevance of their application is indisputable, which can be noted due to the significant increase in publications on the topic over the past decade. This review of research publications aims to provide the reader with up-to-date information on the antimicrobial properties of selenium nanoparticles, including susceptible microorganisms, the mechanisms of action of nanoparticles on bacteria and the effect of nanoparticle properties on their antimicrobial activity. This review describes the most complete information on the antiviral, antibacterial and antifungal effects of selenium nanoparticles.
Collapse
Affiliation(s)
- Dmitry A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
| | - Venera V. Khabatova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
| | - Vladimir Vodeneev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin av. 23, 603105 Nizhny Novgorod, Russia;
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, China;
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin av. 23, 603105 Nizhny Novgorod, Russia;
| |
Collapse
|
10
|
Asif N, Ahmad R, Fatima S, Shehzadi S, Siddiqui T, Zaki A, Fatma T. Toxicological assessment of Phormidium sp. derived copper oxide nanoparticles for its biomedical and environmental applications. Sci Rep 2023; 13:6246. [PMID: 37069201 PMCID: PMC10110551 DOI: 10.1038/s41598-023-33360-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/12/2023] [Indexed: 04/19/2023] Open
Abstract
Driven by the need to biosynthesized alternate biomedical agents to prevent and treat infection, copper oxide nanoparticles (CuONPs) have surfaced as a promising avenue. Cyanobacteria-derived synthesis of CuONPs is of substantive interest as it offers an eco-friendly, cost-effective, and biocompatible route. In the present study biosynthesized CuONPs were characterized and investigated regarding their toxicity. Morphological analysis using TEM, SEM and AFM showed the spherical particle size of 20.7 nm with 96% copper that confirmed the purity of CuONPs. Biogenic CuONPs with IC50 value of 64.6 µg ml-1 showed 90% scavenging of free radicals in superoxide radical scavenging assay. CuONPs showed enhanced anti-inflammatory activity by 86% of protein denaturation with IC50 value of 89.9 µg ml-1. Biogenic CuONPs exhibited significant toxicity against bacterial strains with lowest MIC value of 62.5 µg ml-1 for B. cereus and fungal strain with a MIC value of 125 µg ml-1 for C. albicans. In addition CuONPs demonstrated a high degree of synergistic interaction when combined with standard drugs. CuONPs exhibited significant cytotoxicity against non-small cell lung cancer with an IC50 value of 100.8 µg ml-1 for A549 and 88.3 µg ml-1 for the H1299 cell line with apoptotic activities. Furthermore, biogenic CuONPs was evaluated for their photocatalytic degradation potential against methylene blue dye and were able to removed 94% dye in 90 min. Free radical scavenging analysis suggested that CuONPs assisted dye degradation was mainly induced by hydroxide radicals. Biogenic CuONPs appears as an eco-friendly and cost effective photocatalyst for the treatment of wastewater contaminated with synthetic dyes that poses threat to aquatic biota and human health. The present study highlighted the blend of biomedical and photocatalytic potential of Phormidium derived CuONPs as an attractive approach for future applications in nanomedicine and bioremediation.
