1
|
Chen Y, Shao X, Shi K, Rominger A, Caobelli F. AI in Breast Cancer Imaging: An Update and Future Trends. Semin Nucl Med 2025; 55:358-370. [PMID: 40011118 DOI: 10.1053/j.semnuclmed.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
Breast cancer is one of the most common types of cancer affecting women worldwide. Artificial intelligence (AI) is transforming breast cancer imaging by enhancing diagnostic capabilities across multiple imaging modalities including mammography, digital breast tomosynthesis, ultrasound, magnetic resonance imaging, and nuclear medicines techniques. AI is being applied to diverse tasks such as breast lesion detection and classification, risk stratification, molecular subtyping, gene mutation status prediction, and treatment response assessment, with emerging research demonstrating performance levels comparable to or potentially exceeding those of radiologists. The large foundation models are showing remarkable potential in different breast cancer imaging tasks. Self-supervised learning gives an insight into data inherent correlation, and federated learning is an alternative way to maintain data privacy. While promising results have been obtained so far, data standardization from source, large-scale annotated multimodal datasets, and extensive prospective clinical trials are still needed to fully explore and validate deep learning's clinical utility and address the legal and ethical considerations, which will ultimately determine its widespread adoption in breast cancer care. We hereby provide a review of the most up-to-date knowledge on AI in breast cancer imaging.
Collapse
Affiliation(s)
- Yizhou Chen
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Xiaoliang Shao
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Federico Caobelli
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Xu Z, Zhou Z, Son JB, Feng H, Adrada BE, Moseley TW, Candelaria RP, Guirguis MS, Patel MM, Whitman GJ, Leung JWT, Le-Petross HTC, Mohamed RM, Panthi B, Lane DL, Chen H, Wei P, Tripathy D, Litton JK, Valero V, Huo L, Hunt KK, Korkut A, Thompson A, Yang W, Yam C, Rauch GM, Ma J. Deep Learning Models Based on Pretreatment MRI and Clinicopathological Data to Predict Responses to Neoadjuvant Systemic Therapy in Triple-Negative Breast Cancer. Cancers (Basel) 2025; 17:966. [PMID: 40149299 PMCID: PMC11940201 DOI: 10.3390/cancers17060966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
PURPOSE To develop deep learning models for predicting the pathologic complete response (pCR) to neoadjuvant systemic therapy (NAST) in patients with triple-negative breast cancer (TNBC) based on pretreatment multiparametric breast MRI and clinicopathological data. METHODS The prospective institutional review board-approved study [NCT02276443] included 282 patients with stage I-III TNBC who had multiparametric breast MRI at baseline and underwent NAST and surgery during 2016-2021. Dynamic contrast-enhanced MRI (DCE), diffusion-weighted imaging (DWI), and clinicopathological data were used for the model development and internal testing. Data from the I-SPY 2 trial (2010-2016) were used for external testing. Four variables with a potential impact on model performance were systematically investigated: 3D model frameworks, tumor volume preprocessing, tumor ROI selection, and data inputs. RESULTS Forty-eight models with different variable combinations were investigated. The best-performing model in the internal testing dataset used DCE, DWI, and clinicopathological data with the originally contoured tumor volume, the tight bounding box of the tumor mask, and ResNeXt50, and achieved an area under the receiver operating characteristic curve (AUC) of 0.76 (95% CI: 0.60-0.88). The best-performing models in the external testing dataset achieved an AUC of 0.72 (95% CI: 0.57-0.84) using only DCE images (originally contoured tumor volume, enlarged bounding box of tumor mask, and ResNeXt50) and an AUC of 0.72 (95% CI: 0.56-0.86) using only DWI images (originally contoured tumor volume, enlarged bounding box of tumor mask, and ResNet18). CONCLUSIONS We developed 3D deep learning models based on pretreatment data that could predict pCR to NAST in TNBC patients.
Collapse
Affiliation(s)
- Zhan Xu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Z.X.)
| | - Zijian Zhou
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Z.X.)
| | - Jong Bum Son
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Z.X.)
| | - Haonan Feng
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Beatriz E. Adrada
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Tanya W. Moseley
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Rosalind P. Candelaria
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Mary S. Guirguis
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Miral M. Patel
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Gary J. Whitman
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Jessica W. T. Leung
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Huong T. C. Le-Petross
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Rania M. Mohamed
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Bikash Panthi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Z.X.)
| | - Deanna L. Lane
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Huiqin Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Jennifer K. Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Kelly K. Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Anil Korkut
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Alastair Thompson
- Section of Breast Surgery, Baylor College of Medicine, 7200 Cambridge St., Houston, TX 77030, USA
| | - Wei Yang
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Gaiane M. Rauch
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (Z.X.)
| |
Collapse
|
3
|
Thomas J, Malla L, Shibwabo B. Advances in analytical approaches for background parenchymal enhancement in predicting breast tumor response to neoadjuvant chemotherapy: A systematic review. PLoS One 2025; 20:e0317240. [PMID: 40053513 PMCID: PMC11888135 DOI: 10.1371/journal.pone.0317240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/25/2024] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Breast cancer (BC) continues to pose a substantial global health concern, necessitating continuous advancements in therapeutic approaches. Neoadjuvant chemotherapy (NAC) has gained prominence as a key therapeutic strategy, and there is growing interest in the predictive utility of Background Parenchymal Enhancement (BPE) in evaluating the response of breast tumors to NAC. However, the analysis of BPE as a predictive biomarker, along with the techniques used to model BPE changes for accurate and timely predictions of treatment response presents several obstacles. This systematic review aims to thoroughly investigate recent advancements in the analytical methodologies for BPE analysis, and to evaluate their reliability and effectiveness in predicting breast tumor response to NAC, ultimately contributing to the development of personalized and effective therapeutic strategies. METHODS A comprehensive and structured literature search was conducted across key electronic databases, including Cochrane Database of Systematic Reviews, Google Scholar, PubMed, and IEEE Xplore covering articles published up to May 10, 2024. The inclusion criteria targeted studies focusing on breast cancer cohorts treated with NAC, involving both pre-treatment and at least one post-treatment breast dynamic contrast-enhanced Magnetic Resonance Imaging (DCE-MRI) scan, and analyzing BPE utility in predicting breast tumor response to NAC. Methodological quality assessment and data extraction were performed to synthesize findings and identify commonalities and differences among various BPE analytical approaches. RESULTS The search yielded a total of 882 records. After meticulous screening, 78 eligible records were identified, with 13 studies ultimately meeting the inclusion criteria for the systematic review. Analysis of the literature revealed a significant evolution in BPE analysis, from early studies focusing on single time-point BPE analysis to more recent studies adopting longitudinal BPE analysis. The review uncovered several gaps that compromise the accuracy and timeliness of existing longitudinal BPE analysis methods, such as missing data across multiple imaging time points, manual segmentation of the whole-breast region of interest, and over reliance on traditional statistical methods like logistic regression for modeling BPE and pathological complete response (pCR). CONCLUSION This review provides a thorough examination of current advancements in analytical approaches for BPE analysis in predicting breast tumor response to NAC. The shift towards longitudinal BPE analysis has highlighted significant gaps, suggesting the need for alternative analytical techniques, particularly in the realm of artificial intelligence (AI). Future longitudinal BPE research work should focus on standardization in longitudinal BPE measurement and analysis, through integration of deep learning-based approaches for automated tumor segmentation, and implementation of advanced AI technique that can better accommodate varied breast tumor responses, non-linear relationships and complex temporal dynamics in BPE datasets, while also handling missing data more effectively. Such integration could lead to more precise and timely predictions of breast tumor responses to NAC, thereby enhancing personalized and effective breast cancer treatment strategies.
Collapse
Affiliation(s)
- Julius Thomas
- School of Computing and Engineering Sciences, Strathmore University, Nairobi, Kenya
| | - Lucas Malla
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Benard Shibwabo
- School of Computing and Engineering Sciences, Strathmore University, Nairobi, Kenya
| |
Collapse
|
4
|
Luo L, Wang X, Lin Y, Ma X, Tan A, Chan R, Vardhanabhuti V, Chu WC, Cheng KT, Chen H. Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions. IEEE Rev Biomed Eng 2025; 18:130-151. [PMID: 38265911 DOI: 10.1109/rbme.2024.3357877] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. This paper provides an extensive review of deep learning-based breast cancer imaging research, covering studies on mammograms, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are elaborated and discussed. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.
