1
|
Enriquez Martinez MA, Wang Z, Alvarez YD, O'Neill JE, Ju RJ, Turunen P, White MD, Mata J, Gilbert EP, Lauko J, Rowan AE, Stehbens SJ. Tuning collagen nonlinear mechanics with interpenetrating networks drives adaptive cellular phenotypes in three dimensions. SCIENCE ADVANCES 2025; 11:eadt3352. [PMID: 40540559 DOI: 10.1126/sciadv.adt3352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 05/16/2025] [Indexed: 06/22/2025]
Abstract
In living tissues, collagen networks rarely exist alone because they are embedded within other biological matrices. When combined, collagen networks rigidify via synergistic mechanical interactions and stiffen only with higher mechanical loads. However, how cells respond to the nonlinear elasticity of collagen in hybrid networks remains largely unknown. Here, we demonstrate that when collagen rigidifies by the interpenetration of a second polymer, the amount of force that initially stiffens the network (onset of stiffening, σc) increases and is sufficient to stimulate an increase in intracellular tension. We investigated this effect by precisely controlling the nonlinear elasticity of collagen with the synthetic semiflexible polymer, polyisocyanopeptides. We find that small increases in σc induce a biphasic response in cell-matrix interactions, influencing how cells migrate, proliferate, and generate contractile force. Our results suggest that cells adaptively respond to changes in the nonlinear mechanics of collagen, which may be a mechanistic behavior used during tissue homeostasis or when collagen rigidifies during pathological conditions.
Collapse
Affiliation(s)
- Marco A Enriquez Martinez
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Biosciences (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhao Wang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yanina D Alvarez
- Institute for Molecular Biosciences (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jade E O'Neill
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Biosciences (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert J Ju
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Biosciences (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Petri Turunen
- Institute of Molecular Biology, Mainz 55128, Germany
| | - Melanie D White
- Institute for Molecular Biosciences (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biomedical Sciences (SBMS), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jitendra Mata
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Elliot P Gilbert
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - Jan Lauko
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Samantha J Stehbens
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Biosciences (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Zhao S, Agyare E, Zhu X, Trevino J, Rogers S, Velazquez-Villarreal E, Brant J, Eliahoo P, Barajas J, Hoang BX, Han B. ECM Stiffness-Induced Redox Signaling Enhances Stearoyl Gemcitabine Efficacy in Pancreatic Cancer. Cancers (Basel) 2025; 17:870. [PMID: 40075719 PMCID: PMC11899364 DOI: 10.3390/cancers17050870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/03/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies, largely due to its dense fibrotic stroma that promotes drug resistance and tumor progression. While patient-derived organoids (PDOs) have emerged as promising tools for modeling PDAC and evaluating therapeutic responses, the current PDO models grown in soft matrices fail to replicate the tumor's stiff extracellular matrix (ECM), limiting their predictive value for advanced disease. METHODS We developed a biomimetic model using gelatin-based matrices of varying stiffness, achieved through modulated transglutaminase crosslinking rates, to better simulate the desmoplastic PDAC microenvironment. Using this platform, we investigated organoid morphology, proliferation, and chemoresistance to gemcitabine (Gem) and its lipophilic derivative, 4-N-stearoyl gemcitabine (Gem-S). Mechanistic studies focused on the interplay between ECM stiffness, hypoxia-inducible factor (HIF) expression, and the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in drug resistance. RESULTS PDAC organoids in stiffer matrices demonstrated enhanced stemness features, including rounded morphology and elevated cancer stem cell (CSC) marker expression. Matrix stiffness-induced gemcitabine resistance correlated with the upregulation of ABC transporters and oxidative stress adaptive responses. While gemcitabine activated Nrf2 expression, promoting oxidative stress mitigation, Gem-S suppressed Nrf2 levels and induced oxidative stress, leading to increased reactive oxygen species (ROS) and enhanced cell death. Both compounds reduced HIF expression, with gemcitabine showing greater efficacy. CONCLUSIONS Our study reveals ECM stiffness as a critical mediator of PDAC chemoresistance through the promotion of stemness and modulation of Nrf2 and HIF pathways. Gem-S demonstrates promise in overcoming gemcitabine resistance by disrupting Nrf2-mediated adaptive responses and inducing oxidative stress. These findings underscore the importance of biomechanically accurate tumor models and suggest that dual targeting of mechanical and oxidative stress pathways may improve PDAC treatment outcomes.
Collapse
Affiliation(s)
- Shuqing Zhao
- Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; (S.Z.); (J.B.); (B.X.H.)
| | - Edward Agyare
- College of Pharmaceutical Science, Florida A&M University, Tallahassee, FL 32307, USA; (E.A.); (X.Z.)
| | - Xueyou Zhu
- College of Pharmaceutical Science, Florida A&M University, Tallahassee, FL 32307, USA; (E.A.); (X.Z.)
| | - Jose Trevino
- Division of Surgical Oncology, School of Medicine and Surgeon, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Sherise Rogers
- Departments of Biostatistics, College of Public Health and Health Professions, UF Health Cancer Center, University of Florida, Gainesville, FL 32611, USA; (S.R.); (J.B.)
| | | | - Jason Brant
- Departments of Biostatistics, College of Public Health and Health Professions, UF Health Cancer Center, University of Florida, Gainesville, FL 32611, USA; (S.R.); (J.B.)
| | - Payam Eliahoo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90007, USA;
| | - Jonathan Barajas
- Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; (S.Z.); (J.B.); (B.X.H.)
| | - Ba Xuan Hoang
- Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; (S.Z.); (J.B.); (B.X.H.)
| | - Bo Han
- Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; (S.Z.); (J.B.); (B.X.H.)
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90007, USA;
| |
Collapse
|
3
|
Neves ER, Anand A, Mueller J, Remy RA, Xu H, Selting KA, Sarkaria JN, Harley BAC, Pedron-Haba S. Targeting glioblastoma tumor hyaluronan to enhance therapeutic interventions that regulate metabolic cell properties. ADVANCED THERAPEUTICS 2024; 7:2400041. [PMID: 40248278 PMCID: PMC12002556 DOI: 10.1002/adtp.202400041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 04/19/2025]
Abstract
Despite extensive advances in cancer research, glioblastoma (GBM) still remains a very locally invasive and thus challenging tumor to treat, with a poor median survival. Tumor cells remodel their microenvironment and utilize extracellular matrix to promote invasion and therapeutic resistance. We aim here to determine how GBM cells exploit hyaluronan (HA) to maintain proliferation using ligand-receptor dependent and ligand-receptor independent signaling. We use tissue engineering approaches to recreate the three-dimensional tumor microenvironment in vitro, then analyze shifts in metabolism, hyaluronan secretion, HA molecular weight distribution, as well as hyaluronan synthetic enzymes (HAS) and hyaluronidases (HYAL) activity in an array of patient derived xenograft GBM cells. We reveal that endogenous HA plays a role in mitochondrial respiration and cell proliferation in a tumor subtype dependent manner. We propose a tumor specific combination treatment of HYAL and HAS inhibitors to disrupt the HA stabilizing role in GBM cells. Taken together, these data shed light on the dual metabolic and ligand - dependent signaling roles of hyaluronan in glioblastoma.
