1
|
Huang Y, Liang G, Wang T, Ma Y, Ga L, Sun L, Qi X, Zhang W, Li R, Zhao Y, Meng Z, Gao X. Research strategies of the N-peptide fusion inhibitor: a promising direction for discovering novel antivirals. J Virol 2025; 99:e0228924. [PMID: 40207932 PMCID: PMC12090764 DOI: 10.1128/jvi.02289-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
AIDS, caused by HIV-1, is a devastating condition that severely compromises the human immune system, often resulting in fatal consequences. The primary therapeutic approach for AIDS involves a combination of multiple agents, known as "cocktail therapy," aimed at maximizing and sustainably suppressing viral replication within patients. The ongoing discovery of novel compounds and the establishment of innovative research strategies have become the mandatory path to provide increasingly effective treatment options for AIDS. Peptide-based fusion inhibitors, exemplified as enfuvirtide, are able to target the six-helix bundle fusion core in HIV-1 envelope protein and function during the early stage of viral invasion. However, the prolonged and intensive use of enfuvirtide in clinical settings has posed significant challenges, including the emergence of drug resistance. N-peptide fusion inhibitors, whose sequences are different from enfuvirtide, exhibit potential anti-HIV-1 activity and inhibition of drug-resistant strains through the advanced coiled-coil conformation and are expected to serve as novel peptide inhibitors in the iteration of enfuvirtide. This paper provides a comprehensive summary of N-peptide fusion inhibitor research and development (R&D) to date, with the aim of providing investigators with prospective ideas for exploring antivirals.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory for Candidate Medicine Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Guodong Liang
- Key Laboratory for Candidate Medicine Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Taoran Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuheng Ma
- Key Laboratory for Candidate Medicine Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Lu Ga
- Key Laboratory for Candidate Medicine Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Lijun Sun
- Key Laboratory for Candidate Medicine Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Xiao Qi
- Key Laboratory for Candidate Medicine Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Wei Zhang
- Key Laboratory for Candidate Medicine Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Ruijuan Li
- Key Laboratory for Candidate Medicine Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yan Zhao
- Key Laboratory for Candidate Medicine Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Zhao Meng
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin Gao
- Key Laboratory for Candidate Medicine Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
2
|
Jiang Y, Wang Y, Su F, Hou Y, Liao W, Li B, Mao W. Insights into NEK2 inhibitors as antitumor agents: From mechanisms to potential therapeutics. Eur J Med Chem 2025; 286:117287. [PMID: 39832390 DOI: 10.1016/j.ejmech.2025.117287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
NEK2, a serine/threonine protein kinase, is integral to mitotic events such as centrosome duplication and separation, microtubule stabilization, spindle assembly checkpoint, and kinetochore attachment. However, NEK2 overexpression leads to centrosome amplification and chromosomal instability, which are significantly associated with various malignancies, including liver, breast, and non-small cell lung cancer. This overexpression could facilitate tumor development and confer resistance to therapy by promoting aberrant cell division and centrosome amplification. Consequently, inhibiting NEK2 is considered as a promising strategy for oncological therapy. To date, no small molecule NEK2-specific inhibitors have advanced into clinical trials, highlighting the necessity for optimized design and the deployment of innovative technologies. In this review, we will provide a comprehensive summary of the chemical structure, biological functions, and disease associations of NEK2, focusing on the existing NEK2 small molecule inhibitors, especially their structure-activity relationships, limitations, and research strategies. Our objective is to provide valuable insights for the future development of NEK2 inhibitors and analysis of challenges faced in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Yizhen Jiang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yutong Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Feijing Su
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yaqin Hou
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Baichuan Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Kodama TS, Furuita K, Kojima C. Beyond Static Tethering at Membrane Contact Sites: Structural Dynamics and Functional Implications of VAP Proteins. Molecules 2025; 30:1220. [PMID: 40141996 PMCID: PMC11944328 DOI: 10.3390/molecules30061220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/22/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
The membranes surrounding the eukaryotic cell and its organelles are continuously invaginating, budding, and undergoing membrane fusion-fission events, which enable them to perform functions not found in prokaryotic cells. In addition, organelles come into close contact with each other at membrane contact sites (MCSs), which involve many types of proteins, and which regulate the signaling and transport of various molecules. Vesicle-associated membrane protein (VAMP)-associated protein (VAP) is an important factor involved in the tethering and contact of various organelles at MCSs in almost all eukaryotes and has attracted attention for its association with various diseases, mainly neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). However, the detailed mechanism of its functional expression remains unclear. In this review, we quantitatively discuss the structural dynamics of the entire molecule, including intrinsically disordered regions and intramolecular and intermolecular interactions, focusing on the vertebrate VAP paralogs VAPA and VAPB. Molecular phylogenetic and biophysical considerations are the basis of the work.