Collapse
|
5
|
Liu J, Li X, Wang G, Zeng W, Zeng H, Wen C, Xu W, He Z, Qin G, Chen W. Time-Series MR Images Identifying Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Using a Deep Learning Approach. J Magn Reson Imaging 2025; 61:184-197. [PMID: 38850180 DOI: 10.1002/jmri.29405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Pathological complete response (pCR) is an essential criterion for adjusting follow-up treatment plans for patients with breast cancer (BC). The value of the visual geometry group and long short-term memory (VGG-LSTM) network using time-series dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for pCR identification in BC is unclear. PURPOSE To identify pCR to neoadjuvant chemotherapy (NAC) using deep learning (DL) models based on the VGG-LSTM network. STUDY TYPE Retrospective. POPULATION Center A: 235 patients (47.7 ± 10.0 years) were divided 7:3 into training (n = 164) and validation set (n = 71). Center B: 150 patients (48.5 ± 10.4 years) were used as test set. FIELD STRENGTH/SEQUENCE 3-T, T2-weighted spin-echo sequence imaging, and gradient echo DCE sequence imaging. ASSESSMENT Patients underwent MRI examinations at three sequential time points: pretreatment, after three cycles of treatment, and prior to surgery, with tumor regions of interest manually delineated. Histopathology was the gold standard. We used VGG-LSTM network to establish seven DL models using time-series DCE-MR images: pre-NAC images (t0 model), early NAC images (t1 model), post-NAC images (t2 model), pre-NAC and early NAC images (t0 + t1 model), pre-NAC and post-NAC images (t0 + t2 model), pre-NAC, early NAC and post-NAC images (t0 + t1 + t2 model), and the optimal model combined with the clinical features and imaging features (combined model). The models were trained and optimized on the training and validation set, and tested on the test set. STATISTICAL TESTS The DeLong, Student's t-test, Mann-Whitney U, Chi-squared, Fisher's exact, Hosmer-Lemeshow tests, decision curve analysis, and receiver operating characteristics analysis were performed. P < 0.05 was considered significant. RESULTS Compared with the other six models, the combined model achieved the best performance in the test set yielding an AUC of 0.927. DATA CONCLUSION The combined model that used time-series DCE-MR images, clinical features and imaging features shows promise for identifying pCR in BC. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY Stage 4.
Collapse
Affiliation(s)
- Jialing Liu
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xu Li
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Gang Wang
- Department of Radiology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong Province, China
| | - Weixiong Zeng
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hui Zeng
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chanjuan Wen
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Weimin Xu
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zilong He
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Genggeng Qin
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Weiguo Chen
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
6
|
Kumar Saha D, Hossain T, Safran M, Alfarhood S, Mridha MF, Che D. Segmentation for mammography classification utilizing deep convolutional neural network. BMC Med Imaging 2024; 24:334. [PMID: 39696014 DOI: 10.1186/s12880-024-01510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Mammography for the diagnosis of early breast cancer (BC) relies heavily on the identification of breast masses. However, in the early stages, it might be challenging to ascertain whether a breast mass is benign or malignant. Consequently, many deep learning (DL)-based computer-aided diagnosis (CAD) approaches for BC classification have been developed. METHODS Recently, the transformer model has emerged as a method for overcoming the constraints of convolutional neural networks (CNN). Thus, our primary goal was to determine how well an improved transformer model could distinguish between benign and malignant breast tissues. In this instance, we drew on the Mendeley data repository's INbreast dataset, which includes benign and malignant breast types. Additionally, the segmentation anything model (SAM) method was used to generate the optimized cutoff for region of interest (ROI) extraction from all mammograms. We implemented a successful architecture modification at the bottom layer of a pyramid transformer (PTr) to identify BC from mammography images. RESULTS The proposed PTr model using a transfer learning (TL) approach with a segmentation technique achieved the best accuracy of 99.96% for binary classifications with an area under the curve (AUC) score of 99.98%, respectively. We also compared the performance of the proposed model with other transformer model vision transformers (ViT) and DL models, MobileNetV3 and EfficientNetB7, respectively. CONCLUSIONS In this study, a modified transformer model is proposed for BC prediction and mammography image classification using segmentation approaches. Data segmentation techniques accurately identify the regions affected by BC. Finally, the proposed transformer model accurately classified benign and malignant breast tissues, which is vital for radiologists to guide future treatment.
Collapse
Affiliation(s)
- Dip Kumar Saha
- Department of Computer Science and Engineering, Stamford University Bangladesh, Siddeswari, Dhaka, Bangladesh
| | - Tuhin Hossain
- Department of Computer Science and Engineering, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Mejdl Safran
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh, 11543, Saudi Arabia.
| | - Sultan Alfarhood
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh, 11543, Saudi Arabia
| | - M F Mridha
- Department of Computer Science, American International University-Bangladesh, Kuratoli, Dhaka, Bangladesh.
| | - Dunren Che
- Department of Electrical Engineering and Computer Science, Texas A&M University-Kingsville, Kingsville, 78363, Texas, USA
| |
Collapse
|
7
|
Gullo RL, Brunekreef J, Marcus E, Han LK, Eskreis-Winkler S, Thakur SB, Mann R, Lipman KG, Teuwen J, Pinker K. AI Applications to Breast MRI: Today and Tomorrow. J Magn Reson Imaging 2024; 60:2290-2308. [PMID: 38581127 PMCID: PMC11452568 DOI: 10.1002/jmri.29358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/08/2024] Open
Abstract
In breast imaging, there is an unrelenting increase in the demand for breast imaging services, partly explained by continuous expanding imaging indications in breast diagnosis and treatment. As the human workforce providing these services is not growing at the same rate, the implementation of artificial intelligence (AI) in breast imaging has gained significant momentum to maximize workflow efficiency and increase productivity while concurrently improving diagnostic accuracy and patient outcomes. Thus far, the implementation of AI in breast imaging is at the most advanced stage with mammography and digital breast tomosynthesis techniques, followed by ultrasound, whereas the implementation of AI in breast magnetic resonance imaging (MRI) is not moving along as rapidly due to the complexity of MRI examinations and fewer available dataset. Nevertheless, there is persisting interest in AI-enhanced breast MRI applications, even as the use of and indications of breast MRI continue to expand. This review presents an overview of the basic concepts of AI imaging analysis and subsequently reviews the use cases for AI-enhanced MRI interpretation, that is, breast MRI triaging and lesion detection, lesion classification, prediction of treatment response, risk assessment, and image quality. Finally, it provides an outlook on the barriers and facilitators for the adoption of AI in breast MRI. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 6.
Collapse
Affiliation(s)
- Roberto Lo Gullo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joren Brunekreef
- AI for Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Eric Marcus
- AI for Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lynn K Han
- Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA
| | - Sarah Eskreis-Winkler
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sunitha B Thakur
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ritse Mann
- AI for Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kevin Groot Lipman
- AI for Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jonas Teuwen
- AI for Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Katja Pinker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
8
|
Fanizzi A, Bove S, Comes MC, Di Benedetto EF, Latorre A, Giotta F, Nardone A, Rizzo A, Soranno C, Zito A, Massafra R. Prediction of breast cancer Invasive Disease Events using transfer learning on clinical data as image-form. PLoS One 2024; 19:e0312036. [PMID: 39570983 PMCID: PMC11581389 DOI: 10.1371/journal.pone.0312036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/30/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Detecting patients at high risk of occurrence of an Invasive Disease Event after a first diagnosis of breast cancer, such as recurrence, distant metastasis, contralateral tumor and second tumor, could support clinical decision-making processes in the treatment of this malignancy. Though several machine learning models analyzing both clinical and histopathological information have been developed in literature to address this task, these approaches turned out to be unsuitable for describing this problem. METHODS In this study, we designed a novel artificial intelligence-based approach which converts clinical information into an image-form to be analyzed through Convolutional Neural Networks. Specifically, we predicted the occurrence of an Invasive Disease Event at both 5-year and 10-year follow-ups of 696 female patients with a first invasive breast cancer diagnosis enrolled at IRCCS "Giovanni Paolo II" in Bari, Italy. After transforming each patient, represented by a vector of clinical information, to an image form, we extracted low-level quantitative imaging features by means of a pre-trained Convolutional Neural Network, namely, AlexNET. Then, we classified breast cancer patients in the two classes, namely, Invasive Disease Event and non-Invasive Disease Event, via a Support Vector Machine classifier trained on a subset of significative features previously identified. RESULTS Both 5-year and 10-year models resulted particularly accurate in predicting breast cancer recurrence event, achieving an AUC value of 92.07% and 92.84%, an accuracy of 88.71% and 88.82%, a sensitivity of 86.83% and 88.06%, a specificity of 89.55% and 89.3%, a precision of 71.93% and 84.82%, respectively. CONCLUSIONS This is the first study proposing an approach which converts clinical information into an image-form to develop a decision support system for identifying patients at high risk of occurrence of an Invasive Disease Event, and then defining personalized oncological therapeutic treatments for breast cancer patients.
Collapse
Affiliation(s)
| | - Samantha Bove
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | | | | | - Agnese Latorre
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | | | | | | | - Clara Soranno
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Alfredo Zito
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | | |
Collapse
|
9
|
Gao Y, Ventura-Diaz S, Wang X, He M, Xu Z, Weir A, Zhou HY, Zhang T, van Duijnhoven FH, Han L, Li X, D'Angelo A, Longo V, Liu Z, Teuwen J, Kok M, Beets-Tan R, Horlings HM, Tan T, Mann R. An explainable longitudinal multi-modal fusion model for predicting neoadjuvant therapy response in women with breast cancer. Nat Commun 2024; 15:9613. [PMID: 39511143 PMCID: PMC11544255 DOI: 10.1038/s41467-024-53450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Multi-modal image analysis using deep learning (DL) lays the foundation for neoadjuvant treatment (NAT) response monitoring. However, existing methods prioritize extracting multi-modal features to enhance predictive performance, with limited consideration on real-world clinical applicability, particularly in longitudinal NAT scenarios with multi-modal data. Here, we propose the Multi-modal Response Prediction (MRP) system, designed to mimic real-world physician assessments of NAT responses in breast cancer. To enhance feasibility, MRP integrates cross-modal knowledge mining and temporal information embedding strategy to handle missing modalities and remain less affected by different NAT settings. We validated MRP through multi-center studies and multinational reader studies. MRP exhibited comparable robustness to breast radiologists, outperforming humans in predicting pathological complete response in the Pre-NAT phase (ΔAUROC 14% and 10% on in-house and external datasets, respectively). Furthermore, we assessed MRP's clinical utility impact on treatment decision-making. MRP may have profound implications for enrolment into NAT trials and determining surgery extensiveness.