Collapse
Affiliation(s)
- Edward R Neves
- Department of Chemical and Biomolecular Engineering, Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, 1206 W Gregory Dr., Urbana IL 61801, USA
| | - Achal Anand
- Department of Chemical and Biomolecular Engineering, Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, 1206 W Gregory Dr., Urbana IL 61801, USA
| | - Joseph Mueller
- Department of Chemical and Biomolecular Engineering, Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, 1206 W Gregory Dr., Urbana IL 61801, USA
| | - Roddel A Remy
- Materials Research Laboratory, University of Illinois Urbana-Champaign, 104 S Goodwin Ave MC-230, Urbana, IL 61801, USA
| | - Hui Xu
- Tumor Engineering and Phenotyping, Cancer Center at Illinois, University of Illinois Urbana Champaign, Beckman Institute, 405 N. Mathews, Urbana, IL 61801, USA
| | - Kim A Selting
- Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, 2001 S Lincoln Ave. Urbana, IL 61802, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Brendan AC Harley
- Dept. of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL 61801
| | - Sara Pedron-Haba
- Dept. of Chemical and Biomolecular Engineering, Carle Illinois College of Medicine, Carle Illinois College of Medicine, Carl R. Woese Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, 1206 W Gregory Dr. Urbana, IL 61801, USA
| |
Collapse
|
4
|
Srivastava P, Yadav VK, Chang TH, Su ECY, Lawal B, Wu ATH, Huang HS. In-silico analysis of TMEM2 as a pancreatic adenocarcinoma and cancer-associated fibroblast biomarker, and functional characterization of NSC777201, for targeted drug development. Am J Cancer Res 2024; 14:3010-3035. [PMID: 39005682 PMCID: PMC11236765 DOI: 10.62347/chxd6134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/13/2024] [Indexed: 07/16/2024] Open
Abstract
Pancreatic adenocarcinoma (PAAD), known as one of the deadliest cancers, is characterized by a complex tumor microenvironment, primarily comprised of cancer-associated fibroblasts (CAFs) in the extracellular matrix. These CAFs significantly alter the matrix by interacting with hyaluronic acid (HA) and the enzyme hyaluronidase, which degrades HA - an essential process for cancer progression and spread. Despite the critical role of this interaction, the specific functions of CAFs and hyaluronidase in PAAD development are not fully understood. Our study investigates this interaction and assesses NSC777201, a new anti-cancer compound targeting hyaluronidase. This research utilized computational methods to analyze gene expression data from the Gene Expression Omnibus (GEO) database, specifically GSE172096, comparing gene expression profiles of cancer-associated and normal fibroblasts. We conducted in-house sequencing of pancreatic cancer cells treated with NSC777201 to identify differentially expressed genes (DEGs) and performed functional enrichment and pathway analysis. The identified DEGs were further validated using the TCGA-PAAD and Human Protein Atlas (HPA) databases for their diagnostic, prognostic, and survival implications, accompanied by Ingenuity Pathway Analysis (IPA) and molecular docking of NSC777201, in-vitro, and preclinical in-vivo validations. The result revealed 416 DEGs associated with CAFs and 570 DEGs related to NSC777201 treatment, with nine overlapping DEGs. A key finding was the transmembrane protein TMEM2, which strongly correlated with FAP, a CAF marker, and was associated with higher-risk groups in PAAD. NSC777201 treatment showed inhibition of TMEM2, validated by rescue assay, indicating the importance of targeting TMEM2. Further analyses, including IPA, demonstrated that NSC777201 regulates CAF cell senescence, enhancing its therapeutic potential. Both in-vitro and in-vivo studies confirmed the inhibitory effect of NSC777201 on TMEM2 expression, reinforcing its role in targeting PAAD. Therefore, TMEM2 has been identified as a theragnostic biomarker in PAAD, influenced by CAF activity and HA accumulation. NSC777201 exhibits significant potential in targeting and potentially reversing critical processes in PAAD progression, demonstrating its efficacy as a promising therapeutic agent.
Collapse
Affiliation(s)
- Prateeti Srivastava
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical UniversityTaipei 110, Taiwan
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical UniversityTaipei 110, Taiwan
| | - Vijesh Kumar Yadav
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho HospitalNew Taipei 23561, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei 110, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical UniversityTaipei 110, Taiwan
- Clinical Big Data Research Center, Taipei Medical University HospitalTaipei 110, Taiwan
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical UniversityTaipei 110, Taiwan
| | - Bashir Lawal
- UPMC Hillman Cancer Center, University of PittsburghPittsburgh, PA 15232, USA
- Department of Pathology, University of PittsburghPittsburgh, PA 15213, USA
| | - Alexander TH Wu
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical UniversityTaipei 110, Taiwan
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical UniversityTaipei 110, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical CenterTaipei 114, Taiwan
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical UniversityTaipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical UniversityTaipei 110, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical UniversityTaipei 11031, Taiwan
| | - Hsu-Shan Huang
- Graduate Institute of Medical Sciences, National Defense Medical CenterTaipei 114, Taiwan
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical UniversityTaipei 110, Taiwan
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia SinicaTaipei 11031, Taiwan
- School of Pharmacy, National Defense Medical CenterTaipei 11490, Taiwan
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical UniversityTaipei 11031, Taiwan
| |
Collapse
|
5
|
Jokelainen O, Rintala TJ, Fortino V, Pasonen-Seppänen S, Sironen R, Nykopp TK. Differential expression analysis identifies a prognostically significant extracellular matrix-enriched gene signature in hyaluronan-positive clear cell renal cell carcinoma. Sci Rep 2024; 14:10626. [PMID: 38724670 PMCID: PMC11082176 DOI: 10.1038/s41598-024-61426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Hyaluronan (HA) accumulation in clear cell renal cell carcinoma (ccRCC) is associated with poor prognosis; however, its biology and role in tumorigenesis are unknown. RNA sequencing of 48 HA-positive and 48 HA-negative formalin-fixed paraffin-embedded (FFPE) samples was performed to identify differentially expressed genes (DEG). The DEGs were subjected to pathway and gene enrichment analyses. The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) data and DEGs were used for the cluster analysis. In total, 129 DEGs were identified. HA-positive tumors exhibited enhanced expression of genes related to extracellular matrix (ECM) organization and ECM receptor interaction pathways. Gene set enrichment analysis showed that epithelial-mesenchymal transition-associated genes were highly enriched in the HA-positive phenotype. A protein-protein interaction network was constructed, and 17 hub genes were discovered. Heatmap analysis of TCGA-KIRC data identified two prognostic clusters corresponding to HA-positive and HA-negative phenotypes. These clusters were used to verify the expression levels and conduct survival analysis of the hub genes, 11 of which were linked to poor prognosis. These findings enhance our understanding of hyaluronan in ccRCC.
Collapse
Affiliation(s)
- Otto Jokelainen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, 70211, Kuopio, Finland.
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland.
| | - Teemu J Rintala
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Vittorio Fortino
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | - Reijo Sironen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Timo K Nykopp
- Department of Surgery, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Surgery, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Skirzynska A, Xue C, Shoichet MS. Engineering Biomaterials to Model Immune-Tumor Interactions In Vitro. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310637. [PMID: 38349174 DOI: 10.1002/adma.202310637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Engineered biomaterial scaffolds are becoming more prominent in research laboratories to study drug efficacy for oncological applications in vitro, but do they have a place in pharmaceutical drug screening pipelines? The low efficacy of cancer drugs in phase II/III clinical trials suggests that there are critical mechanisms not properly accounted for in the pre-clinical evaluation of drug candidates. Immune cells associated with the tumor may account for some of these failures given recent successes with cancer immunotherapies; however, there are few representative platforms to study immune cells in the context of cancer as traditional 2D culture is typically monocultures and humanized animal models have a weakened immune composition. Biomaterials that replicate tumor microenvironmental cues may provide a more relevant model with greater in vitro complexity. In this review, the authors explore the pertinent microenvironmental cues that drive tumor progression in the context of the immune system, discuss how these cues can be incorporated into hydrogel design to culture immune cells, and describe progress toward precision oncological drug screening with engineered tissues.