Collapse
Affiliation(s)
- Nida Asif
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Rakhshan Ahmad
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Samreen Fatima
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Shehzadi Shehzadi
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Tabassum Siddiqui
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Almaz Zaki
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Tasneem Fatma
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
11
|
Huang S, Yu K, Wen L, Long X, Sun J, Liu Q, Zheng Z, Zheng W, Luo H, Liu J. Development and application of a new biological nano-selenium fermentation broth based on Bacillus subtilis SE201412. Sci Rep 2023; 13:2560. [PMID: 36781922 PMCID: PMC9925439 DOI: 10.1038/s41598-023-29737-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
In order to improve the functionality and additional value of agricultural products, this study developing nano-selenium fermentation broth and established a new application strategy of bio-nano-selenium by screening and identifying selenium-rich microorganisms. We isolated a new strain from tobacco waste and named it Bacillus subtilis SE201412 (GenBank accession no. OP854680), which could aerobically grow under the condition of 66,000 mg L-1 selenite concentration, and could convert 99.19% of selenite into biological nano-selenium (BioSeNPs) within 18 h. Using strain SE201412, we industrially produced the different concentrations of fermentation broth containing 5000-3000 mg L-1 pure selenium for commercial use. The synthesized selenium nanoparticles (SeNPs) were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). TEM and SEM results showed that SeNPs were distributed outside cells. NTA assay of fermentation broth indicated that the nanoparticles were spherical with an average particle size of 126 ± 0.5 nm. Toxicity test revealed that the median lethal dose (LD50) of the fermentation broth to mice was 2710 mg kg-1, indicating its low toxicity and high safety. In addition, we applied BioSeNP fermentation broth to rice and wheat through field experiments. The results showed that the application of fermentation broth significantly increased the total selenium content and organic selenium percentage in rice and wheat grains. Our findings provide valuable reference for the development of BioSeNPs with extensive application prospects.
Collapse
Affiliation(s)
- Sisi Huang
- Institute of Agricultural Economy and Technology, Hubei Academy of Agricultural Science, Wuhan, China
| | - Kan Yu
- Institute of Agricultural Economy and Technology, Hubei Academy of Agricultural Science, Wuhan, China
| | - Liang Wen
- Institute of Agricultural Economy and Technology, Hubei Academy of Agricultural Science, Wuhan, China
| | - Xiaoling Long
- Institute of Agricultural Economy and Technology, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jin Sun
- Institute of Agricultural Economy and Technology, Hubei Academy of Agricultural Science, Wuhan, China
| | - Quxiao Liu
- Hubei Hualongxike Biotechnology Ltd., Huanggang, China
| | - Zhuo Zheng
- Hubei Hualongxike Biotechnology Ltd., Huanggang, China
| | - Wei Zheng
- Institute of Agricultural Economy and Technology, Hubei Academy of Agricultural Science, Wuhan, China.
| | - Hongmei Luo
- Institute of Agricultural Economy and Technology, Hubei Academy of Agricultural Science, Wuhan, China.
| | - Jinlong Liu
- Hubei Hualongxike Biotechnology Ltd., Huanggang, China.
| |
Collapse
|
12
|
Biosynthesis, characterization and biomedical potential of Arthrospira indica SOSA-4 mediated SeNPs. Bioorg Chem 2022; 129:106218. [DOI: 10.1016/j.bioorg.2022.106218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
|
13
|
Wang R, Ha KY, Dhandapani S, Kim YJ. Biologically synthesized black ginger-selenium nanoparticle induces apoptosis and autophagy of AGS gastric cancer cells by suppressing the PI3K/Akt/mTOR signaling pathway. J Nanobiotechnology 2022; 20:441. [PMID: 36209164 PMCID: PMC9548198 DOI: 10.1186/s12951-022-01576-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Despite being a promising strategy, current chemotherapy for gastric cancer (GC) is limited due to adverse side effects and poor survival rates. Therefore, new drug-delivery platforms with good biocompatibility are needed. Recent studies have shown that nanoparticle-based drug delivery can be safe, eco-friendly, and nontoxic making them attractive candidates. Here, we develop a novel selenium-nanoparticle based drug-delivery agent for cancer treatment from plant extracts and selenium salts. RESULTS Selenium cations were reduced to selenium nanoparticles using Kaempferia parviflora (black ginger) root extract and named KP-SeNP. Transmission electron microscopy, selected area electron diffraction, X-ray diffraction, energy dispersive X-ray, dynamic light scattering, and Fourier-transform infrared spectrum were utilized to confirm the physicochemical features of the nanoparticles. The KP-SeNPs showed significant cytotoxicity in human gastric adenocarcinoma cell (AGS cells) but not in normal cells. We determined that the intracellular signaling pathway mechanisms associated with the anticancer effects of KP-SeNPs involve the upregulation of intrinsic apoptotic signaling markers, such as B-cell lymphoma 2, Bcl-associated X protein, and caspase 3 in AGS cells. KP-SeNPs also caused autophagy of AGS by increasing the autophagic flux-marker protein, LC3B-II, whilst inhibiting autophagic cargo protein, p62. Additionally, phosphorylation of PI3K/Akt/mTOR pathway markers and downstream targets was decreased in KP-SeNP-treated AGS cells. AGS-cell xenograft model results further validated our in vitro findings, showing that KP-SeNPs are biologically safe and exert anticancer effects via autophagy and apoptosis. CONCLUSIONS These results show that KP-SeNPs treatment of AGS cells induces apoptosis and autophagic cell death through the PI3K/Akt/mTOR pathway, suppressing GC progression. Thus, our research strongly suggests that KP-SeNPs could act as a novel potential therapeutic agent for GC.