Collapse
Affiliation(s)
- Yuan Gao
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, P. Debyelaan 25, 6202 AZ, Maastricht, The Netherlands
- Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Medical Imaging, Radboud University Medical Centre, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Sofia Ventura-Diaz
- Department of Radiology, St Joseph's Healthcare Hamilton, 50 Charlton Ave E, Hamilton, ON L8N 4A6, Ontario, Canada
| | - Xin Wang
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, P. Debyelaan 25, 6202 AZ, Maastricht, The Netherlands
- Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Medical Imaging, Radboud University Medical Centre, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Muzhen He
- Department of Radiology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Zeyan Xu
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Arlene Weir
- Department of Radiology, Cork University Hospital, Wilton, Cork, T12 DC4A, Ireland
| | - Hong-Yu Zhou
- Department of Biomedical Informatics, Harvard Medical School, Boston, USA
| | - Tianyu Zhang
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, P. Debyelaan 25, 6202 AZ, Maastricht, The Netherlands
- Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Medical Imaging, Radboud University Medical Centre, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Frederieke H van Duijnhoven
- Departments of Surgical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Luyi Han
- Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Medical Imaging, Radboud University Medical Centre, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Xiaomei Li
- The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, China
| | - Anna D'Angelo
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | - Valentina Longo
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China
| | - Jonas Teuwen
- Department of Radiation Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Marleen Kok
- Department of Tumor Biology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Regina Beets-Tan
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, P. Debyelaan 25, 6202 AZ, Maastricht, The Netherlands
- Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Hugo M Horlings
- Department of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Tao Tan
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, Macao, China.
| | - Ritse Mann
- Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Medical Imaging, Radboud University Medical Centre, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Hachache R, Yahyaouy A, Riffi J, Tairi H, Abibou S, Adoui ME, Benjelloun M. Advancing personalized oncology: a systematic review on the integration of artificial intelligence in monitoring neoadjuvant treatment for breast cancer patients. BMC Cancer 2024; 24:1300. [PMID: 39434042 PMCID: PMC11495077 DOI: 10.1186/s12885-024-13049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
PURPOSE Despite suffering from the same disease, each patient exhibits a distinct microbiological profile and variable reactivity to prescribed treatments. Most doctors typically use a standardized treatment approach for all patients suffering from a specific disease. Consequently, the challenge lies in the effectiveness of this standardized treatment and in adapting it to each individual patient. Personalized medicine is an emerging field in which doctors use diagnostic tests to identify the most effective medical treatments for each patient. Prognosis, disease monitoring, and treatment planning rely on manual, error-prone methods. Artificial intelligence (AI) uses predictive techniques capable of automating prognostic and monitoring processes, thus reducing the error rate associated with conventional methods. METHODS This paper conducts an analysis of current literature, encompassing the period from January 2015 to 2023, based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). RESULTS In assessing 25 pertinent studies concerning predicting neoadjuvant treatment (NAT) response in breast cancer (BC) patients, the studies explored various imaging modalities (Magnetic Resonance Imaging, Ultrasound, etc.), evaluating results based on accuracy, sensitivity, and area under the curve. Additionally, the technologies employed, such as machine learning (ML), deep learning (DL), statistics, and hybrid models, were scrutinized. The presentation of datasets used for predicting complete pathological response (PCR) was also considered. CONCLUSION This paper seeks to unveil crucial insights into the application of AI techniques in personalized oncology, particularly in the monitoring and prediction of responses to NAT for BC patients. Finally, the authors suggest avenues for future research into AI-based monitoring systems.
Collapse
Affiliation(s)
- Rachida Hachache
- Department of Computer Sciences, LISAC Laboratory, Sidi Mohammed Ben Abdellah University, Fez, Morocco.
| | - Ali Yahyaouy
- Department of Computer Sciences, LISAC Laboratory, Sidi Mohammed Ben Abdellah University, Fez, Morocco
- USPN, La Maison Des Sciences Numériques, Paris, France
| | - Jamal Riffi
- Department of Computer Sciences, LISAC Laboratory, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Hamid Tairi
- Department of Computer Sciences, LISAC Laboratory, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Soukayna Abibou
- Department of Computer Sciences, LISAC Laboratory, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Mohammed El Adoui
- Computer Science Unit, Faculty of Engineering, University of Mons, Place du Parc, 20, Mons, 7000, Belgium
| | - Mohammed Benjelloun
- Computer Science Unit, Faculty of Engineering, University of Mons, Place du Parc, 20, Mons, 7000, Belgium
| |
Collapse
|
11
|
Kim SY, Lee J, Cho N, Kim YG. Deep-learning based discrimination of pathologic complete response using MRI in HER2-positive and triple-negative breast cancer. Sci Rep 2024; 14:23065. [PMID: 39367159 PMCID: PMC11452398 DOI: 10.1038/s41598-024-74276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Distinguishing between pathologic complete response and residual cancer after neoadjuvant chemotherapy (NAC) is crucial for treatment decisions, but the current imaging methods face challenges. To address this, we developed deep-learning models using post-NAC dynamic contrast-enhanced MRI and clinical data. A total of 852 women with human epidermal growth factor receptor 2 (HER2)-positive or triple-negative breast cancer were randomly divided into a training set (n = 724) and a validation set (n = 128). A 3D convolutional neural network model was trained on the training set and validated independently. The main models were developed using cropped MRI images, but models using uncropped whole images were also explored. The delayed-phase model demonstrated superior performance compared to the early-phase model (area under the receiver operating characteristic curve [AUC] = 0.74 vs. 0.69, P = 0.013) and the combined model integrating multiple dynamic phases and clinical data (AUC = 0.74 vs. 0.70, P = 0.022). Deep-learning models using uncropped whole images exhibited inferior performance, with AUCs ranging from 0.45 to 0.54. Further refinement and external validation are necessary for enhanced accuracy.
Collapse
Affiliation(s)
- Soo-Yeon Kim
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Jinsu Lee
- Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Nariya Cho
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Young-Gon Kim
- Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
12
|
Fanizzi A, Catino A, Bove S, Comes MC, Montrone M, Sicolo A, Signorile R, Perrotti P, Pizzutilo P, Galetta D, Massafra R. Transfer learning approach in pre-treatment CT images to predict therapeutic response in advanced malignant pleural mesothelioma. Front Oncol 2024; 14:1432188. [PMID: 39351354 PMCID: PMC11439621 DOI: 10.3389/fonc.2024.1432188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Malignant pleural mesothelioma (MPM) is a poor-prognosis disease. Owing to the recent availability of new therapeutic options, there is a need to better assess prognosis. The initial clinical response could represent a useful parameter. Methods We proposed a transfer learning approach to predict an initial treatment response starting from baseline CT scans of patients with advanced/unresectable MPM undergoing first-line systemic therapy. The therapeutic response has been assessed according to the mRECIST criteria by CT scan at baseline and after two to three treatment cycles. We used three slices of baseline CT scan as input to the pre-trained convolutional neural network as a radiomic feature extractor. We identified a feature subset through a double feature selection procedure to train a binary SVM classifier to discriminate responders (partial response) from non-responders (stable or disease progression). Results The performance of the prediction classifiers was evaluated with an 80:20 hold-out validation scheme. We have evaluated how the developed model was robust to variations in the slices selected by the radiologist. In our dataset, 25 patients showed an initial partial response, whereas 13 patients showed progressive or stable disease. On the independent test, the proposed model achieved a median AUC and accuracy of 86.67% and 87.50%, respectively. Conclusions The proposed model has shown high performance even by varying the reference slices. Novel tools could help to improve the prognostic assessment of patients with MPM and to better identify subgroups of patients with different therapeutic responsiveness.
