1
|
Kazanski ME, LaFollette CE, Wells MD, Rosenberg MC, McKay JL, Hajjar I, Hackney ME. Mild Cognitive Impairment Is Associated With Reduced Dynamic Balance Performance and Altered Lower-Extremity Kinematics During the Four Square Step Test. J Geriatr Phys Ther 2025:00139143-990000000-00073. [PMID: 40265204 DOI: 10.1519/jpt.0000000000000456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
BACKGROUND PURPOSE Cognitive deficits associated with mild cognitive impairment (MCI) likely impact balance control, especially during dynamic tasks. The Four Square Step Test (FSST) presents concurrent obstacle step-over and multi-directional stepping tasks to clinically interrogate dynamic balance. The primary FSST outcome, completion time, delivers a coarse measure of dynamic balance control, but cannot reveal underlying kinematic strategies that may further characterize MCI-related balance deficits. The objective of this study was to use an augmented FSST to characterize aging and MCI effects on both dynamic balance performance and lower-extremity kinematic execution strategies. METHODS Younger adults (YA, mean age = 23.7y; n = 7), older adults (OA, mean age = 67.4y; n = 20), and individuals with MCI (MCI, mean age = 71.7y; n = 17) performed the FSST in an observational study. We compared overall group effects, then performed 2-way, post-hoc comparisons to identify age (YA vs OA) and cognitive (OA vs MCI) differences in: (1) FSST completion times indicating dynamic balance performance, and (2) lower-extremity peak joint angles during leading and trailing steps in anterior-posterior and lateral directions, indicating kinematic execution strategies. RESULTS DISCUSSION The FSST completion time was impaired in OA compared to YA (31% slower; p < .001) and in MCI compared to OA (18% slower, p = .008). Both YA and OA exhibited similar kinematics throughout. Individuals with MCI exhibited reduced knee flexion across steps compared to OA (p ≤ .002). Reduced knee flexion was associated with degraded FSST performance (Pearson's r < -0.44) and is generally less amenable to the obstacle step-over sub-task. While longer FSST completion times revealed aging-and MCI-related impacts on dynamic balance performance, kinematic analyses further revealed altered dynamic balance strategies only in individuals with MCI. CONCLUSIONS Deficits associated with MCI impair FSST performance. Altered lower-extremity kinematics suggest that individuals with MCI may be especially challenged by the complexity of concurrent multi-directional stepping and obstacle step-over FSST sub-tasks. Clinicians should consider both impaired overall performance and underlying kinematic strategies when characterizing altered dynamic balance control during complex tasks (eg, FSST) in individuals with MCI.
Collapse
Affiliation(s)
- Meghan E Kazanski
- Department of Medicine, Division of Geriatrics & Gerontology, Emory University School of Medicine, Atlanta, Georgia
| | | | - Meredith D Wells
- Department of Medicine, Division of Geriatrics & Gerontology, Emory University School of Medicine, Atlanta, Georgia
| | - Michael C Rosenberg
- Department of Biomedical Engineering, Emory University & Georgia Institute of Technology, Atlanta, Georgia
| | - J Lucas McKay
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia
| | - Ihab Hajjar
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
- Department of Neurology, University of Texas Southwestern, Dallas, Texas
| | - Madeleine E Hackney
- Department of Medicine, Division of Geriatrics & Gerontology, Emory University School of Medicine, Atlanta, Georgia
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia
- Atlanta VA Center for Visual & Neurocognitive Rehabilitation, Atlanta, Georgia
- Birmingham/Atlanta VA Geriatric Research Education and Clinical Center, Atlanta, Georgia
| |
Collapse
|
2
|
Dadfar M, Kukkar KK, Parikh PJ. Reduced parietal to frontal functional connectivity for dynamic balance in late middle-to-older adults. Exp Brain Res 2025; 243:111. [PMID: 40208322 DOI: 10.1007/s00221-025-07070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
In this study, we investigated the changes in functional connectivity between cortical regions for balance control during a challenging balance task with advancing age. Fourteen young and fourteen late middle-to-older adults performed a challenging balance task that manipulated somatosensory information while their brain activity was recorded using electroencephalography. Both groups showed common activation regions within the posterior cingulate cortex (PCC) and premotor cortex (PMC) during the balance task. The late middle-to-older group showed significantly weaker PCC to PMC functional connectivity than the young group. This finding indicated poor sensorimotor processes during altered reliance on somatosensory inputs for balance maintenance. The regularity of foot center of pressure fluctuations measured using sample entropy was greater in the late middle-to-older group than the young group, suggesting a shift from automatic control to cognitive control of balance. Weaker PCC to PMC connectivity in late middle-to-older adults was associated with greater regularity of foot center of pressure fluctuations. In late middle-to-older adults, an additional cortical region was activated, the prefrontal cortex, during the balance task. Our findings suggest a shift from the parietal-to-frontal sensorimotor network to the prefrontal network for dynamic control of balance with advancing age.