Collapse
Affiliation(s)
- Rongbo Wang
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
| | - Keum-Yun Ha
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
| | - Sanjeevram Dhandapani
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
| | - Yeon-Ju Kim
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
14
|
Banerjee M, Chakravarty D, Kalwani P, Ballal A. Voyage of selenium from environment to life: Beneficial or toxic? J Biochem Mol Toxicol 2022; 36:e23195. [PMID: 35976011 DOI: 10.1002/jbt.23195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Selenium (Se), a naturally occurring metalloid, is an essential micronutrient for life as it is incorporated as selenocysteine in proteins. Although beneficial at low doses, Se is hazardous at high concentrations and poses a serious threat to various ecosystems. Due to this contrasting 'dual' nature, Se has garnered the attention of researchers wishing to unravel its puzzling properties. In this review, we describe the impact of selenium's journey from environment to diverse biological systems, with an emphasis on its chemical advantage. We describe the uneven distribution of Se and how this affects the bioavailability of this element, which, in turn, profoundly affects the habitat of a region. Once taken up, the subsequent incorporation of Se into proteins as selenocysteine and its antioxidant functions are detailed here. The causes of improved protein function due to the incorporation of redox-active Se atom (instead of S) are examined. Subsequently, the reasons for the deleterious effects of Se, which depend on its chemical form (organo-selenium or the inorganic forms) in different organisms are elaborated. Although Se is vital for the function of many antioxidant enzymes, how the pro-oxidant nature of Se can be potentially exploited in different therapies is highlighted. Furthermore, we succinctly explain how the presence of Se in biological systems offsets the toxic effects of heavy metal mercury. Finally, the different avenues of research that are fundamental to expand our understanding of selenium biology are suggested.
Collapse
Affiliation(s)
- Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Prakash Kalwani
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
15
|
Fu Y, Saxu R, Ahmad Ridwan K, Zhao C, Kong X, Rong Y, Zheng W, Yu P, Teng Y. Selenium substituted axitinib reduces axitinib side effects and maintains its anti-renal tumor activity. RSC Adv 2022; 12:21821-21826. [PMID: 36043080 PMCID: PMC9358677 DOI: 10.1039/d2ra01882a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Axitinib is a potent vascular endothelial growth factor receptor (VEGFR) inhibitor, which has a strong inhibitory effect on the three isoforms of VEGFR 1-3. Having strong therapeutic efficacy, its broad use is limited by its side effects such as hypertension, proteinuria, cardiovascular damage, and liver and kidney dysfunction. Selenium compounds are broadly reported to have a good protective effect on cardiovascular disease, inflammation, infection, and immune function. In this study, a selenium substitute of axitinib was synthesized, and its anti-renal cell carcinoma activity and side effects were investigated. The results of the study indicated that Se-axitinib had potent antitumor activity on renal cell carcinoma (RCC), alleviated vascular hyperpermeability, and also alleviated axitinib-related side effects including hypertension, liver dysfunction and kidney dysfunction significantly. Therefore, we suggest that Se-axitinib could be a solution to the severe side effects of VEGFR inhibitors and provide evidence to improve the outcome of RCC treatment.