Collapse
Affiliation(s)
- Annarita Fanizzi
- Laboratorio di Biostatistica e Bioinformatica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Annamaria Catino
- Struttura Semplice Dipartimentale di Oncologia Medica Toracica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Samantha Bove
- Laboratorio di Biostatistica e Bioinformatica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Maria Colomba Comes
- Laboratorio di Biostatistica e Bioinformatica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Michele Montrone
- Struttura Semplice Dipartimentale di Oncologia Medica Toracica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Angela Sicolo
- Struttura Semplice Dipartimentale di Oncologia Medica Toracica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Rahel Signorile
- Laboratorio di Biostatistica e Bioinformatica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Pia Perrotti
- Struttura Semplice Dipartimentale di Oncologia Medica Toracica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Pamela Pizzutilo
- Struttura Semplice Dipartimentale di Oncologia Medica Toracica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Domenico Galetta
- Struttura Semplice Dipartimentale di Oncologia Medica Toracica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Raffaella Massafra
- Laboratorio di Biostatistica e Bioinformatica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| |
Collapse
|
13
|
Comes MC, Fucci L, Strippoli S, Bove S, Cazzato G, Colangiuli C, Risi ID, Roma ID, Fanizzi A, Mele F, Ressa M, Saponaro C, Soranno C, Tinelli R, Guida M, Zito A, Massafra R. An artificial intelligence-based model exploiting H&E images to predict recurrence in negative sentinel lymph-node melanoma patients. J Transl Med 2024; 22:838. [PMID: 39267101 PMCID: PMC11391752 DOI: 10.1186/s12967-024-05629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/18/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Risk stratification and treatment benefit prediction models are urgent to improve negative sentinel lymph node (SLN-) melanoma patient selection, thus avoiding costly and toxic treatments in patients at low risk of recurrence. To this end, the application of artificial intelligence (AI) could help clinicians to better calculate the recurrence risk and choose whether to perform adjuvant therapy. METHODS We made use of AI to predict recurrence-free status (RFS) within 2-years from diagnosis in 94 SLN- melanoma patients. In detail, we detected quantitative imaging information from H&E slides of a cohort of 71 SLN- melanoma patients, who registered at Istituto Tumori "Giovanni Paolo II" in Bari, Italy (investigational cohort, IC). For each slide, two expert pathologists firstly annotated two Regions of Interest (ROIs) containing tumor cells alone (TUMOR ROI) or with infiltrating cells (TUMOR + INF ROI). In correspondence of the two kinds of ROIs, two AI-based models were developed to extract information directly from the tiles in which each ROI was automatically divided. This information was then used to predict RFS. Performances of the models were computed according to a 5-fold cross validation scheme. We further validated the prediction power of the two models on an independent external validation cohort of 23 SLN- melanoma patients (validation cohort, VC). RESULTS The TUMOR ROIs have revealed more informative than the TUMOR + INF ROIs. An Area Under the Curve (AUC) value of 79.1% and 62.3%, a sensitivity value of 81.2% and 76.9%, a specificity value of 70.0% and 43.3%, an accuracy value of 73.2% and 53.4%, were achieved on the TUMOR and TUMOR + INF ROIs extracted for the IC cohort, respectively. An AUC value of 76.5% and 65.2%, a sensitivity value of 66.7% and 41.6%, a specificity value of 70.0% and 55.9%, an accuracy value of 70.0% and 56.5%, were achieved on the TUMOR and TUMOR + INF ROIs extracted for the VC cohort, respectively. CONCLUSIONS Our approach represents a first effort to develop a non-invasive prognostic method to better define the recurrence risk and improve the management of SLN- melanoma patients.
Collapse
Affiliation(s)
- Maria Colomba Comes
- Laboratorio di Biostatistica e Bioinformatica, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Livia Fucci
- Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Sabino Strippoli
- Unità Operativa Tumori Rari e Melanoma, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Samantha Bove
- Laboratorio di Biostatistica e Bioinformatica, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Gerardo Cazzato
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Carmen Colangiuli
- Laboratorio di Biostatistica e Bioinformatica, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Ivana De Risi
- Unità Operativa Tumori Rari e Melanoma, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Ileana De Roma
- Unità Operativa Tumori Rari e Melanoma, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Annarita Fanizzi
- Laboratorio di Biostatistica e Bioinformatica, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Fabio Mele
- Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Maurizio Ressa
- Unità Operativa Complessa di Chirurgica Plastica e Ricostruttiva, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Concetta Saponaro
- Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | | | - Rosita Tinelli
- Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Michele Guida
- Unità Operativa Tumori Rari e Melanoma, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy.
| | - Alfredo Zito
- Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Raffaella Massafra
- Laboratorio di Biostatistica e Bioinformatica, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| |
Collapse
|
14
|
Förnvik D, Borgquist S, Larsson M, Zackrisson S, Skarping I. Deep learning analysis of serial digital breast tomosynthesis images in a prospective cohort of breast cancer patients who received neoadjuvant chemotherapy. Eur J Radiol 2024; 178:111624. [PMID: 39029241 DOI: 10.1016/j.ejrad.2024.111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/15/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
PURPOSE Different imaging tools, including digital breast tomosynthesis (DBT), are frequently used for evaluating tumor response during neoadjuvant chemotherapy (NACT). This study aimed to explore whether using artificial intelligence (AI) for serial DBT acquisitions during NACT for breast cancer can predict pathological complete response (pCR) after completion of NACT. METHODS A total of 149 women (mean age 53 years, pCR rate 22 %) with breast cancer treated with NACT at Skane University Hospital, Sweden, between 2014 and 2019, were prospectively included in this observational cohort study (ClinicalTrials.gov: NCT02306096). DBT images from both the cancer and contralateral healthy breasts acquired at three time points: pre-NACT, after two cycles of NACT, and after the completion of six cycles of NACT (pre-surgery) were analyzed. The deep learning AI system used to predict pCR consisted of a backbone 3D ResNet and an attention and prediction module. The GradCAM method was used to obtain insights into the model decision basis through a quantitative analysis of the importance maps on the validation set. Moreover, specific model choices were motivated by ablation studies. RESULTS The AI model reached an AUC of 0.83 (95% CI: 0.63-1.00) (test set). The spatial correlation of importance maps for input volumes from the same patient but at different time points was high, possibly indicating that the model focuses on the same areas during decision-making. CONCLUSIONS We demonstrate a high discriminative performance of our algorithm for predicting pCR/non-pCR. Availability of larger datasets would permit more comprehensive training of the models and more rigorous evaluation of their prediction performance for future patients.
Collapse
Affiliation(s)
- Daniel Förnvik
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Skane University Hospital, Malmö, Sweden; Department of Hematology, Oncology and Radiation Physics, Skane University Hospital, Lund, Sweden.
| | - Signe Borgquist
- Department of Oncology, Aarhus University Hospital/Aarhus University, Denmark; Division of Oncology, Department of Clinical Sciences, Lund University, Sweden.
| | | | - Sophia Zackrisson
- Department of Translational Medicine, Diagnostic Radiology, Lund University and Department of Radiology, Skane University Hospital, Malmö, Sweden.
| | - Ida Skarping
- Division of Oncology, Department of Clinical Sciences, Lund University, Sweden; The Department of Clinical Physiology and Nuclear Medicine, Skane University Hospital, Lund, Sweden.
| |
Collapse
|
15
|
Armato SG, Katz SI, Frauenfelder T, Jayasekera G, Catino A, Blyth KG, Theodoro T, Rousset P, Nackaerts K, Opitz I. Imaging in pleural Mesothelioma: A review of the 16th International Conference of the International Mesothelioma Interest Group. Lung Cancer 2024; 193:107832. [PMID: 38875938 DOI: 10.1016/j.lungcan.2024.107832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
Imaging continues to gain a greater role in the assessment and clinical management of patients with mesothelioma. This communication summarizes the oral presentations from the imaging session at the 2023 International Conference of the International Mesothelioma Interest Group (iMig), which was held in Lille, France from June 26 to 28, 2023. Topics at this session included an overview of best practices for clinical imaging of mesothelioma as reported by an iMig consensus panel, emerging imaging techniques for surgical planning, radiologic assessment of malignant pleural effusion, a radiomics-based transfer learning model to predict patient response to treatment, automated assessment of early contrast enhancement, and tumor thickness for response assessment in peritoneal mesothelioma.
Collapse
Affiliation(s)
- Samuel G Armato
- Department of Radiology, The University of Chicago, Chicago, IL, USA.
| | - Sharyn I Katz
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Thomas Frauenfelder
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Geeshath Jayasekera
- Glasgow Pleural Disease Unit, Queen Elizabeth University Hospital, Glasgow, UK and School of Cancer Sciences, University of Glasgow, UK
| | - Annamaria Catino
- Medical Thoracic Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II," BARI, Italy
| | - Kevin G Blyth
- Cancer Research UK Scotland Centre, Glasgow, UK and Glasgow Pleural Disease Unit, Queen Elizabeth University Hospital, Glasgow, UK and School of Cancer Sciences, University of Glasgow, UK
| | - Taylla Theodoro
- Institute of Computing, University of Campinas, Campinas, Brazil and Cancer Research UK Scotland Centre, Glasgow, UK
| | - Pascal Rousset
- Department of Radiology, Lyon Sud University Hospital, Hospices Civils de Lyon, Lyon 1 University, Pierre-Bénite, France
| | - Kristiaan Nackaerts
- Department of Pulmonology/Respiratory Oncology, KU Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Comes MC, Fanizzi A, Bove S, Didonna V, Diotiaiuti S, Fadda F, La Forgia D, Giotta F, Latorre A, Nardone A, Palmiotti G, Ressa CM, Rinaldi L, Rizzo A, Talienti T, Tamborra P, Zito A, Lorusso V, Massafra R. Explainable 3D CNN based on baseline breast DCE-MRI to give an early prediction of pathological complete response to neoadjuvant chemotherapy. Comput Biol Med 2024; 172:108132. [PMID: 38508058 DOI: 10.1016/j.compbiomed.2024.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND So far, baseline Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) has played a key role for the application of sophisticated artificial intelligence-based models using Convolutional Neural Networks (CNNs) to extract quantitative imaging information as earlier indicators of pathological Complete Response (pCR) achievement in breast cancer patients treated with neoadjuvant chemotherapy (NAC). However, these models did not exploit the DCE-MRI exams in their full geometry as 3D volume but analysed only few individual slices independently, thus neglecting the depth information. METHOD This study aimed to develop an explainable 3D CNN, which fulfilled the task of pCR prediction before the beginning of NAC, by leveraging the 3D information of post-contrast baseline breast DCE-MRI exams. Specifically, for each patient, the network took in input a 3D sequence containing the tumor region, which was previously automatically identified along the DCE-MRI exam. A visual explanation of the decision-making process of the network was also provided. RESULTS To the best of our knowledge, our proposal is competitive than other models in the field, which made use of imaging data alone, reaching a median AUC value of 81.8%, 95%CI [75.3%; 88.3%], a median accuracy value of 78.7%, 95%CI [74.8%; 82.5%], a median sensitivity value of 69.8%, 95%CI [59.6%; 79.9%] and a median specificity value of 83.3%, 95%CI [82.6%; 84.0%], respectively. The median and CIs were computed according to a 10-fold cross-validation scheme for 5 rounds. CONCLUSION Finally, this proposal holds high potential to support clinicians on non-invasively early pursuing or changing patient-centric NAC pathways.