Collapse
Affiliation(s)
- Arianna Skirzynska
- Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
| | - Chang Xue
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Institute for Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | - Molly S Shoichet
- Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Institute for Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Department of Chemistry, University of Toronto, 80 College Street, Toronto, ON, M5S 3H4, Canada
| |
Collapse
|
7
|
Lee DU, Han BS, Jung KH, Hong SS. Tumor Stroma as a Therapeutic Target for Pancreatic Ductal Adenocarcinoma. Biomol Ther (Seoul) 2024; 32:281-290. [PMID: 38590092 PMCID: PMC11063484 DOI: 10.4062/biomolther.2024.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis owing to its desmoplastic stroma. Therefore, therapeutic strategies targeting this tumor stroma should be developed. In this study, we describe the heterogeneity of cancer-associated fibroblasts (CAFs) and their diverse roles in the progression, immune evasion, and resistance to treatment of PDAC. We subclassified the spatial distribution and functional activity of CAFs to highlight their effects on prognosis and drug delivery. Extracellular matrix components such as collagen and hyaluronan are described for their roles in tumor behavior and treatment outcomes, implying their potential as therapeutic targets. We also discussed the roles of extracellular matrix (ECM) including matrix metalloproteinases and tissue inhibitors in PDAC progression. Finally, we explored the role of the adaptive and innate immune systems in shaping the PDAC microenvironment and potential therapeutic strategies, with a focus on immune cell subsets, cytokines, and immunosuppressive mechanisms. These insights provide a comprehensive understanding of PDAC and pave the way for the development of prognostic markers and therapeutic interventions.
Collapse
Affiliation(s)
- Dae Ui Lee
- Department of Medicine, College of Medicine, Inha University, Incheon 22332, Republic of Korea
| | - Beom Seok Han
- Program in Biomedical Science & Engineering, The Graduate School, Inha University, Incheon 22212, Republic of Korea
| | - Kyung Hee Jung
- Department of Medicine, College of Medicine, Inha University, Incheon 22332, Republic of Korea
| | - Soon-Sun Hong
- Department of Medicine, College of Medicine, Inha University, Incheon 22332, Republic of Korea
- Program in Biomedical Science & Engineering, The Graduate School, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
8
|
Cantallops Vilà P, Ravichandra A, Agirre Lizaso A, Perugorria MJ, Affò S. Heterogeneity, crosstalk, and targeting of cancer-associated fibroblasts in cholangiocarcinoma. Hepatology 2024; 79:941-958. [PMID: 37018128 DOI: 10.1097/hep.0000000000000206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/25/2022] [Indexed: 04/06/2023]
Abstract
Cholangiocarcinoma (CCA) comprises diverse tumors of the biliary tree and is characterized by late diagnosis, short-term survival, and chemoresistance. CCAs are mainly classified according to their anatomical location and include diverse molecular subclasses harboring inter-tumoral and intratumoral heterogeneity. Besides the tumor cell component, CCA is also characterized by a complex and dynamic tumor microenvironment where tumor cells and stromal cells crosstalk in an intricate network of interactions. Cancer-associated fibroblasts, one of the most abundant cell types in the tumor stroma of CCA, are actively involved in cholangiocarcinogenesis by participating in multiple aspects of the disease including extracellular matrix remodeling, immunomodulation, neo-angiogenesis, and metastasis. Despite their overall tumor-promoting role, recent evidence indicates the presence of transcriptional and functional heterogeneous CAF subtypes with tumor-promoting and tumor-restricting properties. To elucidate the complexity and potentials of cancer-associated fibroblasts as therapeutic targets in CCA, this review will discuss the origin of cancer-associated fibroblasts, their heterogeneity, crosstalk, and role during tumorigenesis, providing an overall picture of the present and future perspectives toward cancer-associated fibroblasts targeting CCA.
Collapse
Affiliation(s)
| | - Aashreya Ravichandra
- Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, Munich, Germany
| | - Aloña Agirre Lizaso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
- CIBERehd, Institute of Health Carlos III, Madrid, Spain
- Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Silvia Affò
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
9
|
Kpeglo D, Haddrick M, Knowles MA, Evans SD, Peyman SA. Modelling and breaking down the biophysical barriers to drug delivery in pancreatic cancer. LAB ON A CHIP 2024; 24:854-868. [PMID: 38240720 DOI: 10.1039/d3lc00660c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The pancreatic ductal adenocarcinoma (PDAC) stroma and its inherent biophysical barriers to drug delivery are central to therapeutic resistance. This makes PDAC the most prevalent pancreatic cancer with poor prognosis. The chemotherapeutic drug gemcitabine is used against various solid tumours, including pancreatic cancer, but with only a modest effect on patient survival. The growing PDAC tumour mass with high densities of cells and extracellular matrix (ECM) proteins, i.e., collagen, results in high interstitial pressure, leading to vasculature collapse and a dense, hypoxic, mechanically stiff stroma with reduced interstitial flow, critical to drug delivery to cells. Despite this, most drug studies are performed on cellular models that neglect these biophysical barriers to drug delivery. Microfluidic technology offers a promising platform to emulate tumour biophysical characteristics with appropriate flow conditions and transport dynamics. We present a microfluidic PDAC culture model, encompassing the disease's biophysical barriers to therapeutics, to evaluate the use of the angiotensin II receptor blocker losartan, which has been found to have matrix-depleting properties, on improving gemcitabine efficacy. PDAC cells were seeded into our 5-channel microfluidic device for a 21-day culture to mimic the rigid, collagenous PDAC stroma with reduced interstitial flow, which is critical to drug delivery to the cancer cells, and for assessment with gemcitabine and losartan treatment. With losartan, our culture matrix was more porous with less collagen, resulting in increased hydraulic conductivity of the culture interstitial space and improved gemcitabine effect. We demonstrate the importance of modelling tumour biophysical barriers to successfully assess new drugs and delivery methods.
Collapse
Affiliation(s)
- Delanyo Kpeglo
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK.
| | - Malcolm Haddrick
- Medicines Discovery Catapult, Block 35, Mereside Alderley Park, Alderley Edge, SK10 4TG, UK
| | - Margaret A Knowles
- Leeds Institute of Medical Research at St James's (LIMR), School of Medicine, University of Leeds, LS2 9 JT, UK
| | - Stephen D Evans
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK.
| | - Sally A Peyman
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK.