Collapse
Affiliation(s)
- Mahdis Dadfar
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Komal K Kukkar
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Pranav J Parikh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, TX, USA.
| |
Collapse
|
3
|
Worthen-Chaudhari LC, Crasta JE, Schnell PM, Lantis K, Martis J, Wilder J, Bland CR, Hackney ME, Lustberg MB. Neurologic dance training and home exercise improve motor-cognitive dual-task function similarly, but through potentially different mechanisms, among breast cancer survivors with chemotherapy-induced neuropathy: Initial results of a randomized, controlled clinical trial. J Alzheimers Dis 2024:13872877241291440. [PMID: 39584292 DOI: 10.1177/13872877241291440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
BACKGROUND Dual-task function is compromised among individuals with prodromal Alzheimer's disease (AD) and others at risk of developing AD. While exercise has been studied as a therapeutic candidate, the activity of social dance might promote dual-task rehabilitation as well or better than conventional exercise. OBJECTIVE Compare effects of social dance versus home exercise on dual-task function and intervention adherence among individuals with increased risk of developing AD: survivors of breast cancer (BC) with chemotherapy-induced neuropathy (CIN). METHODS Fifty-two (n = 52) survivors of BC with CIN-related symptoms and functional deficits were randomized (1:1) to 8 weeks of biweekly physical activity that took the form of partnered AdapTango dance (20 min) or home exercise (45 min) (NCT05114005, registered 08/15/2021). Primary outcome: dual-task function (TUG-Cog counting backward by 3 s). Secondary outcome: adherence. Exploratory outcomes: participant rating of perceived exertion in physical versus cognitive domains and cognitive load during dual-task performance. RESULTS Both interventions improved Timed-Up-and-Go with cognitive task (TUGCog) after 4 weeks (p < 0.001); gains were maintained at 8 weeks of intervention (p < 0.001) and 1 month follow-up (p < 0.001). The dance intervention met adherence feasibility criteria for 8 weeks; exercise met criteria for 4 weeks. The ratio of cognitive to physical exertion was higher for dance (1 to 1) than exercise (0.8 to 1.0; p < 0.001). Dance, only, was associated with reduced cognitive load (p = 0.02). CONCLUSIONS Among survivors of BC with CIN, small doses of social dance improved dual-task function comparably to larger doses of home exercise, possibly due to differences in cognitive engagement.
Collapse
Affiliation(s)
- Lise C Worthen-Chaudhari
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH, USA
| | - Jewel E Crasta
- Division of Occupational Therapy, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Patrick M Schnell
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Kristin Lantis
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH, USA
| | - Joseph Martis
- Division of Occupational Therapy, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Jacqueline Wilder
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH, USA
| | - Courtney R Bland
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH, USA
| | | | | |
Collapse
|
4
|
Teloudi A, Anifanti M, Chatzinikolaou K, Grouios G, Hatzitaki V, Chouvarda I, Kouidi E. Assessing Static Balance, Balance Confidence, and Fall Rate in Patients with Heart Failure and Preserved Ejection Fraction: A Comprehensive Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:6423. [PMID: 39409463 PMCID: PMC11479256 DOI: 10.3390/s24196423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
Chronic heart failure (CHF) is a complex clinical syndrome, associated with frailty, higher fall rates, and frequent hospitalizations. Heart Failure (HF) and preserved ejection fraction (HFpEF) is defined as a condition where a patient with HF have a diagnosis of left ventricular ejection fraction (LVEF) of ≥ 50%. The risk of HFpEF increases with age and is related to higher non-cardiovascular mortality. The aim of this study was to evaluate static balance and examine the effect of task difficulty on the discriminating power of balance control between patients with HFpEF (Patients with HFpEF) and their healthy controls. Moreover, the associations between static balance parameters, balance confidence, falls, lean muscle mass, and strength were assessed. Seventy two patients with HFpEF (mean age: 66.0 ± 11.6 years) and seventy two age- and gender-matched healthy individuals (mean age: 65.3 ± 9.5 years) participated in this study. Participants underwent a 30 s bilateral stance (BS) test and a 20 s Tandem-Romberg stance (TRS) on a force platform, evaluating the Range and Standard Deviation of Center of Pressure (COP) displacement parameters in both axes. Balance confidence was evaluated by the Activities-Specific Balance Confidence (ABC) Scale, and the number of falls during the last year was recorded. Lower limb strength was measured using an isokinetic dynamometer, isometric leg strength, and a Sit-to-Stand test. Bioelectrical impedance analysis was conducted to assess lean fat mass, lean fat mass index, and lean%. Patients with HFpEF presented with lower static balance in BS and TRS compared to healthy controls (p < 0.05), lower balance confidence by 21.5% (p < 0.05), and a higher incidence of falls by 72.9% (p < 0.05). BS was a better descriptor of the between-group difference. Furthermore, static balance, assessed in controlled lab conditions, was found to have little if no relationship to falls, strength, lean muscle mass, and balance confidence. Although no correlation was noted between the static balance parameters and falls, the fall rate was related to balance confidence, age, muscle strength, and lean fat.
Collapse
Affiliation(s)
- Andriana Teloudi
- Laboratory Sports Medicine, Department of Physical Education & Sport Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece; (A.T.); (M.A.)
| | - Maria Anifanti
- Laboratory Sports Medicine, Department of Physical Education & Sport Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece; (A.T.); (M.A.)
| | - Konstantinos Chatzinikolaou
- Laboratory of Motor Behavior and Adapted Physical Activity, Department of Physical Education & Sport Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece; (K.C.); (G.G.); (V.H.)
| | - George Grouios
- Laboratory of Motor Behavior and Adapted Physical Activity, Department of Physical Education & Sport Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece; (K.C.); (G.G.); (V.H.)
| | - Vassilia Hatzitaki
- Laboratory of Motor Behavior and Adapted Physical Activity, Department of Physical Education & Sport Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece; (K.C.); (G.G.); (V.H.)
| | - Ioanna Chouvarda
- Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Evangelia Kouidi
- Laboratory Sports Medicine, Department of Physical Education & Sport Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece; (A.T.); (M.A.)