Collapse
Affiliation(s)
- Maria Colomba Comes
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Annarita Fanizzi
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy.
| | - Samantha Bove
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy.
| | - Vittorio Didonna
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Sergio Diotiaiuti
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Federico Fadda
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Daniele La Forgia
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Francesco Giotta
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Agnese Latorre
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Annalisa Nardone
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Gennaro Palmiotti
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Cosmo Maurizio Ressa
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Lucia Rinaldi
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Alessandro Rizzo
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Tiziana Talienti
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Pasquale Tamborra
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Alfredo Zito
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Vito Lorusso
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Raffaella Massafra
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy
| |
Collapse
|
17
|
Lo Gullo R, Marcus E, Huayanay J, Eskreis-Winkler S, Thakur S, Teuwen J, Pinker K. Artificial Intelligence-Enhanced Breast MRI: Applications in Breast Cancer Primary Treatment Response Assessment and Prediction. Invest Radiol 2024; 59:230-242. [PMID: 37493391 PMCID: PMC10818006 DOI: 10.1097/rli.0000000000001010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
ABSTRACT Primary systemic therapy (PST) is the treatment of choice in patients with locally advanced breast cancer and is nowadays also often used in patients with early-stage breast cancer. Although imaging remains pivotal to assess response to PST accurately, the use of imaging to predict response to PST has the potential to not only better prognostication but also allow the de-escalation or omission of potentially toxic treatment with undesirable adverse effects, the accelerated implementation of new targeted therapies, and the mitigation of surgical delays in selected patients. In response to the limited ability of radiologists to predict response to PST via qualitative, subjective assessments of tumors on magnetic resonance imaging (MRI), artificial intelligence-enhanced MRI with classical machine learning, and in more recent times, deep learning, have been used with promising results to predict response, both before the start of PST and in the early stages of treatment. This review provides an overview of the current applications of artificial intelligence to MRI in assessing and predicting response to PST, and discusses the challenges and limitations of their clinical implementation.
Collapse
Affiliation(s)
- Roberto Lo Gullo
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66 Street, New York, NY 10065, USA
| | - Eric Marcus
- AI for Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jorge Huayanay
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66 Street, New York, NY 10065, USA
- Department of Radiology, National Institute of Neoplastic Diseases, Lima, Peru
| | - Sarah Eskreis-Winkler
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66 Street, New York, NY 10065, USA
| | - Sunitha Thakur
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jonas Teuwen
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66 Street, New York, NY 10065, USA
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
- AI for Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Katja Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66 Street, New York, NY 10065, USA
| |
Collapse
|
18
|
Neimy H, Helmy JE, Snyder A, Valdebran M. Artificial Intelligence in Melanoma Dermatopathology: A Review of Literature. Am J Dermatopathol 2024; 46:83-94. [PMID: 37982502 DOI: 10.1097/dad.0000000000002593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
ABSTRACT Pathology serves as a promising field to integrate artificial intelligence into clinical practice as a powerful screening tool. Melanoma is a common skin cancer with high mortality and morbidity, requiring timely and accurate histopathologic diagnosis. This review explores applications of artificial intelligence in melanoma dermatopathology, including differential diagnostics, prognosis prediction, and personalized medicine decision-making.
Collapse
Affiliation(s)
- Hannah Neimy
- College of Medicine, Medical University of South Carolina, Charleston, SC; and
| | - John Elia Helmy
- College of Medicine, Medical University of South Carolina, Charleston, SC; and
| | - Alan Snyder
- Department of Dermatology & Dermatologic Surgery, Medical University of South Carolina, Charleston, SC
| | - Manuel Valdebran
- Department of Dermatology & Dermatologic Surgery, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
19
|
Janse MHA, Janssen LM, van der Velden BHM, Moman MR, Wolters-van der Ben EJM, Kock MCJM, Viergever MA, van Diest PJ, Gilhuijs KGA. Deep Learning-Based Segmentation of Locally Advanced Breast Cancer on MRI in Relation to Residual Cancer Burden: A Multi-Institutional Cohort Study. J Magn Reson Imaging 2023; 58:1739-1749. [PMID: 36928988 DOI: 10.1002/jmri.28679] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND While several methods have been proposed for automated assessment of breast-cancer response to neoadjuvant chemotherapy on breast MRI, limited information is available about their performance across multiple institutions. PURPOSE To assess the value and robustness of deep learning-derived volumes of locally advanced breast cancer (LABC) on MRI to infer the presence of residual disease after neoadjuvant chemotherapy. STUDY TYPE Retrospective. SUBJECTS Training cohort: 102 consecutive female patients with LABC scheduled for neoadjuvant chemotherapy (NAC) from a single institution (age: 25-73 years). Independent testing cohort: 55 consecutive female patients with LABC from four institutions (age: 25-72 years). FIELD STRENGTH/SEQUENCE Training cohort: single vendor 1.5 T or 3.0 T. Testing cohort: multivendor 3.0 T. Gradient echo dynamic contrast-enhanced sequences. ASSESSMENT A convolutional neural network (nnU-Net) was trained to segment LABC. Based on resulting tumor volumes, an extremely randomized tree model was trained to assess residual cancer burden (RCB)-0/I vs. RCB-II/III. An independent model was developed using functional tumor volume (FTV). Models were tested on an independent testing cohort and response assessment performance and robustness across multiple institutions were assessed. STATISTICAL TESTS The receiver operating characteristic (ROC) was used to calculate the area under the ROC curve (AUC). DeLong's method was used to compare AUCs. Correlations were calculated using Pearson's method. P values <0.05 were considered significant. RESULTS Automated segmentation resulted in a median (interquartile range [IQR]) Dice score of 0.87 (0.62-0.93), with similar volumetric measurements (R = 0.95, P < 0.05). Automated volumetric measurements were significantly correlated with FTV (R = 0.80). Tumor volume-derived from deep learning of DCE-MRI was associated with RCB, yielding an AUC of 0.76 to discriminate between RCB-0/I and RCB-II/III, performing similar to the FTV-based model (AUC = 0.77, P = 0.66). Performance was comparable across institutions (IQR AUC: 0.71-0.84). DATA CONCLUSION Deep learning-based segmentation estimates changes in tumor load on DCE-MRI that are associated with RCB after NAC and is robust against variations between institutions. EVIDENCE LEVEL 2. TECHNICAL EFFICACY Stage 4.
Collapse
Affiliation(s)
- Markus H A Janse
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Liselore M Janssen
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bas H M van der Velden
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maaike R Moman
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Alexander Monro Hospital, Bilthoven, The Netherlands
| | | | - Marc C J M Kock
- Department of Radiology, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Max A Viergever
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kenneth G A Gilhuijs
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
20
|
Fanizzi A, Fadda F, Comes MC, Bove S, Catino A, Di Benedetto E, Milella A, Montrone M, Nardone A, Soranno C, Rizzo A, Guven DC, Galetta D, Massafra R. Comparison between vision transformers and convolutional neural networks to predict non-small lung cancer recurrence. Sci Rep 2023; 13:20605. [PMID: 37996651 PMCID: PMC10667245 DOI: 10.1038/s41598-023-48004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023] Open
Abstract
Non-Small cell lung cancer (NSCLC) is one of the most dangerous cancers, with 85% of all new lung cancer diagnoses and a 30-55% of recurrence rate after surgery. Thus, an accurate prediction of recurrence risk in NSCLC patients during diagnosis could be essential to drive targeted therapies preventing either overtreatment or undertreatment of cancer patients. The radiomic analysis of CT images has already shown great potential in solving this task; specifically, Convolutional Neural Networks (CNNs) have already been proposed providing good performances. Recently, Vision Transformers (ViTs) have been introduced, reaching comparable and even better performances than traditional CNNs in image classification. The aim of the proposed paper was to compare the performances of different state-of-the-art deep learning algorithms to predict cancer recurrence in NSCLC patients. In this work, using a public database of 144 patients, we implemented a transfer learning approach, involving different Transformers architectures like pre-trained ViTs, pre-trained Pyramid Vision Transformers, and pre-trained Swin Transformers to predict the recurrence of NSCLC patients from CT images, comparing their performances with state-of-the-art CNNs. Although, the best performances in this study are reached via CNNs with AUC, Accuracy, Sensitivity, Specificity, and Precision equal to 0.91, 0.89, 0.85, 0.90, and 0.78, respectively, Transformer architectures reach comparable ones with AUC, Accuracy, Sensitivity, Specificity, and Precision equal to 0.90, 0.86, 0.81, 0.89, and 0.75, respectively. Based on our preliminary experimental results, it appears that Transformers architectures do not add improvements in terms of predictive performance to the addressed problem.