- Leeds Institute of Medical Research at St James's (LIMR), School of Medicine, University of Leeds, LS2 9 JT, UK
| |
Collapse
|
10
|
Pesold VV, Wendler O, Gröhn F, Mueller SK. Lymphatic Vessels in Chronic Rhinosinusitis. J Inflamm Res 2024; 17:865-880. [PMID: 38348276 PMCID: PMC10860572 DOI: 10.2147/jir.s436450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024] Open
Abstract
Purpose The purpose of this study was to analyze the nasal lymphatic system in order to uncover novel factors that might be involved in pathogenesis of chronic rhinosinusitis (CRS) with (CRSwNP) and without nasal polyps (CRSsNP). Patients and Methods Lymphatic vessels (LVs) and macrophages were localized and counted in the inferior and middle turbinate, the uncinate process and the ethmoid of CRSwNP and CRSsNP patients, the NP and the inferior turbinate of controls (n≥6 per group). Lysates of the same tissue types (n=7 per group) were analyzed for lymphatic vessel endothelial receptor 1 (LYVE-1), for matrix metalloproteinase 14 (MMP-14) and for Hyaluronic acid (HA) using ELISA. HA was localized in sections of CRSwNP NP, CRSsNP ethmoid and control inferior turbinate (n=6 per group). The results of HA levels were correlated to the number of macrophages in tissues. The nasal secretions of CRSwNP (n=28), CRSsNP (n=30), and control (n=30) patients were analyzed for LYVE-1 and HA using ELISA. Results The number of LVs was significantly lower in tissues of both CRS groups compared to the control. In the tissue lysates, LYVE-1 expression differed significantly between the CRSwNP tissues with a particularly high level in the NP. MMP-14 was significantly overexpressed in CRSwNP uncinate process. There were no significant differences in tissue HA expression. In the mucus LYVE-1 was significantly underexpressed in CRSsNP compared to CRSwNP and control, while HA was significantly underexpressed in both CRS groups. In the NP, HA and macrophages were accumulated particularly below the epithelium. Tissue levels of HA revealed a significant positive correlation with the number of macrophages. Conclusion CRS might be associated with an insufficient clearing of the nasal mucosa through the lymphatics. The accumulation of HA and macrophages might promote inflammation, fluid retention, and polyp formation. These results may provide novel CRS-associated factors.
Collapse
Affiliation(s)
- Vanessa-Vivien Pesold
- Department of Otolaryngology, Head and Neck Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, BY, Germany
| | - Olaf Wendler
- Department of Otolaryngology, Head and Neck Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, BY, Germany
| | - Franziska Gröhn
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, BY, Germany
| | - Sarina K Mueller
- Department of Otolaryngology, Head and Neck Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, BY, Germany
| |
Collapse
|
11
|
Neves ER, Anand A, Mueller J, Remy RA, Xu H, Selting KA, Sarkaria JN, Harley BA, Pedron-Haba S. Targeting glioblastoma tumor hyaluronan to enhance therapeutic interventions that regulate metabolic cell properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574065. [PMID: 38260497 PMCID: PMC10802468 DOI: 10.1101/2024.01.05.574065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Despite extensive advances in cancer research, glioblastoma (GBM) still remains a very locally invasive and thus challenging tumor to treat, with a poor median survival. Tumor cells remodel their microenvironment and utilize extracellular matrix to promote invasion and therapeutic resistance. We aim here to determine how GBM cells exploit hyaluronan (HA) to maintain proliferation using ligand-receptor dependent and ligand-receptor independent signaling. We use tissue engineering approaches to recreate the three-dimensional tumor microenvironment in vitro, then analyze shifts in metabolism, hyaluronan secretion, HA molecular weight distribution, as well as hyaluronan synthetic enzymes (HAS) and hyaluronidases (HYAL) activity in an array of patient derived xenograft GBM cells. We reveal that endogenous HA plays a role in mitochondrial respiration and cell proliferation in a tumor subtype dependent manner. We propose a tumor specific combination treatment of HYAL and HAS inhibitors to disrupt the HA stabilizing role in GBM cells. Taken together, these data shed light on the dual metabolic and ligand - dependent signaling roles of hyaluronan in glioblastoma. Significance The control of aberrant hyaluronan metabolism in the tumor microenvironment can improve the efficacy of current treatments. Bioengineered preclinical models demonstrate potential to predict, stratify and accelerate the development of cancer treatments.
Collapse
|
12
|
Bhattacharyya M, Jariyal H, Srivastava A. Hyaluronic acid: More than a carrier, having an overpowering extracellular and intracellular impact on cancer. Carbohydr Polym 2023; 317:121081. [PMID: 37364954 DOI: 10.1016/j.carbpol.2023.121081] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Hyaluronic acid (HA), also named hyaluronan, is an omnipresent component of the tissue microenvironment. It is extensively used to formulate targeted drug delivery systems for cancer. Although HA itself has pivotal influences in various cancers, its calibers are somewhat neglected when using it as delivering platform to treat cancer. In the last decade, multiple studies revealed roles of HA in cancer cell proliferation, invasion, apoptosis, and dormancy through pathways like mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK/ERK), P38, and nuclear factor kappa-light chain-enhancer of activated B cells (NFκB). A more fascinating fact is that the distinct molecular weight (MW) of HA exerts disparate effects on the same type of cancer. Its overwhelming use in cancer therapy and other therapeutic products make collective research on the sundry impact of it on various types of cancer, an essential aspect to be considered in all of these domains. Even the development of new therapies against cancer needed meticulous studies on HA because of its divergence of activity based on MW. This review will provide painstaking insight into the extracellular and intracellular bioactivity of HA, its modified forms, and its MW in cancers, which may improve the management of cancer.
Collapse
Affiliation(s)
- Medha Bhattacharyya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Heena Jariyal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Akshay Srivastava
- Department of Medical Device, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
13
|
Purushothaman A, Oliva-Ramírez J, Treekitkarnmongkol W, Sankaran D, Hurd MW, Putluri N, Maitra A, Haymaker C, Sen S. Differential Effects of Pancreatic Cancer-Derived Extracellular Vesicles Driving a Suppressive Environment. Int J Mol Sci 2023; 24:14652. [PMID: 37834100 PMCID: PMC10572854 DOI: 10.3390/ijms241914652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) cells display extensive crosstalk with their surrounding environment to regulate tumor growth, immune evasion, and metastasis. Recent advances have attributed many of these interactions to intercellular communication mediated by small extracellular vesicles (sEVs), involving cancer-associated fibroblasts (CAF). To explore the impact of sEVs on monocyte lineage transition as well as the expression of checkpoint receptors and activation markers, peripheral blood monocytes from healthy subjects were exposed to PDAC-derived sEVs. Additionally, to analyze the role of sEV-associated HA in immune regulation and tissue-resident fibroblasts, monocytes and pancreatic stellate cells were cultured in the presence of PDAC sEVs with or depleted of HA. Exposure of monocytes to sEVs resulted in unique phenotypic changes in HLA-DR, PD-L1, CD86 and CD64 expression, and cytokine secretion that was HA-independent except for IL-1β and MIP1β. In contrast, monocyte suppression of autologous T cell proliferation was reduced following exposure to HA-low sEVs. In addition, exposure of stellate cells to sEVs upregulated the secretion of various cytokines, including MMP-9, while removal of HA from PDAC-derived sEVs attenuated the secretion of MMP-9, demonstrating the role of sEV-associated HA in regulating expression of this pro-tumorigenic cytokine from stellate cells. This observation lends credence to the findings from the TCGA database that PDAC patients with high levels of enzymes in the HA synthesis pathway had worse survival rates compared with patients having low expression of these enzymes. PDAC-derived sEVs have an immune modulatory role affecting the activation state of monocyte subtypes. However, sEV-associated HA does not affect monocyte phenotype but alters cytokine secretion and suppression of autologous T cell proliferation and induces secretion of pro-tumorigenic factors by pancreatic stellate cells (PSC), as has been seen following the conversion of PSCs to cancer-associated fibroblasts (CAFs). Interruption of the hexosamine biosynthetic pathway, activated in PDAC producing the key substrate (UDP-GlcNAc) for HA synthesis, thus, represents a potential clinical interception strategy for PDAC patients. Findings warrant further investigations of underlying mechanisms involving larger sample cohorts.