| |
Collapse
|
5
|
Fan W, Zeng Q, Zheng P, Wen S, Li G, Fan T, Huang G, Zheng M, Luo Q. Brain activation in older adults with hypertension and normotension during standing balance task: an fNIRS study. Front Aging Neurosci 2024; 16:1458494. [PMID: 39381138 PMCID: PMC11458469 DOI: 10.3389/fnagi.2024.1458494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Background Hypertension (HT) is a common chronic disease in older adults. It not only leads to dizziness and other symptoms affecting balance in older adults with HT but also affects the hemodynamics of the cerebral cortex. At present, potential neural mechanisms of balance control in older adults with HT are still unclear. Therefore, this study aimed to explore the differences in the center of pressure (COP) and cerebral cortex activation between older adults with HT and normotension (NT) during standing balance tasks. This study May provide guidance for the early detection of the risk of falls among older adults with HT and the development of clinical rehabilitation strategies. Methods In this cross-sectional study, 30 older adults with NT (NT group) and 27 older adults with HT (HT group) were subjected to three conditions: task 1, standing with eyes open on a stable surface; task 2, standing with eyes closed on a stable surface; and task 3, standing with eyes open on the surface of the foam pad. Cortical hemodynamic reactions were measured using functional near-infrared spectroscopy, and COP parameters were measured using a force plate. Results The mean velocity of the COP in the medial-lateral direction in the NT group was significantly higher than that in the HT group (F = 5.955, p = 0.018) during task 3. When proprioception was disturbed, the activation of the left premotor cortex and supplementary motor cortex in the HT group was significantly lower than that in the NT group (F = 14.381, p < 0.001). Conclusion The standing balance function of older adults with HT does not appear to be worse based on COP parameters than those of older adults with NT. This study revealed that the changes in the central cortex related to standing balance appear to be more indicative of balance control deficits in older adults with HT than changes in peripheral COP parameters, suggesting the importance of the early evaluation of cortical activation in older adults with HT at risk of falls.
Collapse
Affiliation(s)
- Weichao Fan
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Zheng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuyang Wen
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Gege Li
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Fan
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Manxu Zheng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qinglu Luo
- Department of Rehabilitation Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, China
- Dongguan Experimental Centre for Sports Rehabilitation Research, Dongguan, China
- Dongguan Key Specialty of Traditional Chinese Medicine (Rehabilitation Department), Dongguan, China
| |
Collapse
|
6
|
Sawai S, Murata S, Sakano Y, Fujikawa S, Yamamoto R, Shizuka Y, Nakano H. Dominance of attentional focus: a comparative study on its impact on standing postural control in healthy younger and older adults. Front Hum Neurosci 2024; 18:1384305. [PMID: 38988825 PMCID: PMC11233467 DOI: 10.3389/fnhum.2024.1384305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Attentional focus is a phenomenon in which shifting the focus of attention alters performance of standing postural control. It can be categorized as internal focus (IF), which directs attention to the body parts, or external focus (EF), which directs attention to the external environment. Although attentional focus that improves standing postural control in younger people exhibits individual dominance, the dominance of attentional focus in standing postural control in older adults remains ambiguous. Therefore, this study aimed to compare the dominance of attentional focus in standing postural control between healthy younger and older adults, a crucial step for understanding the aging process. Methods The participants performed a standing postural control task under the IF and EF conditions. Based on the condition during which they exhibited superior performance, the participants were divided into two groups: IF-dominant and EF-dominant. The standing postural control performance in each group under the IF and EF conditions was subsequently compared. Results The results showed that the participants, encompassing both younger and older adults, were divided into the IF-dominant and EF-dominant groups, confirming the dominance of attentional focus. The performance under the EF condition in older adults was also influenced by the dominance of attentional focus. Conclusion These results highlight the potential importance of intervention methods based on the dominance of attentional focus, providing valuable insights into future research and clinical practice.
Collapse
Affiliation(s)
- Shun Sawai
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
- Department of Rehabilitation, Kyoto Kuno Hospital, Kyoto, Japan
| | - Shin Murata
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Yuya Sakano
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
- Kissho-Home of Social Welfare Corporation Seiwaen, Kyoto, Japan
| | - Shoya Fujikawa
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Ryosuke Yamamoto
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
- Department of Rehabilitation, Tesseikai Neurosurgical Hospital, Shijonawate, Japan
| | - Yusuke Shizuka
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Hideki Nakano
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| |
Collapse
|
7
|
Bath JE, Wang DD. Unraveling the threads of stability: A review of the neurophysiology of postural control in Parkinson's disease. Neurotherapeutics 2024; 21:e00354. [PMID: 38579454 PMCID: PMC11000188 DOI: 10.1016/j.neurot.2024.e00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/07/2024] Open
Abstract
Postural instability is a detrimental and often treatment-refractory symptom of Parkinson's disease. While many existing studies quantify the biomechanical deficits among various postural domains (static, anticipatory, and reactive) in this population, less is known regarding the neural network dysfunctions underlying these phenomena. This review will summarize current studies on the cortical and subcortical neural activities during postural responses in healthy subjects and those with Parkinson's disease. We will also review the effects of current therapies, including neuromodulation and feedback-based wearable devices, on postural instability symptoms. With recent advances in implantable devices that allow chronic, ambulatory neural data collection from patients with Parkinson's disease, combined with sensors that can quantify biomechanical measurements of postural responses, future work using these devices will enable better understanding of the neural mechanisms of postural control. Bridging this knowledge gap will be the critical first step towards developing novel neuromodulatory interventions to enhance the treatment of postural instability in Parkinson's disease.