Collapse
Grants
- JP22H05536, JP22K19184, JP23H02416, and JP23K18030 Ministry of Education, Culture, Sports, Science and Technology
- NMR Platform Ministry of Education, Culture, Sports, Science and Technology
- CR-24-05 Institute for Protein Research, Osaka University
- JP24ama121001 Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Takashi S. Kodama
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Kyoko Furuita
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Chojiro Kojima
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan;
- Graduate School of Engineering Science, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
4
|
Xu Z, Schahl A, Jolivet MD, Legrand A, Grélard A, Berbon M, Morvan E, Lagardere L, Piquemal JP, Loquet A, Germain V, Chavent M, Mongrand S, Habenstein B. Dynamic pre-structuration of lipid nanodomain-segregating remorin proteins. Commun Biol 2024; 7:1620. [PMID: 39639105 PMCID: PMC11621693 DOI: 10.1038/s42003-024-07330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
Remorins are multifunctional proteins, regulating immunity, development and symbiosis in plants. When associating to the membrane, remorins sequester specific lipids into functional membrane nanodomains. The multigenic protein family contains six groups, classified upon their protein-domain composition. Membrane targeting of remorins occurs independently from the secretory pathway. Instead, they are directed into different nanodomains depending on their phylogenetic group. All family members contain a C-terminal membrane anchor and a homo-oligomerization domain, flanked by an intrinsically disordered region of variable length at the N-terminal end. We here combined molecular imaging, NMR spectroscopy, protein structure calculations and advanced molecular dynamics simulation to unveil a stable pre-structuration of coiled-coil dimers as nanodomain-targeting units, containing a tunable fuzzy coat and a bar code-like positive surface charge before membrane association. Our data suggest that remorins fold in the cytosol with the N-terminal disordered region as a structural ensemble around a dimeric anti-parallel coiled-coil core containing a symmetric interface motif reminiscent of a hydrophobic Leucine zipper. The domain geometry, the charge distribution in the coiled-coil remorins and the differences in structures and dynamics between C-terminal lipid anchors of the remorin groups provide a selective platform for phospholipid binding when encountering the membrane surface.
Collapse
Affiliation(s)
- Zeren Xu
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France
| | - Adrien Schahl
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31400, Toulouse, France
- Sorbonne Université, LCT, UMR7616 CNRS,75005Paris, France; Qubit Pharmaceuticals, Advanced Research Department, 75014, Paris, France
| | - Marie-Dominique Jolivet
- Laboratoire de Biogenèse Membranaire (LBM) UMR-5200, CNRS-Univ. Bordeaux, F-33140, Villenave d'Ornon, France
| | - Anthony Legrand
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France
| | - Axelle Grélard
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France
| | - Mélanie Berbon
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France
| | - Estelle Morvan
- Univ. Bordeaux, CNRS, Inserm, IECB, UAR3033, US01, Pessac, France
| | - Louis Lagardere
- Sorbonne Université, LCT, UMR7616 CNRS,75005Paris, France; Qubit Pharmaceuticals, Advanced Research Department, 75014, Paris, France
| | - Jean-Philip Piquemal
- Sorbonne Université, LCT, UMR7616 CNRS,75005Paris, France; Qubit Pharmaceuticals, Advanced Research Department, 75014, Paris, France
| | - Antoine Loquet
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM) UMR-5200, CNRS-Univ. Bordeaux, F-33140, Villenave d'Ornon, France
| | - Matthieu Chavent
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31400, Toulouse, France.