Collapse
Affiliation(s)
- Annarita Fanizzi
- Struttura Semplice Dipartimentale Fisica Sanitaria, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Federico Fadda
- Struttura Semplice Dipartimentale Fisica Sanitaria, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Maria Colomba Comes
- Struttura Semplice Dipartimentale Fisica Sanitaria, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Viale Orazio Flacco 65, 70124, Bari, Italy.
| | - Samantha Bove
- Struttura Semplice Dipartimentale Fisica Sanitaria, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Viale Orazio Flacco 65, 70124, Bari, Italy.
| | - Annamaria Catino
- Unità Operativa Complessa di Oncologia Toracica, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Erika Di Benedetto
- Unità Operativa Complessa di Oncologia Medica, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Angelo Milella
- Dipartimento di ElettronicaInformazione e Bioingegneria, Politecnico di Milano, Via Giuseppe Ponzio, 34, 20133, Milan, Italy
| | - Michele Montrone
- Unità Operativa Complessa di Oncologia Toracica, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Annalisa Nardone
- Unità Operativa Complessa di Radioterapia, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Clara Soranno
- Struttura Semplice Dipartimentale Fisica Sanitaria, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Alessandro Rizzo
- Unità Operativa Complessa di Oncologia Medica 'Don Tonino Bello', I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Deniz Can Guven
- Department of Medical Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey
| | - Domenico Galetta
- Unità Operativa Complessa di Oncologia Toracica, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Raffaella Massafra
- Struttura Semplice Dipartimentale Fisica Sanitaria, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Viale Orazio Flacco 65, 70124, Bari, Italy
| |
Collapse
|
21
|
Elsayed B, Alksas A, Shehata M, Mahmoud A, Zaky M, Alghandour R, Abdelwahab K, Abdelkhalek M, Ghazal M, Contractor S, El-Din Moustafa H, El-Baz A. Exploring Neoadjuvant Chemotherapy, Predictive Models, Radiomic, and Pathological Markers in Breast Cancer: A Comprehensive Review. Cancers (Basel) 2023; 15:5288. [PMID: 37958461 PMCID: PMC10648987 DOI: 10.3390/cancers15215288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer retains its position as the most prevalent form of malignancy among females on a global scale. The careful selection of appropriate treatment for each patient holds paramount importance in effectively managing breast cancer. Neoadjuvant chemotherapy (NACT) plays a pivotal role in the comprehensive treatment of this disease. Administering chemotherapy before surgery, NACT becomes a powerful tool in reducing tumor size, potentially enabling fewer invasive surgical procedures and even rendering initially inoperable tumors amenable to surgery. However, a significant challenge lies in the varying responses exhibited by different patients towards NACT. To address this challenge, researchers have focused on developing prediction models that can identify those who would benefit from NACT and those who would not. Such models have the potential to reduce treatment costs and contribute to a more efficient and accurate management of breast cancer. Therefore, this review has two objectives: first, to identify the most effective radiomic markers correlated with NACT response, and second, to explore whether integrating radiomic markers extracted from radiological images with pathological markers can enhance the predictive accuracy of NACT response. This review will delve into addressing these research questions and also shed light on the emerging research direction of leveraging artificial intelligence techniques for predicting NACT response, thereby shaping the future landscape of breast cancer treatment.
Collapse
Affiliation(s)
- Basma Elsayed
- Biomedical Engineering Program, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt;
| | - Ahmed Alksas
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (A.A.); (M.S.); (A.M.)
| | - Mohamed Shehata
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (A.A.); (M.S.); (A.M.)
| | - Ali Mahmoud
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (A.A.); (M.S.); (A.M.)
| | - Mona Zaky
- Diagnostic Radiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Reham Alghandour
- Medical Oncology Department, Mansoura Oncology Center, Mansoura University, Mansoura 35516, Egypt;
| | - Khaled Abdelwahab
- Surgical Oncology Department, Mansoura Oncology Center, Mansoura University, Mansoura 35516, Egypt; (K.A.); (M.A.)
| | - Mohamed Abdelkhalek
- Surgical Oncology Department, Mansoura Oncology Center, Mansoura University, Mansoura 35516, Egypt; (K.A.); (M.A.)
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates;
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA;
| | | | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (A.A.); (M.S.); (A.M.)
| |
Collapse
|
22
|
Fanizzi A, Latorre A, Bavaro DA, Bove S, Comes MC, Di Benedetto EF, Fadda F, La Forgia D, Giotta F, Palmiotti G, Petruzzellis N, Rinaldi L, Rizzo A, Lorusso V, Massafra R. Prognostic power assessment of clinical parameters to predict neoadjuvant response therapy in HER2-positive breast cancer patients: A machine learning approach. Cancer Med 2023; 12:20663-20669. [PMID: 37905688 PMCID: PMC10709715 DOI: 10.1002/cam4.6512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 07/27/2023] [Accepted: 08/29/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND About 15%-20% of breast cancer (BC) cases is classified as Human Epidermal growth factor Receptor type 2 (HER2) positive. The Neoadjuvant chemotherapy (NAC) was initially introduced for locally advanced and inflammatory BC patients to allow a less extensive surgical resection, whereas now it represents the current standard for early-stage and operable BC. However, only 20%-40% of patients achieve pathologic complete response (pCR). According to the results of practice-changing clinical trials, the addition of trastuzumab to NAC brings improvements to pCR, and recently, the use of pertuzumab plus trastuzumab has registered further statistically significant and clinically meaningful improvements in terms of pCR. The goal of our work is to propose a machine learning model to predict the pCR to NAC in HER2-positive patients based on a subset of clinical features. METHOD First, we evaluated the significant association of clinical features with pCR on the retrospectively collected data referred to 67 patients afferent to Istituto Tumori "Giovanni Paolo II." Then, we performed a feature selection procedure to identify a subset of features to be used for training a machine learning-based classification algorithm. As a result, pCR to NAC was associated with ER status, Pgr status, and HER2 score. RESULTS The machine learning model trained on a subgroup of essential features reached an AUC of 73.27% (72.44%-73.66%) and an accuracy of 71.67% (71.64%-73.13%). According to our results, the clinical features alone are not enough to define a support system useful for clinical pathway. CONCLUSION Our results seem worthy of further investigation in large validation studies and this work could be the basis of future study that will also involve radiomics analysis of biomedical images.
Collapse
Affiliation(s)
| | | | | | - Samantha Bove
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”BariItaly
| | | | | | | | | | | | | | | | - Lucia Rinaldi
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”BariItaly
| | | | - Vito Lorusso
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”BariItaly
| | | |
Collapse
|
23
|
Champendal M, Marmy L, Malamateniou C, Sá Dos Reis C. Artificial intelligence to support person-centred care in breast imaging - A scoping review. J Med Imaging Radiat Sci 2023; 54:511-544. [PMID: 37183076 DOI: 10.1016/j.jmir.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
AIM To overview Artificial Intelligence (AI) developments and applications in breast imaging (BI) focused on providing person-centred care in diagnosis and treatment for breast pathologies. METHODS The scoping review was conducted in accordance with the Joanna Briggs Institute methodology. The search was conducted on MEDLINE, Embase, CINAHL, Web of science, IEEE explore and arxiv during July 2022 and included only studies published after 2016, in French and English. Combination of keywords and Medical Subject Headings terms (MeSH) related to breast imaging and AI were used. No keywords or MeSH terms related to patients, or the person-centred care (PCC) concept were included. Three independent reviewers screened all abstracts and titles, and all eligible full-text publications during a second stage. RESULTS 3417 results were identified by the search and 106 studies were included for meeting all criteria. Six themes relating to the AI-enabled PCC in BI were identified: individualised risk prediction/growth and prediction/false negative reduction (44.3%), treatment assessment (32.1%), tumour type prediction (11.3%), unnecessary biopsies reduction (5.7%), patients' preferences (2.8%) and other issues (3.8%). The main BI modalities explored in the included studies were magnetic resonance imaging (MRI) (31.1%), mammography (27.4%) and ultrasound (23.6%). The studies were predominantly retrospective, and some variations (age range, data source, race, medical imaging) were present in the datasets used. CONCLUSIONS The AI tools for person-centred care are mainly designed for risk and cancer prediction and disease management to identify the most suitable treatment. However, further studies are needed for image acquisition optimisation for different patient groups, improvement and customisation of patient experience and for communicating to patients the options and pathways of disease management.
Collapse
Affiliation(s)
- Mélanie Champendal
- School of Health Sciences HESAV, HES-SO; University of Applied Sciences Western Switzerland: Lausanne, CH.
| | - Laurent Marmy
- School of Health Sciences HESAV, HES-SO; University of Applied Sciences Western Switzerland: Lausanne, CH.
| | - Christina Malamateniou
- School of Health Sciences HESAV, HES-SO; University of Applied Sciences Western Switzerland: Lausanne, CH; Department of Radiography, Division of Midwifery and Radiography, School of Health Sciences, University of London, London, UK.
| | - Cláudia Sá Dos Reis
- School of Health Sciences HESAV, HES-SO; University of Applied Sciences Western Switzerland: Lausanne, CH.
| |
Collapse
|
24
|
Hao X, Xu H, Zhao N, Yu T, Hamalainen T, Cong F. Predicting pathological complete response based on weakly and semi-supervised joint learning from breast cancer MRI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083773 DOI: 10.1109/embc40787.2023.10340081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Neoadjuvant chemotherapy (NAC) is the standard treatment for breast cancer patients. Patients achieving complete pathological response (pCR) after NAC usually have a good prognosis. However, automatic pCR prediction has been a challenging problem due to lacking well annotations in 3D MRI. Thus far, unifying different annotation information to predict the tumor's early response to NAC has not been systematically addressed. This paper proposes a weakly and semi-supervised joint learning method that integrates attentional features from multi-parametric MRI with radiomic features for predicting pCR to NAC in breast cancer patients. The attention-based multi-instance learning (MIL) is first developed to generate informative MRI bag-level features and mine key instances. The mean-teacher framework is then employed to segment tumor regions in a semi-supervised setting for extracting radiomic features. We perform experiments on 442 patients' data and show that our method achieves an AUC value of 0.85 in pCR prediction, which is superior to comparative methods. It is also shown that learning from multi-parametric MRI outperforms that of single-parameter MRI in pCR prediction.