Collapse
Affiliation(s)
- Ying Fu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Bioengineering, Tianjin University of Science and Technology Tianjin 300457 China
| | - Rengui Saxu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Bioengineering, Tianjin University of Science and Technology Tianjin 300457 China
| | - Kadir Ahmad Ridwan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Bioengineering, Tianjin University of Science and Technology Tianjin 300457 China
| | - Cai Zhao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Bioengineering, Tianjin University of Science and Technology Tianjin 300457 China
| | - Xiangshun Kong
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Bioengineering, Tianjin University of Science and Technology Tianjin 300457 China
| | - Yao Rong
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Bioengineering, Tianjin University of Science and Technology Tianjin 300457 China
| | - Weida Zheng
- Medical College, Yanbian University No.977 Gongyuan Road Yanji City Jilin Province 133002 P. R. China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Bioengineering, Tianjin University of Science and Technology Tianjin 300457 China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Bioengineering, Tianjin University of Science and Technology Tianjin 300457 China
| |
Collapse
|
16
|
Krishnaraj C, Radhakrishnan S, Ramachandran R, Ramesh T, Kim BS, Yun SI. In vitro toxicological assessment and biosensing potential of bioinspired chitosan nanoparticles, selenium nanoparticles, chitosan/selenium nanocomposites, silver nanoparticles and chitosan/silver nanocomposites. CHEMOSPHERE 2022; 301:134790. [PMID: 35504473 DOI: 10.1016/j.chemosphere.2022.134790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/15/2022] [Accepted: 04/27/2022] [Indexed: 05/20/2023]
Abstract
Hydrogen peroxide (H2O2) is widely used in various industries and biological fields. H2O2 rapidly contaminants with water resources and hence simple detection process is highly wanted in various fields. The present study was focused on the biosensing, antimicrobial and embryotoxicity of bioinspired chitosan nanoparticles (Cs NPs), selenium nanoparticles (Se NPs), chitosan/selenium nanocomposites (Cs/Se NCs), silver nanoparticles (Ag NPs) and chitosan/silver nanocomposites (Cs/Ag NCs) synthesized using the aqueous Cucurbita pepo Linn. leaves extract. The physico-chemical properties of as-synthesized nanomaterials were confirmed by various spectroscopic and microscopic techniques. Further, hydrogen peroxide (H2O2) sensing properties and their sensitivities were confirmed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) methods, in which Cs/Ag NCs showed pronounced sensing properties. In addition, the mode of antibacterial interaction results clearly demonstrated the effective inhibitory activity of as-prepared Ag NPs and Cs/Ag NCs against Gram negative pathogenic bacteria. The highest embryotoxicity was recorded at 0.19 μg/ml of Ag NPs and 1.56 μg/ml of Se NPs. Intriguingly, the embryo treated with Cs/Se NCs and Cs/Ag NCs significantly reduced the toxicity in the presence of Cs matrix. However, Cs/Se NCs did not show good response in H2O2 sensing than the Cs/Ag NCs, implying the biocompatibility of Cs/Ag NCs. Overall, the obtained results clearly suggest that Cs/Ag NCs could be suitable for dual applications such as for the detection of environmental pollutant biosensors and for biomedical research.