Collapse
Affiliation(s)
- Anurag Purushothaman
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; (A.P.); (J.O.-R.); (W.T.); (D.S.); (A.M.)
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jacqueline Oliva-Ramírez
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; (A.P.); (J.O.-R.); (W.T.); (D.S.); (A.M.)
| | - Warapen Treekitkarnmongkol
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; (A.P.); (J.O.-R.); (W.T.); (D.S.); (A.M.)
| | - Deivendran Sankaran
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; (A.P.); (J.O.-R.); (W.T.); (D.S.); (A.M.)
| | - Mark W. Hurd
- Ahmed Center for Pancreatic Cancer Research, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
- Dan L Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; (A.P.); (J.O.-R.); (W.T.); (D.S.); (A.M.)
- Ahmed Center for Pancreatic Cancer Research, MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cara Haymaker
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; (A.P.); (J.O.-R.); (W.T.); (D.S.); (A.M.)
| | - Subrata Sen
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; (A.P.); (J.O.-R.); (W.T.); (D.S.); (A.M.)
| |
Collapse
|
14
|
Parnigoni A, Moretto P, Viola M, Karousou E, Passi A, Vigetti D. Effects of Hyaluronan on Breast Cancer Aggressiveness. Cancers (Basel) 2023; 15:3813. [PMID: 37568628 PMCID: PMC10417239 DOI: 10.3390/cancers15153813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) in breast cancer cells is critical for determining tumor aggressiveness and targeting therapies. The presence of such receptors allows for the use of antagonists that effectively reduce breast cancer growth and dissemination. However, the absence of such receptors in triple-negative breast cancer (TNBC) reduces the possibility of targeted therapy, making these tumors very aggressive with a poor outcome. Cancers are not solely composed of tumor cells, but also include several types of infiltrating cells, such as fibroblasts, macrophages, and other immune cells that have critical functions in regulating cancer cell behaviors. In addition to these cells, the extracellular matrix (ECM) has become an important player in many aspects of breast cancer biology, including cell growth, motility, metabolism, and chemoresistance. Hyaluronan (HA) is a key ECM component that promotes cell proliferation and migration in several malignancies. Notably, HA accumulation in the tumor stroma is a negative prognostic factor in breast cancer. HA metabolism depends on the fine balance between HA synthesis by HA synthases and degradation yielded by hyaluronidases. All the different cell types present in the tumor can release HA in the ECM, and in this review, we will describe the role of HA and HA metabolism in different breast cancer subtypes.
Collapse
Affiliation(s)
| | | | | | | | | | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.P.); (P.M.); (M.V.); (E.K.); (A.P.)
| |
Collapse
|
15
|
Czajka-Francuz P, Prendes MJ, Mankan A, Quintana Á, Pabla S, Ramkissoon S, Jensen TJ, Peiró S, Severson EA, Achyut BR, Vidal L, Poelman M, Saini KS. Mechanisms of immune modulation in the tumor microenvironment and implications for targeted therapy. Front Oncol 2023; 13:1200646. [PMID: 37427115 PMCID: PMC10325690 DOI: 10.3389/fonc.2023.1200646] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
The efficacy of cancer therapies is limited to a great extent by immunosuppressive mechanisms within the tumor microenvironment (TME). Numerous immune escape mechanisms have been identified. These include not only processes associated with tumor, immune or stromal cells, but also humoral, metabolic, genetic and epigenetic factors within the TME. The identification of immune escape mechanisms has enabled the development of small molecules, nanomedicines, immune checkpoint inhibitors, adoptive cell and epigenetic therapies that can reprogram the TME and shift the host immune response towards promoting an antitumor effect. These approaches have translated into series of breakthroughs in cancer therapies, some of which have already been implemented in clinical practice. In the present article the authors provide an overview of some of the most important mechanisms of immunosuppression within the TME and the implications for targeted therapies against different cancers.
Collapse
Affiliation(s)
| | | | | | - Ángela Quintana
- Breast Cancer Unit, Vall d'Hebrón Institute of Oncology, Barcelona, Spain
| | | | | | | | - Sandra Peiró
- Breast Cancer Unit, Vall d'Hebrón Institute of Oncology, Barcelona, Spain
| | | | | | | | | | - Kamal S. Saini
- Fortrea, Inc., Durham, NC, United States
- Addenbrooke’s Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
16
|
Periyasamy L, Murugantham B, Muthusami S. Plumbagin binds to epidermal growth factor receptor and mitigate the effects of epidermal growth factor micro-environment in PANC-1 cells. Med Oncol 2023; 40:184. [PMID: 37209241 DOI: 10.1007/s12032-023-02048-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/05/2023] [Indexed: 05/22/2023]
Abstract
A sustained increase in the mortality of pancreatic cancer (PC) and sudden metastasis-related mortality is a cause for concern. Aberrant expression of epidermal growth factor (EGF) receptor (EGFR) is noted in several cases of PC metastasis. The present study is aimed at analyzing the expression of EGFR in PC and its relevance to the progression of PC. Despite the number of studies that have shown the benefits of plumbagin on PC cells, its role on cancer stem cells remains largely unknown. To this end, the study used an EGF micro-environment to make cancer stem cells in vitro and ascertained the role of plumbagin in mitigating the actions of EGF. The kaplan-meier (KM) plot indicated reduced overall survival (OS) analysis in PC patients with high EGFR than low EGFR expression. Plumbagin pre-treatment significantly prevented EGF-induced survival, epithelial-to-mesenchymal transition (EMT), clonogenesis, migration, matrix metalloproteinase -2 (MMP-2) gene expression and its secretion, and matrix protein hyaluron production in PANC-1 cells. The computational studies indicate the greater affinity of plumbagin with different domains of EGFR than gefitinib. Several hallmarks of resistance and migration due to EGF are effectively attenuated by plumbagin. Collectively, these results warrant investigating the actions of plumbagin in a pre-clinical study to substantiate these findings.
Collapse
Affiliation(s)
- Loganayaki Periyasamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - Bharathi Murugantham
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India.
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India.
| |
Collapse
|
17
|
Purushothaman A, Mohajeri M, Lele TP. The role of glycans in the mechanobiology of cancer. J Biol Chem 2023; 299:102935. [PMID: 36693448 PMCID: PMC9930169 DOI: 10.1016/j.jbc.2023.102935] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Although cancer is a genetic disease, physical changes such as stiffening of the extracellular matrix also commonly occur in cancer. Cancer cells sense and respond to extracellular matrix stiffening through the process of mechanotransduction. Cancer cell mechanotransduction can enhance cancer-promoting cell behaviors such as survival signaling, proliferation, and migration. Glycans, carbohydrate-based polymers, have recently emerged as important mediators and/or modulators of cancer cell mechanotransduction. Stiffer tumors are characterized by increased glycan content on cancer cells and their associated extracellular matrix. Here we review the role of cancer-associated glycans in coupled mechanical and biochemical alterations during cancer progression. We discuss the recent evidence on how increased expression of different glycans, in the form of glycoproteins and proteoglycans, contributes to both mechanical changes in tumors and corresponding cancer cell responses. We conclude with a summary of emerging tools that can be used to modify glycans for future studies in cancer mechanobiology.