Collapse
|
25
|
Anaby D, Shavin D, Zimmerman-Moreno G, Nissan N, Friedman E, Sklair-Levy M. 'Earlier than Early' Detection of Breast Cancer in Israeli BRCA Mutation Carriers Applying AI-Based Analysis to Consecutive MRI Scans. Cancers (Basel) 2023; 15:3120. [PMID: 37370730 DOI: 10.3390/cancers15123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Female BRCA1/BRCA2 (=BRCA) pathogenic variants (PVs) carriers are at a substantially higher risk for developing breast cancer (BC) compared with the average risk population. Detection of BC at an early stage significantly improves prognosis. To facilitate early BC detection, a surveillance scheme is offered to BRCA PV carriers from age 25-30 years that includes annual MRI based breast imaging. Indeed, adherence to the recommended scheme has been shown to be associated with earlier disease stages at BC diagnosis, more in-situ pathology, smaller tumors, and less axillary involvement. While MRI is the most sensitive modality for BC detection in BRCA PV carriers, there are a significant number of overlooked or misinterpreted radiological lesions (mostly enhancing foci), leading to a delayed BC diagnosis at a more advanced stage. In this study we developed an artificial intelligence (AI)-network, aimed at a more accurate classification of enhancing foci, in MRIs of BRCA PV carriers, thus reducing false-negative interpretations. Retrospectively identified foci in prior MRIs that were either diagnosed as BC or benign/normal in a subsequent MRI were manually segmented and served as input for a convolutional network architecture. The model was successful in classification of 65% of the cancerous foci, most of them triple-negative BC. If validated, applying this scheme routinely may facilitate 'earlier than early' BC diagnosis in BRCA PV carriers.
Collapse
Affiliation(s)
- Debbie Anaby
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat Gan 52621, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6910201, Israel
| | - David Shavin
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat Gan 52621, Israel
| | | | - Noam Nissan
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat Gan 52621, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6910201, Israel
| | - Eitan Friedman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6910201, Israel
- Meirav High Risk Center, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Miri Sklair-Levy
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat Gan 52621, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6910201, Israel
- Meirav High Risk Center, Sheba Medical Center, Ramat Gan 52621, Israel
| |
Collapse
|
26
|
La Forgia D, Signorile R, Bove S, Arezzo F, Cormio G, Daniele A, Dellino M, Fanizzi A, Gatta G, Lafranceschina M, Massafra R, Rizzo A, Zito FA, Neri E, Faggioni L. Impact of the systematic introduction of tomosynthesis on breast biopsies: 10 years of results. LA RADIOLOGIA MEDICA 2023; 128:704-713. [PMID: 37198373 PMCID: PMC10264471 DOI: 10.1007/s11547-023-01640-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
Digital Breast Tomosynthesis (DBT) is a cutting-edge technology introduced in recent years as an in-depth analysis of breast cancer diagnostics. Compared with 2D Full-Field Digital Mammography, DBT has demonstrated greater sensitivity and specificity in detecting breast tumors. This work aims to quantitatively evaluate the impact of the systematic introduction of DBT in terms of Biopsy Rate and Positive Predictive Values for the number of biopsies performed (PPV-3). For this purpose, we collected 69,384 mammograms and 7894 biopsies, of which 6484 were Core Biopsies and 1410 were stereotactic Vacuum-assisted Breast Biopsies (VABBs), performed on female patients afferent to the Breast Unit of the Istituto Tumori "Giovanni Paolo II" of Bari from 2012 to 2021, thus, in the period before, during and after the systematic introduction of DBT. Linear regression analysis was then implemented to investigate how the Biopsy Rate had changed over the 10 year screening. The next step was to focus on VABBs, which were generally performed during in-depth examinations of mammogram detected lesions. Finally, three radiologists from the institute's Breast Unit underwent a comparative study to ascertain their performances in terms of breast cancer detection rates before and after the introduction of DBT. As a result, it was demonstrated that both the overall Biopsy Rate and the VABBs Biopsy Rate significantly decreased following the introduction of DBT, with the diagnosis of an equal number of tumors. Besides, no statistically significant differences were observed among the three operators evaluated. In conclusion, this work highlights how the systematic introduction of DBT has significantly impacted the breast cancer diagnostic procedure, by improving the diagnostic quality and thereby reducing needless biopsies, resulting in a consequent reduction in costs.
Collapse
Affiliation(s)
- Daniele La Forgia
- Istituto Tumori Giovanni Paolo II, I.R.C.C.S, Via Orazio Flacco 65, 70124 Bari, Italy
| | - Rahel Signorile
- Istituto Tumori Giovanni Paolo II, I.R.C.C.S, Via Orazio Flacco 65, 70124 Bari, Italy
| | - Samantha Bove
- Istituto Tumori Giovanni Paolo II, I.R.C.C.S, Via Orazio Flacco 65, 70124 Bari, Italy
| | - Francesca Arezzo
- Istituto Tumori Giovanni Paolo II, I.R.C.C.S, Via Orazio Flacco 65, 70124 Bari, Italy
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70121 Bari, Italy
| | - Gennaro Cormio
- Istituto Tumori Giovanni Paolo II, I.R.C.C.S, Via Orazio Flacco 65, 70124 Bari, Italy
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70121 Bari, Italy
| | - Antonella Daniele
- Istituto Tumori Giovanni Paolo II, I.R.C.C.S, Via Orazio Flacco 65, 70124 Bari, Italy
| | - Miriam Dellino
- Clinic of Obstetrics and Gynecology, San Paolo Hospital, 70123 Bari, Italy
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70100 Bari, Italy
| | - Annarita Fanizzi
- Istituto Tumori Giovanni Paolo II, I.R.C.C.S, Via Orazio Flacco 65, 70124 Bari, Italy
| | - Gianluca Gatta
- Breast Unit, Department of Clinical and Experimental Internship, University of Campania Luigi Vanvitelli, Via De Crecchio 7, 80138 Naples, Italy
| | - Miria Lafranceschina
- Istituto Tumori Giovanni Paolo II, I.R.C.C.S, Via Orazio Flacco 65, 70124 Bari, Italy
| | - Raffaella Massafra
- Istituto Tumori Giovanni Paolo II, I.R.C.C.S, Via Orazio Flacco 65, 70124 Bari, Italy
| | - Alessandro Rizzo
- Istituto Tumori Giovanni Paolo II, I.R.C.C.S, Via Orazio Flacco 65, 70124 Bari, Italy
| | | | - Emanuele Neri
- Academic Radiology, Department of Translational Research, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Lorenzo Faggioni
- Academic Radiology, Department of Translational Research, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| |
Collapse
|
27
|
Robustness Fine-Tuning Deep Learning Model for Cancers Diagnosis Based on Histopathology Image Analysis. Diagnostics (Basel) 2023; 13:diagnostics13040699. [PMID: 36832186 PMCID: PMC9955143 DOI: 10.3390/diagnostics13040699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Histopathology is the most accurate way to diagnose cancer and identify prognostic and therapeutic targets. The likelihood of survival is significantly increased by early cancer detection. With deep networks' enormous success, significant attempts have been made to analyze cancer disorders, particularly colon and lung cancers. In order to do this, this paper examines how well deep networks can diagnose various cancers using histopathology image processing. This work intends to increase the performance of deep learning architecture in processing histopathology images by constructing a novel fine-tuning deep network for colon and lung cancers. Such adjustments are performed using regularization, batch normalization, and hyperparameters optimization. The suggested fine-tuned model was evaluated using the LC2500 dataset. Our proposed model's average precision, recall, F1-score, specificity, and accuracy were 99.84%, 99.85%, 99.84%, 99.96%, and 99.94%, respectively. The experimental findings reveal that the suggested fine-tuned learning model based on the pre-trained ResNet101 network achieves higher results against recent state-of-the-art approaches and other current powerful CNN models.
Collapse
|
28
|
Bove S, Fanizzi A, Fadda F, Comes MC, Catino A, Cirillo A, Cristofaro C, Montrone M, Nardone A, Pizzutilo P, Tufaro A, Galetta D, Massafra R. A CT-based transfer learning approach to predict NSCLC recurrence: The added-value of peritumoral region. PLoS One 2023; 18:e0285188. [PMID: 37130116 PMCID: PMC10153708 DOI: 10.1371/journal.pone.0285188] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) represents 85% of all new lung cancer diagnoses and presents a high recurrence rate after surgery. Thus, an accurate prediction of recurrence risk in NSCLC patients at diagnosis could be essential to designate risk patients to more aggressive medical treatments. In this manuscript, we apply a transfer learning approach to predict recurrence in NSCLC patients, exploiting only data acquired during its screening phase. Particularly, we used a public radiogenomic dataset of NSCLC patients having a primary tumor CT image and clinical information. Starting from the CT slice containing the tumor with maximum area, we considered three different dilatation sizes to identify three Regions of Interest (ROIs): CROP (without dilation), CROP 10 and CROP 20. Then, from each ROI, we extracted radiomic features by means of different pre-trained CNNs. The latter have been combined with clinical information; thus, we trained a Support Vector Machine classifier to predict the NSCLC recurrence. The classification performances of the devised models were finally evaluated on both the hold-out training and hold-out test sets, in which the original sample has been previously divided. The experimental results showed that the model obtained analyzing CROP 20 images, which are the ROIs containing more peritumoral area, achieved the best performances on both the hold-out training set, with an AUC of 0.73, an Accuracy of 0.61, a Sensitivity of 0.63, and a Specificity of 0.60, and on the hold-out test set, with an AUC value of 0.83, an Accuracy value of 0.79, a Sensitivity value of 0.80, and a Specificity value of 0.78. The proposed model represents a promising procedure for early predicting recurrence risk in NSCLC patients.