Collapse
Affiliation(s)
- Chandran Krishnaraj
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| | - Sivaprakasam Radhakrishnan
- Department of Organic Materials & Fiber Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Rajan Ramachandran
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Byoung-Suhk Kim
- Department of Organic Materials & Fiber Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Carbon Composites Convergence Materials Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Soon-Il Yun
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
17
|
Afzal B, Naaz H, Sami N, Yasin D, Khan NJ, Fatma T. Mitigative effect of biosynthesized SeNPs on cyanobacteria under paraquat toxicity. CHEMOSPHERE 2022; 293:133562. [PMID: 35026202 DOI: 10.1016/j.chemosphere.2022.133562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/27/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Increasing population has resulted in increased food demand. Pesticides like paraquat (PQ) have been used indiscriminately to increase the growth and yield of crops. However, this has adversely affected a wide spectrum of non-target organisms like cyanobacteria that are used as a bio-fertilizer in the rice field. In the present study, biogenic- Gloeocaspa gelatinosa NCCU -430 mediated selenium nanoparticles (SeNPs) were synthesized and characterized using different techniques including UV-Visible spectroscopy, XRD, FTIR, TEM and SEM-EDX for their use as PQ toxicity mitigator in cyanobacterial biofertilizer (Anabaena variabilis NCCU-442). Therefore, a comparative study was performed among control, PQ, SeNPs and SeNPs+PQ to check the efficacy of SeNPs in mitigation of PQ induced toxicity. Supplementation of SeNPs in PQ treated culture enhanced antioxidant enzymes activity i.e., SOD (7.55%), CAT (57.94%), APX (17.45%) and GR (14.72%) as compared to only PQ treated culture. The outcomes of the present study suggested that SeNPs can ameliorate the PQ induced stress that may be used in sustainable rice cultivation needed for filing the gap between requirement and supply.
Collapse
Affiliation(s)
- Bushra Afzal
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, Maulana Mohammad Ali Jauhar Marg, Jamia Nagar, New Delhi, 110025, India.
| | - Haleema Naaz
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, Maulana Mohammad Ali Jauhar Marg, Jamia Nagar, New Delhi, 110025, India.
| | - Neha Sami
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, Maulana Mohammad Ali Jauhar Marg, Jamia Nagar, New Delhi, 110025, India.
| | - Durdana Yasin
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, Maulana Mohammad Ali Jauhar Marg, Jamia Nagar, New Delhi, 110025, India.
| | - Nida Jamil Khan
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, Maulana Mohammad Ali Jauhar Marg, Jamia Nagar, New Delhi, 110025, India.
| | - Tasneem Fatma
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, Maulana Mohammad Ali Jauhar Marg, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
18
|
Optimized resting cell method for green synthesis of selenium nanoparticles from a new Rhodotorula mucilaginosa strain. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
The Potency of Fungal-Fabricated Selenium Nanoparticles to Improve the Growth Performance of Helianthus annuus L. and Control of Cutworm Agrotis ipsilon. Catalysts 2021. [DOI: 10.3390/catal11121551] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The application of green nanotechnology in agriculture has been receiving substantial attention, especially in the development of new nano-fertilizers and nano-insecticides. Herein, the metabolites secreted by the fungal strain Penicillium chrysogenum are used as a reducing agent for selenium ions to form selenium nanoparticles (Se-NPs). The synthesized Se-NPs were characterized using color change, UV-Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), and dynamic light scattering (DLS). The biomass filtrate of the fungal strain changed from colorless to a ruby red color after mixing with sodium selenite with a maximum surface plasmon resonance at 262 nm. Data exhibits the successful formation of spherical, amorphous Se-NPs with sizes ranging between 3–15 nm and a weight percentage of 38.52%. The efficacy of Se-NPs on the growth performance of sunflower (Helianthus annuus L.) and inhibition of cutworm Agrotis ipsilon was investigated. The field experiment revealed the potentiality of Se-NPs to enhance the growth parameters and carotenoid content in sunflower, especially at 20 ppm. The chlorophylls, carbohydrates, proteins, phenolic compounds, and free proline contents were markedly promoted in response to Se-NPs concentrations. The antioxidant enzymes (peroxidase, catalase, superoxide dismutase, and polyphenol oxidase) were significantly decreased compared with the control. Data analysis showed that the highest mortality for the 1st, 2nd, 3rd, 4th, and 5th instar larvae of Agrotis ipsilon was achieved at 25 ppm with percentages of 89.7 ± 0.3, 78.3 ± 0.3, 72.3 ± 0.6, 63.7 ± 0.3, and 68.7 ± 0.3 respectively after 72 h.
Collapse
|