Collapse
Affiliation(s)
- Anurag Purushothaman
- Department of Biomedical Engineering, Texas A&M University, Houston, Texas, USA.
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, Houston, Texas, USA; Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA; Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA; Department of Translational Medical Sciences, Texas A&M University, Houston, Texas, USA.
| |
Collapse
|
18
|
Tumor Stroma Area and Other Prognostic Factors in Pancreatic Ductal Adenocarcinoma Patients Submitted to Surgery. Diagnostics (Basel) 2023; 13:diagnostics13040655. [PMID: 36832145 PMCID: PMC9955223 DOI: 10.3390/diagnostics13040655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dense stroma, responsible for up to 80% of its volume. The amount of stroma can be associated with prognosis, although there are discrepancies regarding its concrete impact. The aim of this work was to study prognostic factors for PDAC patients submitted to surgery, including the prognostic impact of the tumor stroma area (TSA). A retrospective study with PDAC patients submitted for surgical resection was conducted. The TSA was calculated using QuPath-0.2.3 software. Arterial hypertension, diabetes mellitus, and surgical complications Clavien-Dindo>IIIa are independent risk factors for mortality in PDAC patients submitted to surgery. Regarding TSA, using >1.9 × 1011 µ2 as cut-off value for all stages, patients seem to have longer overall survival (OS) (31 vs. 21 months, p = 0.495). For stage II, a TSA > 2 × 1011 µ2 was significantly associated with an R0 resection (p = 0.037). For stage III patients, a TSA > 1.9 × 1011 µ2 was significantly associated with a lower histological grade (p = 0.031), and a TSA > 2E + 11 µ2 was significantly associated with a preoperative AP ≥ 120 U/L (p = 0.009) and a lower preoperative AST (≤35 U/L) (p = 0.004). Patients with PDAC undergoing surgical resection with preoperative CA19.9 > 500 U/L and AST ≥ 100 U/L have an independent higher risk of recurrence. Tumor stroma could have a protective effect in these patients. A larger TSA is associated with an R0 resection in stage II patients and a lower histological grade in stage III patients, which may contribute to a longer OS.
Collapse
|
19
|
Donelan W, Dominguez-Gutierrez PR, Kusmartsev S. Deregulated hyaluronan metabolism in the tumor microenvironment drives cancer inflammation and tumor-associated immune suppression. Front Immunol 2022; 13:971278. [PMID: 36238286 PMCID: PMC9550864 DOI: 10.3389/fimmu.2022.971278] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Hyaluronan (HA) is known to be a prominent component of the extracellular matrix in tumors, and many solid cancers are characterized by aberrant HA metabolism resulting in increased production in tumor tissue. HA has been implicated in regulating a variety of cellular functions in tumor cells and tumor-associated stromal cells, suggesting that altered HA metabolism can influence tumor growth and malignancy at multiple levels. Importantly, increased HA production in cancer is associated with enhanced HA degradation due to high levels of expression and activity of hyaluronidases (Hyal). Understanding the complex molecular and cellular mechanisms involved in abnormal HA metabolism and catabolism in solid cancers could have important implications for the design of future cancer therapeutic approaches. It appears that extensive crosstalk between immune cells and HA-enriched stroma contributes to tumor growth and progression in several ways. Specifically, the interaction of tumor-recruited Hyal2-expressing myeloid-derived suppressor cells (MDSCs) of bone marrow origin with HA-producing cancer-associated fibroblasts and epithelial tumor cells results in enhanced HA degradation and accumulation of small pro-inflammatory HA fragments, which further drives cancer-related inflammation. In addition, hyaluronan-enriched stroma supports the transition of tumor-recruited Hyal2+MDSCs to the PD-L1+ tumor-associated macrophages leading to the formation of an immunosuppressive and tolerogenic tumor microenvironment. In this review, we aim to discuss the contribution of tumor-associated HA to cancer inflammation, angiogenesis, and tumor-associated immune suppression. We also highlight the recent findings related to the enhanced HA degradation in the tumor microenvironment.
Collapse
|
20
|
Hopkins K, Buno K, Romick N, Freitas dos Santos AC, Tinsley S, Wakelin E, Kennedy J, Ladisch M, Allen-Petersen BL, Solorio L. Sustained degradation of hyaluronic acid using an in situ forming implant. PNAS NEXUS 2022; 1:pgac193. [PMID: 36714867 PMCID: PMC9802073 DOI: 10.1093/pnasnexus/pgac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/15/2022] [Indexed: 02/01/2023]
Abstract
In pancreatic cancer, excessive hyaluronic acid (HA) in the tumor microenvironment creates a viscous stroma, which reduces systemic drug transport into the tumor and correlates with poor patient prognosis. HA can be degraded through both enzymatic and nonenzymatic methods to improve mass transport properties. Here, we use an in situ forming implant to provide sustained degradation of HA directly at a local, targeted site. We formulated and characterized an implant capable of sustained release of hyaluronidase (HAase) using 15 kDa poly(lactic-co-glycolic) acid and bovine testicular HAase. The implant releases bioactive HAase to degrade the HA through enzymatic hydrolysis at early timepoints. In the first 24 h, 17.9% of the HAase is released, which can reduce the viscosity of a 10 mg/mL HA solution by 94.1% and deplete the HA content within primary human pancreatic tumor samples and ex vivo murine tumors. At later timepoints, as lower quantities of HAase are released (51.4% released in total over 21 d), the degradation of HA is supplemented by the acidic by-products that accumulate as a result of implant degradation. Acidic conditions degrade HA through nonenzymatic methods. This formulation has potential as an intratumoral injection to allow sustained degradation of HA at the pancreatic tumor site.
Collapse
Affiliation(s)
- Kelsey Hopkins
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Kevin Buno
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Natalie Romick
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Antonio Carlos Freitas dos Santos
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA,Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Samantha Tinsley
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Elizabeth Wakelin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jacqueline Kennedy
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Michael Ladisch
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA,Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
21
|
Zhang Z, Zhang H, Shi L, Wang D, Tang D. Heterogeneous cancer-associated fibroblasts: A new perspective for understanding immunosuppression in pancreatic cancer. Immunology 2022; 167:1-14. [PMID: 35569095 DOI: 10.1111/imm.13496] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/04/2022] [Indexed: 11/27/2022] Open
Abstract
Immunotherapy has shown promising efficacy in the treatment of a wide range of cancers; however, it has had little effect on pancreatic cancer. Cancer-associated fibroblasts (CAFs), the predominant mesenchymal cells present in the pancreatic cancer microenvironment, are powerful supporters of the malignant progression of pancreatic cancer. CAFs can modify the microenvironment, establish a refuge to aid cancer cells in immune escape by secreting large amounts of extracellular matrix, and produce soluble cytokines and exosomal vesicles. Hence, CAFs are important contributors to the failure of immunotherapy. Current in-depth studies of CAFs have shown that CAFs are a heterogeneous population of mesenchymal cells; therefore, the functional complexity of their populations needs in-depth explorations in future studies. This review summarizes how heterogeneous CAFs help cancer cells achieve immune escape and suggests potential directions for using CAFs as targets to address immune escape.