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM) UMR-5200, CNRS-Univ. Bordeaux, F-33140, Villenave d'Ornon, France.
| | - Birgit Habenstein
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France.
| |
Collapse
|
5
|
Bondue T, Cervellini F, Smeets B, Strelkov SV, Horuz-Engels F, Veys K, Vargas-Poussou R, Matteis MAD, Staiano L, van den Heuvel L, Levtchenko E. CCDC158: A novel regulator in renal proximal tubular endocytosis unveiled through exome sequencing and interactome analysis. J Cell Physiol 2024; 239:e31447. [PMID: 39319391 DOI: 10.1002/jcp.31447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Renal proximal tubular reabsorption of proteins and polypeptides is tightly regulated by a concerted action of the multi-ligand receptors with subsequent processing from the clathrin-coated pits to early/recycling and late endosomes and towards lysosomes. We performed whole exome-sequencing in a male patient from a consanguineous family, who presented with low- and intermediate molecular weight proteinuria, nephrocalcinosis and oligospermia. We identified a new potential player in tubular endocytosis, coiled-coil domain containing 158 (CCDC158). The variant in CCDC158 segregated with the phenotype and was also detected in a female sibling with a similar clinical kidney phenotype. We demonstrated the expression of this protein in kidney tubules and modeled its structure in silico. We hypothesized that the protein played a role in the tubular endocytosis by interacting with other endocytosis regulators, and used mass spectrometry to identify potential interactors. The role of CCDC158 in receptor-mediated endocytosis was further confirmed by transferrin and GST-RAP trafficking analyses in patient-derived proximal tubular epithelial cells. Finally, as CCDC158 is known to be expressed in the testis, the presence of oligospermia in the male sibling further substantiated the pathogenic role of the detected missense variant in the observed phenotype. In this study, we provide data that demonstrate the potential role of CCDC158 in receptor-mediated endocytosis, most likely by interaction with other endocytosis-related proteins that strongly correlate with the proximal tubular dysfunction phenotype as observed in the patients. However, more studies are needed to fully unravel the molecular mechanism(s) in which CCDC158 is involved.
Collapse
Affiliation(s)
- Tjessa Bondue
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Francesca Cervellini
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Genomics and Experimental Medicine Program, Scuola Superiore Meridionale, Naples, Italy
| | - Bart Smeets
- Department of Pathology, Radboud University Medical Center, Radboud Institute of Molecular Life Science, Nijmegen, The Netherlands
| | - Sergei V Strelkov
- Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Flore Horuz-Engels
- Department of Pediatric Nephrology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Koenraad Veys
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pediatrics, AZ Delta Campus, Torhout, Belgium
- Division of Pediatric Nephrology, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Rosa Vargas-Poussou
- Service de médecine génomique des maladies rares, AP-HP, Université Paris Cité, Paris, France
- Centre de référence des maladies rénales héréditaires de l'enfant et de l'adulte MARHEA, hôpital Necker-Enfants Malades, Paris, France
- CNRS, centre de recherche des Cordeliers, Inserm UMRS 1138, Sorbonne université, université Paris Cité, Paris, France
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Lambertus van den Heuvel
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elena Levtchenko
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Schweke H, Pacesa M, Levin T, Goverde CA, Kumar P, Duhoo Y, Dornfeld LJ, Dubreuil B, Georgeon S, Ovchinnikov S, Woolfson DN, Correia BE, Dey S, Levy ED. An atlas of protein homo-oligomerization across domains of life. Cell 2024; 187:999-1010.e15. [PMID: 38325366 DOI: 10.1016/j.cell.2024.01.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/03/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Protein structures are essential to understanding cellular processes in molecular detail. While advances in artificial intelligence revealed the tertiary structure of proteins at scale, their quaternary structure remains mostly unknown. We devise a scalable strategy based on AlphaFold2 to predict homo-oligomeric assemblies across four proteomes spanning the tree of life. Our results suggest that approximately 45% of an archaeal proteome and a bacterial proteome and 20% of two eukaryotic proteomes form homomers. Our predictions accurately capture protein homo-oligomerization, recapitulate megadalton complexes, and unveil hundreds of homo-oligomer types, including three confirmed experimentally by structure determination. Integrating these datasets with omics information suggests that a majority of known protein complexes are symmetric. Finally, these datasets provide a structural context for interpreting disease mutations and reveal coiled-coil regions as major enablers of quaternary structure evolution in human. Our strategy is applicable to any organism and provides a comprehensive view of homo-oligomerization in proteomes.