Collapse
Affiliation(s)
- Jessica E Bath
- Department of Physical Therapy & Rehabilitation Science, University of California, San Francisco, USA; Department of Neurological Surgery, University of California, San Francisco, USA
| | - Doris D Wang
- Department of Neurological Surgery, University of California, San Francisco, USA.
| |
Collapse
|
8
|
Șerban CA, Barborică A, Roceanu AM, Mîndruță IR, Ciurea J, Stancu M, Pâslaru AC, Zăgrean AM, Zăgrean L, Moldovan M. Towards an electroencephalographic measure of awareness based on the reactivity of oscillatory macrostates to hearing a subject's own name. Eur J Neurosci 2024; 59:771-785. [PMID: 37675619 DOI: 10.1111/ejn.16138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
We proposed that the brain's electrical activity is composed of a sequence of alternating states with repeating topographic spectral distributions on scalp electroencephalogram (EEG), referred to as oscillatory macrostates. The macrostate showing the largest decrease in the probability of occurrence, measured as a percentage (reactivity), during sensory stimulation was labelled as the default EEG macrostate (DEM). This study aimed to assess the influence of awareness on DEM reactivity (DER). We included 11 middle cerebral artery ischaemic stroke patients with impaired awareness having a median Glasgow Coma Scale (GCS) of 6/15 and a group of 11 matched healthy controls. EEG recordings were carried out during auditory 1 min stimulation epochs repeating either the subject's own name (SON) or the SON in reverse (rSON). The DEM was identified across three SON epochs alternating with three rSON epochs. Compared with the patients, the DEM of controls contained more posterior theta activity reflecting source dipoles that could be mapped in the posterior cingulate cortex. The DER was measured from the 1 min quiet baseline preceding each stimulation epoch. The difference in mean DER between the SON and rSON epochs was measured by the salient EEG reactivity (SER) theoretically ranging from -100% to 100%. The SER was 12.4 ± 2.7% (Mean ± standard error of the mean) in controls and only 1.3 ± 1.9% in the patient group (P < 0.01). The patient SER decreased with the Glasgow Coma Scale. Our data suggest that awareness increases DER to SON as measured by SER.
Collapse
Affiliation(s)
- Cosmin-Andrei Șerban
- Physics Department, University of Bucharest, Bucharest, Romania
- Termobit Prod SRL, Bucharest, Romania
- FHC Inc, Bowdoin, Maine, USA
| | - Andrei Barborică
- Physics Department, University of Bucharest, Bucharest, Romania
- Termobit Prod SRL, Bucharest, Romania
- FHC Inc, Bowdoin, Maine, USA
| | | | | | - Jan Ciurea
- Department of Neurosurgery, Bagdasar-Arseni Emergency Hospital, Bucharest, Romania
| | - Mihai Stancu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Division of Neurobiology, Faculty of Biology, Ludwig Maximilian University, Munich, Germany
| | - Alexandru C Pâslaru
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Zăgrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Leon Zăgrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihai Moldovan
- Termobit Prod SRL, Bucharest, Romania
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Clinical Neurophysiology and Neurology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
9
|
Khajuria A, Sharma R, Joshi D. EEG Dynamics of Locomotion and Balancing: Solution to Neuro-Rehabilitation. Clin EEG Neurosci 2024; 55:143-163. [PMID: 36052404 DOI: 10.1177/15500594221123690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The past decade has witnessed tremendous growth in analyzing the cortical representation of human locomotion and balance using Electroencephalography (EEG). With the advanced developments in miniaturized electronics, wireless brain recording systems have been developed for mobile recordings, such as in locomotion. In this review, the cortical dynamics during locomotion are presented with extensive focus on motor imagery, and employing the treadmill as a tool for performing different locomotion tasks. Further, the studies that examine the cortical dynamics during balancing, focusing on two types of balancing tasks, ie, static and dynamic, with the challenges in sensory inputs and cognition (dual-task), are presented. Moreover, the current literature demonstrates the advancements in signal processing methods to detect and remove the artifacts from EEG signals. Prior studies show the electrocortical sources in the anterior cingulate, posterior parietal, and sensorimotor cortex was found to be activated during locomotion. The event-related potential has been observed to increase in the fronto-central region for a wide range of balance tasks. The advanced knowledge of cortical dynamics during mobility can benefit various application areas such as neuroprosthetics and gait/balance rehabilitation. This review will be beneficial for the development of neuroprostheses, and rehabilitation devices for patients suffering from movement or neurological disorders.
Collapse
Affiliation(s)
- Aayushi Khajuria
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Richa Sharma
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Deepak Joshi
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
10
|
Paramento M, Rubega M, Di Marco R, Contessa P, Agostini M, Cantele F, Masiero S, Formaggio E. Experimental protocol to investigate cortical, muscular and body representation alterations in adolescents with idiopathic scoliosis. PLoS One 2023; 18:e0292864. [PMID: 37824513 PMCID: PMC10569634 DOI: 10.1371/journal.pone.0292864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Adolescent idiopathic scoliosis (AIS) is the most common form of scoliosis. AIS is a three-dimensional morphological spinal deformity that affects approximately 1-3% of adolescents. Not all factors related to the etiology of AIS have yet been identified. OBJECTIVE The primary aim of this experimental protocol is to quantitatively investigate alterations in body representation in AIS, and to quantitatively and objectively track the changes in body sensorimotor representation due to treatment. METHODS Adolescent girls with a confirmed diagnosis of mild (Cobb angle: 10°-20°) or moderate (21°-35°) scoliosis as well as age and sex-matched controls will be recruited. Participants will be asked to perform a 6-min upright standing and two tasks-named target reaching and forearm bisection task. Eventually, subjects will fill in a self-report questionnaire and a computer-based test to assess body image. This evaluation will be repeated after 6 and 12 months of treatment (i.e., partial or full-time brace and physiotherapy corrective postural exercises). RESULTS We expect that theta brain rhythm in the central brain areas, alpha brain rhythm lateralization and body representation will change over time depending on treatment and scoliosis progression as a compensatory strategy to overcome a sensorimotor dysfunction. We also expect asymmetric activation of the trunk muscle during reaching tasks and decreased postural stability in AIS. CONCLUSIONS Quantitatively assess the body representation at different time points during AIS treatment may provide new insights on the pathophysiology and etiology of scoliosis.