Collapse
Affiliation(s)
- Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Huan Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Lin Shi
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
22
|
Martín-Otal C, Lasarte-Cia A, Serrano D, Casares N, Conde E, Navarro F, Sánchez-Moreno I, Gorraiz M, Sarrión P, Calvo A, De Andrea CE, Echeveste J, Vilas A, Rodriguez-Madoz JR, San Miguel J, Prosper F, Hervas-Stubbs S, Lasarte JJ, Lozano T. Targeting the extra domain A of fibronectin for cancer therapy with CAR-T cells. J Immunother Cancer 2022; 10:jitc-2021-004479. [PMID: 35918123 PMCID: PMC9351345 DOI: 10.1136/jitc-2021-004479] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND One of the main difficulties of adoptive cell therapies with chimeric antigen receptor (CAR)-T cells in solid tumors is the identification of specific target antigens. The tumor microenvironment can present suitable antigens for CAR design, even though they are not expressed by the tumor cells. We have generated a CAR specific for the splice variant extra domain A (EDA) of fibronectin, which is highly expressed in the tumor stroma of many types of tumors but not in healthy tissues. METHODS EDA expression was explored in RNA-seq data from different human tumor types and by immunohistochemistry in paraffin-embedded tumor biopsies. Murine and human anti-EDA CAR-T cells were prepared using recombinant retro/lentiviruses, respectively. The functionality of EDA CAR-T cells was measured in vitro in response to antigen stimulation. The antitumor activity of EDA CAR-T cells was measured in vivo in C57BL/6 mice challenged with PM299L-EDA hepatocarcinoma cell line, in 129Sv mice-bearing F9 teratocarcinoma and in NSG mice injected with the human hepatocarcinoma cell line PLC. RESULTS EDA CAR-T cells recognized and killed EDA-expressing tumor cell lines in vitro and rejected EDA-expressing tumors in immunocompetent mice. Notably, EDA CAR-T cells showed an antitumor effect in mice injected with EDA-negative tumor cells lines when the tumor stroma or the basement membrane of tumor endothelial cells express EDA. Thus, EDA CAR-T administration delayed tumor growth in immunocompetent 129Sv mice challenged with teratocarcinoma cell line F9. EDA CAR-T treatment exerted an antiangiogenic effect and significantly reduced gene signatures associated with epithelial-mesenchymal transition, collagen synthesis, extracellular matrix organization as well as IL-6-STAT5 and KRAS pathways. Importantly, the human version of EDA CAR, that includes the human 41BB and CD3ζ endodomains, exerted strong antitumor activity in NSG mice challenged with the human hepatocarcinoma cell line PLC, which expresses EDA in the tumor stroma and the endothelial vasculature. EDA CAR-T cells exhibited a tropism for EDA-expressing tumor tissue and no toxicity was observed in tumor bearing or in healthy mice. CONCLUSIONS These results suggest that targeting the tumor-specific fibronectin splice variant EDA with CAR-T cells is feasible and offers a therapeutic option that is applicable to different types of cancer.
Collapse
Affiliation(s)
- Celia Martín-Otal
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Aritz Lasarte-Cia
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Diego Serrano
- Programa de Tumores sólidos, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Noelia Casares
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Enrique Conde
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Flor Navarro
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Inés Sánchez-Moreno
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Marta Gorraiz
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Patricia Sarrión
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Alfonso Calvo
- Programa de Tumores sólidos, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Carlos E De Andrea
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Departamento de Patología, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - José Echeveste
- Departamento de Patología, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Amaia Vilas
- Programa de Hemato-Oncología, Centro de Investigación Médica Aplicada, CIMA, Pamplona, Spain
| | - Juan Roberto Rodriguez-Madoz
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain,Cancer Center Universidad de Navarra (CCUN), Universidad de Navarra, Pamplona, Spain
| | - Jesús San Miguel
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain,Cancer Center Universidad de Navarra (CCUN), Universidad de Navarra, Pamplona, Spain
| | - Felipe Prosper
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Programa de Hemato-Oncología, Centro de Investigación Médica Aplicada, CIMA, Pamplona, Spain.,Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain,Cancer Center Universidad de Navarra (CCUN), Universidad de Navarra, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Juan Jose Lasarte
- Departamento de Hematología, Clínica Universidad de Navarra, Pamplona, Spain,Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Teresa Lozano
- Departamento de Hematología, Clínica Universidad de Navarra, Pamplona, Spain,Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
23
|
Martín-Otal C, Navarro F, Casares N, Lasarte-Cía A, Sánchez-Moreno I, Hervás-Stubbs S, Lozano T, Lasarte JJ. Impact of tumor microenvironment on adoptive T cell transfer activity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:1-31. [PMID: 35798502 DOI: 10.1016/bs.ircmb.2022.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent advances in immunotherapy have revolutionized the treatment of cancer. The use of adoptive cell therapies (ACT) such as those based on tumor infiltrating lymphocytes (TILs) or genetically modified cells (transgenic TCR lymphocytes or CAR-T cells), has shown impressive results in the treatment of several types of cancers. However, cancer cells can exploit mechanisms to escape from immunosurveillance resulting in many patients not responding to these therapies or respond only transiently. The failure of immunotherapy to achieve long-term tumor control is multifactorial. On the one hand, only a limited percentage of the transferred lymphocytes is capable of circulating through the bloodstream, interacting and crossing the tumor endothelium to infiltrate the tumor. Metabolic competition, excessive glucose consumption, the high level of lactic acid secretion and the extracellular pH acidification, the shortage of essential amino acids, the hypoxic conditions or the accumulation of fatty acids in the tumor microenvironment (TME), greatly hinder the anti-tumor activity of the immune cells in ACT therapy strategies. Therefore, there is a new trend in immunotherapy research that seeks to unravel the fundamental biology that underpins the response to therapy and identifies new approaches to better amplify the efficacy of immunotherapies. In this review we address important aspects that may significantly affect the efficacy of ACT, indicating also the therapeutic alternatives that are currently being implemented to overcome these drawbacks.
Collapse
Affiliation(s)
- Celia Martín-Otal
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Flor Navarro
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Noelia Casares
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Aritz Lasarte-Cía
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Inés Sánchez-Moreno
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Teresa Lozano
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.
| | - Juan José Lasarte
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
| |
Collapse
|
24
|
Gupta VK, Pandey S, Lavania S. Targeting IRAK4 Signaling in PDAC: Turning the "Cold" Tumors to "Hot" Ones. Gastroenterology 2022; 162:1837-1839. [PMID: 35358509 DOI: 10.1053/j.gastro.2022.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Vineet Kumar Gupta
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.
| | - Somnath Pandey
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Shweta Lavania
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
25
|
Hung YH, Chen LT, Hung WC. The Trinity: Interplay among Cancer Cells, Fibroblasts, and Immune Cells in Pancreatic Cancer and Implication of CD8 + T Cell-Orientated Therapy. Biomedicines 2022; 10:biomedicines10040926. [PMID: 35453676 PMCID: PMC9026398 DOI: 10.3390/biomedicines10040926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
The microenvironment in tumors is complicated and is constituted by different cell types and stromal proteins. Among the cell types, the abundance of cancer cells, fibroblasts, and immune cells is high and these cells work as the “Trinity” in promoting tumorigenesis. Although unidirectional or bidirectional crosstalk between two independent cell types has been well characterized, the multi-directional interplays between cancer cells, fibroblasts, and immune cells in vitro and in vivo are still unclear. We summarize recent studies in addressing the interaction of the “Trinity” members in the tumor microenvironment and propose a functional network for how these members communicate with each other. In addition, we discuss the underlying mechanisms mediating the interplay. Moreover, correlations of the alterations in the distribution and functionality of cancer cells, fibroblasts, and immune cells under different circumstances are reviewed. Finally, we point out the future application of CD8+ T cell-oriented therapy in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yu-Hsuan Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 804, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Correspondence: (L.-T.C.); (W.-C.H.)