Collapse
Affiliation(s)
- Hugo Schweke
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Martin Pacesa
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tal Levin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Casper A Goverde
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Prasun Kumar
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK; School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Bristol BS8 1TQ, UK; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Yoan Duhoo
- Protein Production and Structure Characterization Core Facility (PTPSP), School of Life Sciences, École polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lars J Dornfeld
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Benjamin Dubreuil
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sandrine Georgeon
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sergey Ovchinnikov
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, USA
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK; School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Bristol BS8 1TQ, UK; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Bruno E Correia
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Sucharita Dey
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Rajasthan, India.
| | - Emmanuel D Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
7
|
Kim H, Yang I, Lim SI. Streamlined construction of robust heteroprotein complexes by self-induced in-cell disulfide pairing. Int J Biol Macromol 2024; 254:127965. [PMID: 37944724 DOI: 10.1016/j.ijbiomac.2023.127965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Biomolecules and their functional subdomains are essential building blocks in the creation of multifunctional nanocomplexes. Methyl-binding domain protein 2 (MBD2) and p66α stand out as small α-helical motifs with an ability to self-assemble into a heterodimeric coiled-coil, making them promising building units. Yet, their practical use is hindered by rapid dissociation upon dilution. In this study, novel fusion tags, MBD2 and p66α variants, were developed to covalently link during co-expression in E. coli SHuffle. Through strategic placement of cysteine at each α-helix's terminus, intracellular crosslinking occurred with high specificity and yield, facilitated by preserved α-helical interactions. This instant disulfide bonding in the oxidative cytoplasm of E. coli SHuffle efficiently overcame the need for inefficient in vitro oxidation and protein extraction prone to creating non-specific adducts and suboptimal bioprocesses. In contrast to their wild-type counterparts, the GFP-mCherry protein complex cross-linked by the fusion tags maintained the heterodimeric state even under extensive dilution. The fusion tags, when combined with the E. coli SHuffle system, allowed for the streamlined co-expression of a stable protein complex through self-induced intracellular cysteine coupling. The approach demonstrated herein holds great promise for producing multifunctional and robust heteroprotein complexes.
Collapse
Affiliation(s)
- Hyunji Kim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, Republic of Korea
| | - Iji Yang
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, Republic of Korea
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, Republic of Korea.
| |
Collapse
|
8
|
Kumar P, Petrenas R, Dawson WM, Schweke H, Levy ED, Woolfson DN. CC + : A searchable database of validated coiled coils in PDB structures and AlphaFold2 models. Protein Sci 2023; 32:e4789. [PMID: 37768271 PMCID: PMC10588367 DOI: 10.1002/pro.4789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/10/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023]
Abstract
α-Helical coiled coils are common tertiary and quaternary elements of protein structure. In coiled coils, two or more α helices wrap around each other to form bundles. This apparently simple structural motif can generate many architectures and topologies. Coiled coil-forming sequences can be predicted from heptad repeats of hydrophobic and polar residues, hpphppp, although this is not always reliable. Alternatively, coiled-coil structures can be identified using the program SOCKET, which finds knobs-into-holes (KIH) packing between side chains of neighboring helices. SOCKET also classifies coiled-coil architecture and topology, thus allowing sequence-to-structure relationships to be garnered. In 2009, we used SOCKET to create a relational database of coiled-coil structures, CC+ , from the RCSB Protein Data Bank (PDB). Here, we report an update of CC+ following an update of SOCKET (to Socket2) and the recent explosion of structural data and the success of AlphaFold2 in predicting protein structures from genome sequences. With the most-stringent SOCKET parameters, CC+ contains ≈12,000 coiled-coil assemblies from experimentally determined structures, and ≈120,000 potential coiled-coil structures within single-chain models predicted by AlphaFold2 across 48 proteomes. CC+ allows these and other less-stringently defined coiled coils to be searched at various levels of structure, sequence, and side-chain interactions. The identified coiled coils can be viewed directly from CC+ using the Socket2 application, and their associated data can be downloaded for further analyses. CC+ is available freely at http://coiledcoils.chm.bris.ac.uk/CCPlus/Home.html. It will be updated automatically. We envisage that CC+ could be used to understand coiled-coil assemblies and their sequence-to-structure relationships, and to aid protein design and engineering.