Collapse
Affiliation(s)
- Matilde Paramento
- Department of Neurosciences, Section of Rehabilitation, University of Padova, Padova, Italy
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Maria Rubega
- Department of Neurosciences, Section of Rehabilitation, University of Padova, Padova, Italy
| | - Roberto Di Marco
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Paola Contessa
- Orthopedic Rehabilitation Unit, Padova University Hospital, Padova, Italy
| | - Michela Agostini
- Department of Neurosciences, Section of Rehabilitation, University of Padova, Padova, Italy
| | - Francesca Cantele
- Department of Neurosciences, Section of Rehabilitation, University of Padova, Padova, Italy
| | - Stefano Masiero
- Department of Neurosciences, Section of Rehabilitation, University of Padova, Padova, Italy
- Orthopedic Rehabilitation Unit, Padova University Hospital, Padova, Italy
- Ospedale Riabilitativo di Alta Specializzazione di Motta di Livenza, Motta di Livenza, Treviso, Italy
| | - Emanuela Formaggio
- Department of Neurosciences, Section of Rehabilitation, University of Padova, Padova, Italy
| |
Collapse
|
11
|
Sozzi S, Ghai S, Schieppati M. The 'Postural Rhythm' of the Ground Reaction Force during Upright Stance and Its Conversion to Body Sway-The Effect of Vision, Support Surface and Adaptation to Repeated Trials. Brain Sci 2023; 13:978. [PMID: 37508910 PMCID: PMC10377030 DOI: 10.3390/brainsci13070978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/30/2023] Open
Abstract
The ground reaction force (GRF) recorded by a platform when a person stands upright lies at the interface between the neural networks controlling stance and the body sway deduced from centre of pressure (CoP) displacement. It can be decomposed into vertical (VGRF) and horizontal (HGRF) vectors. Few studies have addressed the modulation of the GRFs by the sensory conditions and their relationship with body sway. We reconsidered the features of the GRFs oscillations in healthy young subjects (n = 24) standing for 90 s, with the aim of characterising the possible effects of vision, support surface and adaptation to repeated trials, and the correspondence between HGRF and CoP time-series. We compared the frequency spectra of these variables with eyes open or closed on solid support surface (EOS, ECS) and on foam (EOF, ECF). All stance trials were repeated in a sequence of eight. Conditions were randomised across different days. The oscillations of the VGRF, HGRF and CoP differed between each other, as per the dominant frequency of their spectra (around 4 Hz, 0.8 Hz and <0.4 Hz, respectively) featuring a low-pass filter effect from VGRF to HGRF to CoP. GRF frequencies hardly changed as a function of the experimental conditions, including adaptation. CoP frequencies diminished to <0.2 Hz when vision was available on hard support surface. Amplitudes of both GRFs and CoP oscillations decreased in the order ECF > EOF > ECS ≈ EOS. Adaptation had no effect except in ECF condition. Specific rhythms of the GRFs do not transfer to the CoP frequency, whereas the magnitude of the forces acting on the ground ultimately determines body sway. The discrepancies in the time-series of the HGRF and CoP oscillations confirm that the body's oscillation mode cannot be dictated by the inverted pendulum model in any experimental conditions. The findings emphasise the robustness of the VGRF "postural rhythm" and its correspondence with the cortical theta rhythm, shed new insight on current principles of balance control and on understanding of upright stance in healthy and elderly people as well as on injury prevention and rehabilitation.
Collapse
Affiliation(s)
| | - Shashank Ghai
- Department of Political, Historical, Religious and Cultural Studies, Karlstad University, 65188 Karlstad, Sweden
- Centre for Societal Risk Research, Karlstad University, 65188 Karlstad, Sweden
| | | |
Collapse
|
12
|
Marco RD, Rubega M, Lennon O, Vianello A, Masiero S, Formaggio E, Del Felice A. Exoskeleton Training Modulates Complexity in Movement Patterns and Cortical Activity in Able-Bodied Volunteers. IEEE Trans Neural Syst Rehabil Eng 2023; 31:2381-2390. [PMID: 37155402 DOI: 10.1109/tnsre.2023.3273819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Robot-aided gait training (RAGT) plays a crucial role in providing high-dose and high-intensity task-oriented physical therapy. The human-robot interaction during RAGT remains technically challenging. To achieve this aim, it is necessary to quantify how RAGT impacts brain activity and motor learning. This work quantifies the neuromuscular effect induced by a single RAGT session in healthy middle-aged individuals. Electromyographic (EMG) and motion (IMU) data were recorded and processed during walking trials before and after RAGT. Electroencephalographic (EEG) data were recorded during rest before and after the entire walking session. Linear and nonlinear analyses detected changes in the walking pattern, paralleled by a modulation of cortical activity in the motor, attentive, and visual cortices immediately after RAGT. Increases in alpha and beta EEG spectral power and pattern regularity of the EEG match the increased regularity of body oscillations in the frontal plane, and the loss of alternating muscle activation during the gait cycle, when walking after a RAGT session. These preliminary results improve the understanding of human-machine interaction mechanisms and motor learning and may contribute to more efficient exoskeleton development for assisted walking.
Collapse
|
13
|
Lee JH, Kim EJ. The Effect of Diagonal Exercise Training for Neurorehabilitation on Functional Activity in Stroke Patients: A Pilot Study. Brain Sci 2023; 13:brainsci13050799. [PMID: 37239271 DOI: 10.3390/brainsci13050799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Functional movements of the human body occur multifacetedly. This pilot study investigated the effects of neurorehabilitation training, including diagonal movements, balance, gait, fall efficacy, and activities of daily living in stroke patients. Twenty-eight patients diagnosed with stroke by a specialist were divided into experimental groups applying diagonal exercise training and control groups applying sagittal exercise training. The five times sit-to-stand test (FTSST), timed up and go (TUG) test, and Berg balance scale (BBS) were used to evaluate balance ability, the falls efficacy scale (FES) was used to evaluate fall efficacy, and the modified Barthel index (MBI) was used to evaluate activities of daily living. All evaluations were conducted once prior to intervention implementation and again six weeks after the final intervention. In the study results, the experimental group to which the diagonal exercise training was applied had statistically significant changes in FTSST, BBS, and FES compared to the control group. In conclusion, the rehabilitation program, including diagonal exercise training, increased the patient's balance and reduced the fear of falling.