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
- Correspondence: (L.-T.C.); (W.-C.H.)
| |
Collapse
|
26
|
Kokoretsis D, Maniaki EK, Kyriakopoulou K, Koutsakis C, Piperigkou Z, Karamanos NK. Hyaluronan as "Agent Smith" in cancer extracellular matrix pathobiology: Regulatory roles in immune response, cancer progression and targeting. IUBMB Life 2022; 74:943-954. [PMID: 35261139 DOI: 10.1002/iub.2608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/16/2022]
Abstract
Extracellular matrix (ECM) critically regulates cancer cell behavior by governing cell signaling and properties. Hyaluronan (HA) acts as a structural and functional ECM component that mediates critical properties of cancer cells in a molecular size-dependent manner. HA fragments secreted by cancer-associated fibroblasts (CAFs) reveal the correlation of HA to CAF-mediated matrix remodeling, a key step for the initiation of metastasis. The main goal of this article is to highlight the vital functions of HA in cancer cell initiation and progression as well as HA-mediated paracrine interactions among cancer and stromal cells. Furthermore, the HA implication in mediating immune responses to cancer progression is also discussed. Novel data on the role of HA in the formation of pre-metastatic niche may contribute towards the improvement of current theranostic approaches that benefit cancer management.
Collapse
Affiliation(s)
- Dimitris Kokoretsis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Evangelia-Konstantina Maniaki
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
27
|
Takabe P, Siiskonen H, Rönkä A, Kainulainen K, Pasonen-Seppänen S. The Impact of Hyaluronan on Tumor Progression in Cutaneous Melanoma. Front Oncol 2022; 11:811434. [PMID: 35127523 PMCID: PMC8813769 DOI: 10.3389/fonc.2021.811434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/31/2021] [Indexed: 12/21/2022] Open
Abstract
The incidence of cutaneous melanoma is rapidly increasing worldwide. Cutaneous melanoma is an aggressive type of skin cancer, which originates from malignant transformation of pigment producing melanocytes. The main risk factor for melanoma is ultraviolet (UV) radiation, and thus it often arises from highly sun-exposed skin areas and is characterized by a high mutational burden. In addition to melanoma-associated mutations such as BRAF, NRAS, PTEN and cell cycle regulators, the expansion of melanoma is affected by the extracellular matrix surrounding the tumor together with immune cells. In the early phases of the disease, hyaluronan is the major matrix component in cutaneous melanoma microenvironment. It is a high-molecular weight polysaccharide involved in several physiological and pathological processes. Hyaluronan is involved in the inflammatory reactions associated with UV radiation but its role in melanomagenesis is still unclear. Although abundant hyaluronan surrounds epidermal and dermal cells in normal skin and benign nevi, its content is further elevated in dysplastic lesions and local tumors. At this stage hyaluronan matrix may act as a protective barrier against melanoma progression, or alternatively against immune cell attack. While in advanced melanoma, the content of hyaluronan decreases due to altered synthesis and degradation, and this correlates with poor prognosis. This review focuses on hyaluronan matrix in cutaneous melanoma and how the changes in hyaluronan metabolism affect the progression of melanoma.
Collapse
Affiliation(s)
- Piia Takabe
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Hanna Siiskonen
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Aino Rönkä
- Department of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Kirsi Kainulainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Sanna Pasonen-Seppänen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- *Correspondence: Sanna Pasonen-Seppänen,
| |
Collapse
|
28
|
Ravichandra A, Bhattacharjee S, Affò S. Cancer-associated fibroblasts in intrahepatic cholangiocarcinoma progression and therapeutic resistance. Adv Cancer Res 2022; 156:201-226. [DOI: 10.1016/bs.acr.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Pook H, Pauklin S. Mechanisms of Cancer Cell Death: Therapeutic Implications for Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:4834. [PMID: 34638318 PMCID: PMC8508208 DOI: 10.3390/cancers13194834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a type of cancer that is strongly associated with poor prognosis and short median survival times. In stark contrast to the progress seen in other cancer types in recent decades, discoveries of new treatments in PDAC have been few and far between and there has been little improvement in overall survival (OS). The difficulty in treating this disease is multifactorial, contributed to by late presentation, difficult access to primary tumour sites, an 'immunologically cold' phenotype, and a strong tendency of recurrence likely driven by cancer stem cell (CSC) populations. Furthermore, apparently contrasting roles of tumour components (such as fibrotic stroma) and intracellular pathways (such as autophagy and TGFβ) have made it difficult to distinguish beneficial from detrimental drug targets. Despite this, progress has been made in the field, including the determination of mFOLFIRINOX as the standard-of-care adjuvant therapy and the discovery of KRASG12C mutant inhibitors. Moreover, new research, as outlined in this review, has highlighted promising new approaches including the targeting of the tumour microenvironment, enhancement of immunotherapies, epigenetic modulation, and destruction of CSCs.
Collapse
Affiliation(s)
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK;
| |
Collapse
|
30
|
Murphy KJ, Chambers CR, Herrmann D, Timpson P, Pereira BA. Dynamic Stromal Alterations Influence Tumor-Stroma Crosstalk to Promote Pancreatic Cancer and Treatment Resistance. Cancers (Basel) 2021; 13:3481. [PMID: 34298706 PMCID: PMC8305001 DOI: 10.3390/cancers13143481] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Many cancer studies now recognize that disease initiation, progression, and response to treatment are strongly influenced by the microenvironmental niche. Widespread desmoplasia, or fibrosis, is fundamental to pancreatic cancer development, growth, metastasis, and treatment resistance. This fibrotic landscape is largely regulated by cancer-associated fibroblasts (CAFs), which deposit and remodel extracellular matrix (ECM) in the tumor microenvironment (TME). This review will explore the prognostic and functional value of the stromal compartment in predicting outcomes and clinical prognosis in pancreatic ductal adenocarcinoma (PDAC). We will also discuss the major dynamic stromal alterations that occur in the pancreatic TME during tumor development and progression, and how the stromal ECM can influence cancer cell phenotype, metabolism, and immune response from a biochemical and biomechanical viewpoint. Lastly, we will provide an outlook on the latest clinical advances in the field of anti-fibrotic co-targeting in combination with chemotherapy or immunotherapy in PDAC, providing insight into the current challenges in treating this highly aggressive, fibrotic malignancy.
Collapse
Affiliation(s)
- Kendelle J. Murphy
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (K.J.M.); (C.R.C.); (D.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Cecilia R. Chambers
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (K.J.M.); (C.R.C.); (D.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - David Herrmann
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (K.J.M.); (C.R.C.); (D.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (K.J.M.); (C.R.C.); (D.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Brooke A. Pereira
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (K.J.M.); (C.R.C.); (D.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| |
Collapse
|