Collapse
Affiliation(s)
- Prasun Kumar
- School of ChemistryUniversity of BristolBristolUK
| | | | | | - Hugo Schweke
- Department of Chemical and Structural BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Emmanuel D. Levy
- Department of Chemical and Structural BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Derek N. Woolfson
- School of ChemistryUniversity of BristolBristolUK
- School of BiochemistryUniversity of Bristol, Medical Sciences Building, University WalkBristolUK
- Bristol BioDesign Institute, School of ChemistryUniversity of BristolBristolUK
| |
Collapse
|
9
|
Kümpel C, Grein F, Dahl C. Fluorescence Microscopy Study of the Intracellular Sulfur Globule Protein SgpD in the Purple Sulfur Bacterium Allochromatium vinosum. Microorganisms 2023; 11:1792. [PMID: 37512964 PMCID: PMC10386293 DOI: 10.3390/microorganisms11071792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
When oxidizing reduced sulfur compounds, the phototrophic sulfur bacterium Allochromatium vinosum forms spectacular sulfur globules as obligatory intracellular-but extracytoplasmic-intermediates. The globule envelope consists of three extremely hydrophobic proteins: SgpA and SgpB, which are very similar and can functionally replace each other, and SgpC which is involved in the expansion of the sulfur globules. The presence of a fourth protein, SgpD, was suggested by comparative transcriptomics and proteomics of purified sulfur globules. Here, we investigated the in vivo function of SgpD by coupling its carboxy-terminus to mCherry. This fluorescent protein requires oxygen for chromophore maturation, but we were able to use it in anaerobically growing A. vinosum provided the cells were exposed to oxygen for one hour prior to imaging. While mCherry lacking a signal peptide resulted in low fluorescence evenly distributed throughout the cell, fusion with SgpD carrying its original Sec-dependent signal peptide targeted mCherry to the periplasm and co-localized it exactly with the highly light-refractive sulfur deposits seen in sulfide-fed A. vinosum cells. Insertional inactivation of the sgpD gene showed that the protein is not essential for the formation and degradation of sulfur globules.
Collapse
Affiliation(s)
- Carolin Kümpel
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn, Germany
| | - Fabian Grein
- Institut für Pharmazeutische Mikrobiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 16, D-53115 Bonn, Germany
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn, Germany
| |
Collapse
|
10
|
Regulation of Polyhomeotic Condensates by Intrinsically Disordered Sequences That Affect Chromatin Binding. EPIGENOMES 2022; 6:epigenomes6040040. [PMID: 36412795 PMCID: PMC9680516 DOI: 10.3390/epigenomes6040040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The Polycomb group (PcG) complex PRC1 localizes in the nucleus in condensed structures called Polycomb bodies. The PRC1 subunit Polyhomeotic (Ph) contains an oligomerizing sterile alpha motif (SAM) that is implicated in both PcG body formation and chromatin organization in Drosophila and mammalian cells. A truncated version of Ph containing the SAM (mini-Ph) forms phase-separated condensates with DNA or chromatin in vitro, suggesting that PcG bodies may form through SAM-driven phase separation. In cells, Ph forms multiple small condensates, while mini-Ph typically forms a single large nuclear condensate. We therefore hypothesized that sequences outside of mini-Ph, which are predicted to be intrinsically disordered, are required for proper condensate formation. We identified three distinct low-complexity regions in Ph based on sequence composition. We systematically tested the role of each of these sequences in Ph condensates using live imaging of transfected Drosophila S2 cells. Each sequence uniquely affected Ph SAM-dependent condensate size, number, and morphology, but the most dramatic effects occurred when the central, glutamine-rich intrinsically disordered region (IDR) was removed, which resulted in large Ph condensates. Like mini-Ph condensates, condensates lacking the glutamine-rich IDR excluded chromatin. Chromatin fractionation experiments indicated that the removal of the glutamine-rich IDR reduced chromatin binding and that the removal of either of the other IDRs increased chromatin binding. Our data suggest that all three IDRs, and functional interactions among them, regulate Ph condensate size and number. Our results can be explained by a model in which tight chromatin binding by Ph IDRs antagonizes Ph SAM-driven phase separation. Our observations highlight the complexity of regulation of biological condensates housed in single proteins.
Collapse
|
11
|
Chen X, Liu Y, Yin S, Zang J, Zhang T, Lv C, Zhao G. Construction of Sol-Gel Phase-Reversible Hydrogels with Tunable Properties with Native Nanofibrous Protein as Building Blocks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44125-44135. [PMID: 36162135 DOI: 10.1021/acsami.2c11765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reversible sol-gel transforming behaviors combined with tunable mechanical properties are vital demands for developing biomaterials. However, it remains challenging to correlate these properties with the hydrogels constructed by denatured protein as building blocks. Herein, taking advantage of naturally high-affinity coordination environments consisting of i, i + 4 His-Glu motifs offered by paramyosin, a ubiquitous nanofibrous protein, we found that Zn2+ rather than Ca2+ or Mg2+ has the ability to trigger the self-assembly of native abalone paramyosin (AbPM) into protein hydrogels under benign conditions, while the addition of EDTA induces the hydrogels back into protein monomers, indicative of a reversible process. By using such sol-gel reversible property, the AbPM gels can serve as a vehicle to encapsulate bioactive molecules such as curcumin, thereby protecting it from degradation from thermal and photo treatment. Notably, based on the high conserved structure of native AbPM, the mechanical property and biological activity of the fabricated AbPM hydrogels can be fined-tuned by its noncovalent interaction with small molecules. All these findings raise the possibility that native paramyosin can be explored as a new class of protein hydrogels which exhibit favorable properties that the traditional hydrogels constructed by denatured protein building blocks do not have.