Collapse
Affiliation(s)
- Jung-Ho Lee
- Department of Physical Therapy, Kyungdong University, 815, Gyeonhwon-ro, Munmak-eup, Wonju-si 26495, Gang-won-do, Republic of Korea
| | - Eun-Ja Kim
- Department of Physical Therapy, Kyungdong University, 815, Gyeonhwon-ro, Munmak-eup, Wonju-si 26495, Gang-won-do, Republic of Korea
| |
Collapse
|
14
|
Gait Indicators Contribute to Screening Cognitive Impairment: A Single- and Dual-Task Gait Study. Brain Sci 2023; 13:brainsci13010154. [PMID: 36672137 PMCID: PMC9856295 DOI: 10.3390/brainsci13010154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Background: Screening cognitive impairment is complex and not an appliance for early screening. Gait performance is strongly associated with cognitive impairment. Objectives: We aimed to explore gait indicators that could potentially screen cognitive dysfunction. Methods: A total of 235 subjects were recruited from June 2021 to June 2022. Four gait tasks, including the walking test, the timed “Up & Go” test (TUG), foot pressure balance (FPB), and one-legged standing with eyes closed test (OLS-EC), were performed. Moreover, in the walking test, participants were instructed to walk at their usual pace for the single-gait test. For the dual-task tests, participants walked at their usual pace while counting backward from 100 by 1s. The data were analyzed by the independent sample t-test, univariate and multivariate logistic regression, a linear trend, stratified and interaction analysis, the receiver operating characteristic (ROC) curve, and Pearson’s correlations. Results: Among the 235 participants, 81 (34.5%) were men and 154 (65.5%) were women. The mean age of participants was 72 ± 7.836 years. The control, MCI, mild AD, and severe AD groups had means of 71, 63, 71, and 30, respectively. After adjusting for age, sex, education, and body mass index (BMI), the dual-task toe-off-ground angle (TOA) (odds ratio (OR) = 0.911, 95% confidence interval (CI): 0.847, 0.979), single-task TOA (OR = 0.904, 95% CI: 0.841−0.971), and the timed “Up & Go” time (TUGT) (OR = 1.515, 95% CI: 1.243−1.846) were significantly associated with an increased risk of cognitive impairment. In addition, the trend test and stratified analysis results had no significant differences (all p > 0.05). The area under the roc curve (AUC) values of TOA in the dual-task and TUGT were 0.812 and 0.847, respectively. Additionally, TOA < 36.75° in the dual-task, TOA < 38.90° in the single-task, and TUGT > 9.83 seconds (s) are likely to indicate cognitive impairment. The cognitive assessment scale scores were significantly correlated with TOA (all r > 0.3, p < 0.001) and TUGT (all r > 0.2), respectively. Conclusion: TOA and TUGT scores are, in some circumstances, associated with cognitive impairment; therefore, they can be used as simple initial screenings to identify patients at risk.
Collapse
|
15
|
Hu Y, Petruzzello SJ, Hernandez ME. Beta cortical oscillatory activities and their relationship to postural control in a standing balance demanding test: influence of aging. Front Aging Neurosci 2023; 15:1126002. [PMID: 37213543 PMCID: PMC10196243 DOI: 10.3389/fnagi.2023.1126002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/14/2023] [Indexed: 05/23/2023] Open
Abstract
Background Age-related changes in the cortical control of standing balance may provide a modifiable mechanism underlying falls in older adults. Thus, this study examined the cortical response to sensory and mechanical perturbations in older adults while standing and examined the relationship between cortical activation and postural control. Methods A cohort of community dwelling young (18-30 years, N = 10) and older adults (65-85 years, N = 11) performed the sensory organization test (SOT), motor control test (MCT), and adaptation test (ADT) while high-density electroencephalography (EEG) and center of pressure (COP) data were recorded in this cross-sectional study. Linear mixed models examined cohort differences for cortical activities, using relative beta power, and postural control performance, while Spearman correlations were used to investigate the relationship between relative beta power and COP indices in each test. Results Under sensory manipulation, older adults demonstrated significantly higher relative beta power at all postural control-related cortical areas (p < 0.01), while under rapid mechanical perturbations, older adults demonstrated significantly higher relative beta power at central areas (p < 0.05). As task difficulty increased, young adults had increased relative beta band power while older adults demonstrated decreased relative beta power (p < 0.01). During sensory manipulation with mild mechanical perturbations, specifically in eyes open conditions, higher relative beta power at the parietal area in young adults was associated with worse postural control performance (p < 0.001). Under rapid mechanical perturbations, specifically in novel conditions, higher relative beta power at the central area in older adults was associated with longer movement latency (p < 0.05). However, poor reliability measures of cortical activity assessments were found during MCT and ADT, which limits the ability to interpret the reported results. Discussion Cortical areas are increasingly recruited to maintain upright postural control, even though cortical resources may be limited, in older adults. Considering the limitation regarding mechanical perturbation reliability, future studies should include a larger number of repeated mechanical perturbation trials.
Collapse
Affiliation(s)
- Yang Hu
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Kinesiology, College of Health and Human Science, San José State University, San Jose, CA, United States
- *Correspondence: Yang Hu,
| | - Steven J. Petruzzello
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Manuel E. Hernandez
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
16
|
Tsai YY, Chen YC, Zhao CG, Hwang IS. Adaptations of postural sway dynamics and cortical response to unstable stance with stroboscopic vision in older adults. Front Physiol 2022; 13:919184. [PMID: 36105297 PMCID: PMC9465385 DOI: 10.3389/fphys.2022.919184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/22/2022] [Indexed: 11/19/2022] Open
Abstract
Background: Stroboscopic vision (SV), intermittent visual blocking, has recently been incorporated into postural training in rehabilitation. This study investigated interactions of postural fluctuation dynamics and cortical processing for the elderly during stabilometer stance with SV. Methods: Thirty-five healthy elderly maintained an upright stance on a stabilometer. Along with postural fluctuation dynamics, EEG relative power and EEG-EEG connectivity were used to contrast neuromechanical controls of stabilometer stance with SV and full-vision. Results: Compared with the full-vision, SV led to greater postural fluctuations with lower sample entropy and mean frequency (MF). SV also reduced regional power in the mid-frontal theta cluster, which was correlated to SV-dependent changes in the size of postural fluctuations. SV also enhanced the alpha band supra-threshold connectivity in the visual dorsal and frontal–occipital loops of the right hemisphere, and the supra-threshold connectivity from Fp2 positively related to variations in the MF of postural fluctuations. Conclusion: SV adds challenge to postural regulation on the stabilometer, with the increasing regularity of postural movements and fewer corrective attempts to achieve the postural goal. The elderly shift over-reliance on visual inputs for posture control with more non-visual awareness, considering deactivation of the dorsal visual stream and visual error processing.
Collapse
Affiliation(s)
- Yi-Ying Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Yi-Ching Chen
- Department of Physical Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung City, Taiwan
- Physical Therapy Room, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Chen-Guang Zhao
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Ing-Shiou Hwang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- *Correspondence: Ing-Shiou Hwang,
| |
Collapse
|
17
|
Lv H, Zhang X, Wang J, Hou Z, Wang H, Li C, Wang W, Chen W, Zhang Y. Short-term effects of COVID-19 on the risk of traumatic fractures in China cities. Sci Rep 2022; 12:6528. [PMID: 35444225 PMCID: PMC9020760 DOI: 10.1038/s41598-022-10531-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/08/2022] [Indexed: 12/21/2022] Open
Abstract
This study aimed to investigate the association between COVID-19 and fracture risk and provide a targeted reference for the world through China's experience. A nationally representative sample of COVID-19 prevalence areas selected using stratified random sampling was retrospectively analyzed. Age, sex, fracture site, mechanism of injury, and concurrent fractures of traumatic fracture patients in selected hospitals were collected from 10 January to 10 July 2020. The epidemiologic characteristics of traumatic fractures and the association between COVID-19 and fracture risk were explored using descriptive epidemiological methods and a distributed lag nonlinear model. A total of 67,249 patients (52.3% males, 49.4 ± 19.4 years old) with 68,989 fractures were included. The highest proportion of fractures were in the tibia and fibula (14.9%), followed by the femur (13.6%) and ulna and radius (12.5%). Low-energy fractures accounted for 23.3%. With the increase in newly confirmed COVID-19 cases, fracture risk decreased for children, young and middle-aged adults, elderly men, high-energy fractures, and residents in regions with < 1000 cumulative confirmed COVID-19 cases. Fracture risk decreased sharply in all residents except elderly women, for low-energy fractures, and in regions with > 1000 cumulative confirmed COVID-19 cases when newly confirmed COVID-19 cases increased in China. Primary (home) prevention measures are emphasized to prevent traumatic fractures.
Collapse
Affiliation(s)
- Hongzhi Lv
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Xiaolin Zhang
- Department of Epidemiology and Statistics, Hebei Medical University, Shijiazhuang, 050017, China
| | - Juan Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Zhiyong Hou
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Haicheng Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Chao Li
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Wenjuan Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, China.
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, China.
| | - Yingze Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, China.
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, China.
| |
Collapse
|
18
|
Bosch TJ, Kammermeier S, Groth C, Leedom M, Hanson EK, Berg-Poppe P, Singh A. Cortical and Cerebellar Oscillatory Responses to Postural Instability in Parkinson's Disease. Front Neurol 2021; 12:752271. [PMID: 34803888 PMCID: PMC8599431 DOI: 10.3389/fneur.2021.752271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Posture and balance dysfunctions critically impair activities of daily living of patients with progressing Parkinson's disease (PD). However, the neural mechanisms underlying postural instability in PD are poorly understood, and specific therapies are lacking. Previous electrophysiological studies have shown distinct cortical oscillations with a significant contribution of the cerebellum during postural control tasks in healthy individuals. Methods: We investigated cortical and mid-cerebellar oscillatory activity via electroencephalography (EEG) during a postural control task in 10 PD patients with postural instability (PDPI+), 11 PD patients without postural instability (PDPI–), and 15 age-matched healthy control participants. Relative spectral power was analyzed in the theta (4–7 Hz) and beta (13–30 Hz) frequency bands. Results: Time-dependent postural measurements computed by accelerometer signals showed poor performance in PDPI+ participants. EEG results revealed that theta power was profoundly lower in mid-frontal and mid-cerebellar regions during the postural control task in PDPI+, compared to PDPI– and control participants. In addition, theta power was correlated with postural control performance in PD subjects. No significant changes in beta power were observed. Additionally, oscillatory changes during the postural control task differed from the resting state. Conclusion: This study underlines the involvement of mid-frontal and mid-cerebellar regions in postural stability during a balance task and emphasizes the important role of theta oscillations therein for postural control in PD.