Collapse
Affiliation(s)
- Xuemin Chen
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Yu Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Shuhua Yin
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Tuo Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| |
Collapse
|
12
|
Bioinformatic Analysis Predicts a Novel Genetic Module Related to Triple Gene and Binary Movement Blocks of Plant Viruses: Tetra-Cistron Movement Block. Biomolecules 2022; 12:biom12070861. [PMID: 35883420 PMCID: PMC9313169 DOI: 10.3390/biom12070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Previous studies have shown that the RNA genomes of some plant viruses encode two related genetic modules required for virus movement over the host body, containing two or three genes and named the binary movement block (BMB) and triple gene block (TGB), respectively. In this paper, we predict a novel putative-related movement gene module, called the tetra-cistron movement block (TCMB), in the virus-like transcriptome assemblies of the moss Dicranum scoparium and the Antarctic flowering plant Colobanthus quitensis. These TCMBs are encoded by smaller RNA components of putative two-component viruses related to plant benyviruses. Similar to the RNA2 of benyviruses, TCMB-containing RNAs have the 5′-terminal coat protein gene and include the RNA helicase gene which is followed by two small overlapping cistrons encoding hydrophobic proteins with a distant sequence similarity to the TGB2 and TGB3 proteins. Unlike TGB, TCMB also includes a fourth 5′-terminal gene preceding the helicase gene and coding for a protein showing a similarity to the double-stranded RNA-binding proteins of the DSRM AtDRB-like superfamily. Additionally, based on phylogenetic analysis, we suggest the involvement of replicative beny-like helicases in the evolution of the BMB and TCMB movement genetic modules.
Collapse
|
13
|
Wang B, Wang M, Zhang H, Xu J, Hou J, Zhu Y. Canine Adenovirus 1 Isolation Bioinformatics Analysis of the Fiber. Front Cell Infect Microbiol 2022; 12:879360. [PMID: 35770071 PMCID: PMC9235841 DOI: 10.3389/fcimb.2022.879360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Canine adenovirus type 1 (CAdV-1) is a double-stranded DNA virus, which is the causative agent of fox encephalitis. The Fiber protein is one of the structural proteins in CAdV-1, which mediates virion binding to the coxsackievirus and adenovirus receptor on host cells. The suspected virus was cultured in the MDCK cells, and it was determined through the cytopathic effects, sequencing and electron microscopy. The informatics analysis of the Fiber was done using online bioinformatics servers. The CAdV-1-JL2021 strain was isolated successfully, and were most similar to the CAdV-1 strain circulating in Italy. The occurrence of negative selection and recombination were found in the CAdV-1-JL2021 and CAdV-2-AC_000020.1. Host cell membrane was its subcellular localization. The CAdV-1-JL2021 Fiber (ON164651) had 6 glycosylation sites and 107 phosphorylation sites, exerted adhesion receptor-mediated virion attachment to host cell, which was the same as CAdV-2-AC_000020.1 Fiber. The Fiber tertiary structure of the CAdV-1-JL2021 and CAdV-2-AC_000020.1 was different, but they had the same coxsackievirus and adenovirus receptor. “VATTSPTLTFAYPLIKNNNH” were predicted to be the potential CAdV-1 B cell linear epitope. The MHC-I binding peptide “KLGVKPTTY” were both presented in the CAdV-1-JL2021 and CAdV-2-AC_000020.1 Fiber and it is useful to design the canine adenovirus vaccine.
Collapse
Affiliation(s)
- Ben Wang
- Animal Science and Technology College, Jilin Agriculture Science and Technology University, Jilin, China
| | - Minchun Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hongling Zhang
- Animal Science and Technology College, Jilin Agriculture Science and Technology University, Jilin, China
| | - Jinfeng Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jinyu Hou
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Yanzhu Zhu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- *Correspondence: Yanzhu Zhu,
| |
Collapse
|