Collapse
Affiliation(s)
- Taylor J Bosch
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.,Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, United States
| | | | - Christopher Groth
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - Matt Leedom
- Avera Therapy, Sioux Falls, SD, United States
| | - Elizabeth K Hanson
- Department of Communication Sciences and Disorders, University of South Dakota, Vermillion, SD, United States
| | - Patti Berg-Poppe
- Department of Physical Therapy, University of South Dakota, Vermillion, SD, United States
| | - Arun Singh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.,Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
19
|
Di Marco R, Rubega M, Antonini A, Formaggio E, Masiero S, Del Felice A. Fractal Analysis of Lower Back Acceleration Profiles in balance tasks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:7381-7384. [PMID: 34892803 DOI: 10.1109/embc46164.2021.9629870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The body sway during standing displays fractal properties that can possibly describe motion complexity. This study aimed to use the Higuchi's fractal dimension (HFD) and Tortuosity on lower back accelerations recorded on younger (< 35 y) and older adults (> 64 y). One wearable sensor was secured on participants lower back (i.e., fifth lumbar vertebra), which were asked to perform three different postural tasks while standing barefoot as still as possible with and without performing a visual oddball task. Results of HFD and Tortuosity, applied to global anterior-posterior and medial-lateral accelerations of the body, were not dependent from signal amplitude, nor from any parametrization and allowed distinguishing between different postural tasks (p < 0.001). The proposed fractal analysis is promising to describe the complexity of postural control in both younger and older adults, paving the way to a wider use in pathological populations.
Collapse
|
20
|
Tortora S, Rubega M, Formaggio E, Marco RD, Masiero S, Menegatti E, Tonin L, Del Felice A. Age-related differences in visual P300 ERP during dual-task postural balance. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6511-6514. [PMID: 34892601 DOI: 10.1109/embc46164.2021.9630088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Standing and concurrently performing a cognitive task is a very common situation in everyday life. It is associated with a higher risk of falling in the elderly. Here, we aim at evaluating the differences of the P300 evoked potential elicited by a visual oddball paradigm between healthy younger (< 35 y) and older (> 64 y) adults during a simultaneous postural task. We found that P300 latency increases significantly (p < 0.001) when the elderly are engaged in more challenging postural tasks; younger adults show no effect of balance condition. Our results demonstrate that, even if the elderly have the same accuracy in odd stimuli detection as younger adults do, they require a longer processing time for stimulus discrimination. This finding suggests an increased attentional load which engages additional cerebral reserves.
Collapse
|
21
|
Di Marco R, Rubega M, Lennon O, Formaggio E, Sutaj N, Dazzi G, Venturin C, Bonini I, Ortner R, Cerrel Bazo HA, Tonin L, Tortora S, Masiero S, Del Felice A. Experimental Protocol to Assess Neuromuscular Plasticity Induced by an Exoskeleton Training Session. Methods Protoc 2021; 4:48. [PMID: 34287357 PMCID: PMC8293335 DOI: 10.3390/mps4030048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Exoskeleton gait rehabilitation is an emerging area of research, with potential applications in the elderly and in people with central nervous system lesions, e.g., stroke, traumatic brain/spinal cord injury. However, adaptability of such technologies to the user is still an unmet goal. Despite important technological advances, these robotic systems still lack the fine tuning necessary to adapt to the physiological modification of the user and are not yet capable of a proper human-machine interaction. Interfaces based on physiological signals, e.g., recorded by electroencephalography (EEG) and/or electromyography (EMG), could contribute to solving this technological challenge. This protocol aims to: (1) quantify neuro-muscular plasticity induced by a single training session with a robotic exoskeleton on post-stroke people and on a group of age and sex-matched controls; (2) test the feasibility of predicting lower limb motor trajectory from physiological signals for future use as control signal for the robot. An active exoskeleton that can be set in full mode (i.e., the robot fully replaces and drives the user motion), adaptive mode (i.e., assistance to the user can be tuned according to his/her needs), and free mode (i.e., the robot completely follows the user movements) will be used. Participants will undergo a preparation session, i.e., EMG sensors and EEG cap placement and inertial sensors attachment to measure, respectively, muscular and cortical activity, and motion. They will then be asked to walk in a 15 m corridor: (i) self-paced without the exoskeleton (pre-training session); (ii) wearing the exoskeleton and walking with the three modes of use; (iii) self-paced without the exoskeleton (post-training session). From this dataset, we will: (1) quantitatively estimate short-term neuroplasticity of brain connectivity in chronic stroke survivors after a single session of gait training; (2) compare muscle activation patterns during exoskeleton-gait between stroke survivors and age and sex-matched controls; and (3) perform a feasibility analysis on the use of physiological signals to decode gait intentions.
Collapse
Affiliation(s)
- Roberto Di Marco
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
| | - Maria Rubega
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
| | - Olive Lennon
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, 4 Dublin, Ireland;
| | - Emanuela Formaggio
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
| | - Ngadhnjim Sutaj
- g.tec Medical Engineering GmbH, 4521 Schiedlberg, Austria; (N.S.); (R.O.)
| | - Giacomo Dazzi
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
| | - Chiara Venturin
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
| | - Ilenia Bonini
- Ospedale Riabilitativo di Alta Specializzazione di Motta di Livenza, 31045 Treviso, Italy; (I.B.); (H.A.C.B.)
| | - Rupert Ortner
- g.tec Medical Engineering GmbH, 4521 Schiedlberg, Austria; (N.S.); (R.O.)
| | | | - Luca Tonin
- Department of Information Engineering, University of Padova, 35131 Padova, Italy; (L.T.); (S.T.)
| | - Stefano Tortora
- Department of Information Engineering, University of Padova, 35131 Padova, Italy; (L.T.); (S.T.)
| | - Stefano Masiero
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
| | - Alessandra Del Felice
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
| | | |
Collapse
|