Collapse
Affiliation(s)
- Samantha Bove
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | | | - Federico Fadda
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | | | | | - Angelo Cirillo
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | | | | | | | | | - Antonio Tufaro
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | | | | |
Collapse
|
29
|
La Forgia D, Paparella G, Signorile R, Arezzo F, Comes MC, Cormio G, Daniele A, Fanizzi A, Fioretti AM, Gatta G, Lafranceschina M, Rizzo A, Zaccaria GM, Rosa A, Massafra R. Lean Perspectives in an Organizational Change in a Scientific Direction of an Italian Research Institute: Experience of the Cancer Institute of Bari. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:239. [PMID: 36612562 PMCID: PMC9819426 DOI: 10.3390/ijerph20010239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Lean management is a relatively new organizational vision transferred from the automotive industry to the healthcare and administrative sector based on analyzing a production process to emphasize value and reduce waste. This approach is particularly interesting in a historical moment of cuts and scarcity of economic resources and could represent a low-cost organizational solution in many production companies. In this work, we analyzed the presentation and the initial management of current ministerial research projects up to the approval by the Scientific Directorate of an Italian research institute. Furthermore, the initial mode in 2021 ("as is") and the potential mode ("to be") according to a Lean model are studied, according to the current barriers highlighted by the final users of the process and carrying out some perspective analyses with some reference indicators.
Collapse
Affiliation(s)
- Daniele La Forgia
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Gaetano Paparella
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Rahel Signorile
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Francesca Arezzo
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Maria Colomba Comes
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Gennaro Cormio
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy
| | - Antonella Daniele
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Annarita Fanizzi
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Agnese Maria Fioretti
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Gianluca Gatta
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Miria Lafranceschina
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Alessandro Rizzo
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Gian Maria Zaccaria
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Angelo Rosa
- Department of Management, Finance and Technology, LUM University, 70010 Casamassima, Italy
| | - Raffaella Massafra
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| |
Collapse
|
30
|
Comes MC, Fucci L, Mele F, Bove S, Cristofaro C, De Risi I, Fanizzi A, Milella M, Strippoli S, Zito A, Guida M, Massafra R. A deep learning model based on whole slide images to predict disease-free survival in cutaneous melanoma patients. Sci Rep 2022; 12:20366. [PMID: 36437296 PMCID: PMC9701687 DOI: 10.1038/s41598-022-24315-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022] Open
Abstract
The application of deep learning on whole-slide histological images (WSIs) can reveal insights for clinical and basic tumor science investigations. Finding quantitative imaging biomarkers from WSIs directly for the prediction of disease-free survival (DFS) in stage I-III melanoma patients is crucial to optimize patient management. In this study, we designed a deep learning-based model with the aim of learning prognostic biomarkers from WSIs to predict 1-year DFS in cutaneous melanoma patients. First, WSIs referred to a cohort of 43 patients (31 DF cases, 12 non-DF cases) from the Clinical Proteomic Tumor Analysis Consortium Cutaneous Melanoma (CPTAC-CM) public database were firstly annotated by our expert pathologists and then automatically split into crops, which were later employed to train and validate the proposed model using a fivefold cross-validation scheme for 5 rounds. Then, the model was further validated on WSIs related to an independent test, i.e. a validation cohort of 11 melanoma patients (8 DF cases, 3 non-DF cases), whose data were collected from Istituto Tumori 'Giovanni Paolo II' in Bari, Italy. The quantitative imaging biomarkers extracted by the proposed model showed prognostic power, achieving a median AUC value of 69.5% and a median accuracy of 72.7% on the public cohort of patients. These results remained comparable on the validation cohort of patients with an AUC value of 66.7% and an accuracy value of 72.7%, respectively. This work is contributing to the recently undertaken investigation on how treat features extracted from raw WSIs to fulfil prognostic tasks involving melanoma patients. The promising results make this study as a valuable basis for future research investigation on wider cohorts of patients referred to our Institute.
Collapse
Affiliation(s)
- Maria Colomba Comes
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Livia Fucci
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Fabio Mele
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Samantha Bove
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Cristian Cristofaro
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Ivana De Risi
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Annarita Fanizzi
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Martina Milella
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Sabino Strippoli
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Alfredo Zito
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Michele Guida
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Raffaella Massafra
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| |
Collapse
|
31
|
Khan N, Adam R, Huang P, Maldjian T, Duong TQ. Deep Learning Prediction of Pathologic Complete Response in Breast Cancer Using MRI and Other Clinical Data: A Systematic Review. Tomography 2022; 8:2784-2795. [PMID: 36412691 PMCID: PMC9680498 DOI: 10.3390/tomography8060232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Breast cancer patients who have pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) are more likely to have better clinical outcomes. The ability to predict which patient will respond to NAC early in the treatment course is important because it could help to minimize unnecessary toxic NAC and to modify regimens mid-treatment to achieve better efficacy. Machine learning (ML) is increasingly being used in radiology and medicine because it can identify relationships amongst complex data elements to inform outcomes without the need to specify such relationships a priori. One of the most popular deep learning methods that applies to medical images is the Convolutional Neural Networks (CNN). In contrast to supervised ML, deep learning CNN can operate on the whole images without requiring radiologists to manually contour the tumor on images. Although there have been many review papers on supervised ML prediction of pCR, review papers on deep learning prediction of pCR are sparse. Deep learning CNN could also incorporate multiple image types, clinical data such as demographics and molecular subtypes, as well as data from multiple treatment time points to predict pCR. The goal of this study is to perform a systematic review of deep learning methods that use whole-breast MRI images without annotation or tumor segmentation to predict pCR in breast cancer.
Collapse
Affiliation(s)
| | | | | | | | - Tim Q. Duong
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
32
|
Guo Q, Dong Z, Jiang L, Zhang L, Li Z, Wang D. Assessing Whether Morphological Changes in Axillary Lymph Node Have Already Occurred Prior to Metastasis in Breast Cancer Patients by Ultrasound. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58111674. [PMID: 36422213 PMCID: PMC9695007 DOI: 10.3390/medicina58111674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Background and Objectives: Whether the morphological changes in axillary lymph node (ALN) have occurred prior to metastasis remains unclear in breast cancer (BC) patients. The aim of this study is to investigate the influence of BC for the morphology of non-metastasis ALN (N−) and, further, to improve the performance of ultrasound (US) examination for metastasis ALN (N+). Materials and Methods: In this retrospective study, 653 patients with breast mass were enrolled and divided into normal group of 202 patients with benign breast tumor, N− group of 233 BC patients with negative ALN and N+ group of 218 BC patients with positive ALN. US features of ALN were evaluated and analyzed according to long (L) and short (S) diameter, the (L/S) axis ratio, cortical thickness, lymph node edge, replaced hilum and color Doppler flow imaging (CDFI). Results: ALN US features of short diameter, replaced hilum, cortical thickness and CDFI have significant statistical differences in N− group comparing with normal group and N+ group, respectively (p < 0.05). Conclusions: Therefore, BC can affect ALN and lead to US morphological changes whether lymph node metastasis is present, which reduces the sensitivity of axillary US. The combination of US and other examination methods should be applied to improve the diagnostic performance of N+.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Ultrasound Medicine, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
- Correspondence: ; Tel.: +86-(189)-3081-7376
| | - Zhiwu Dong
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong University, Shanghai 201599, China
| | - Lixin Jiang
- Department of Ultrasound in Medicine, Renji Hospital Affiliated to Shanghai Jiaotong University, Shanghai 201599, China
| | - Lei Zhang
- Department of Ultrasound Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ziyao Li
- Department of Ultrasound Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Dongmo Wang
- Department of Ultrasound Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
33
|
Luczynska E, Piegza T, Szpor J, Heinze S, Popiela T, Kargol J, Rudnicki W. Contrast-Enhanced Mammography (CEM) Capability to Distinguish Molecular Breast Cancer Subtypes. Biomedicines 2022; 10:2384. [PMID: 36289645 PMCID: PMC9598186 DOI: 10.3390/biomedicines10102384] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/20/2022] Open
Abstract
With breast cancer ranking first among the most common malignant neoplasms in the world, new techniques of early detection are in even more demand than before. Our awareness of tumors' biology is expanding and may be used to treat patients more efficiently. A link between radiology and pathology was searched for in our study, as well as the answer to the question of whether a tumor type can be seen on contrast-enhanced mammography and if such knowledge may serve as part of precision medicine.
Collapse
Affiliation(s)
- Elzbieta Luczynska
- Department of Electroradiology, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Tomasz Piegza
- Department of Radiology, 5th Military Clinical Hospital in Cracow, 30-901 Cracow, Poland
| | - Joanna Szpor
- Department of Pathomorphology, Jagiellonian University Medical College, 30-688 Cracow, Poland
| | - Sylwia Heinze
- Department of Radiology, Maria Sklodowska-Curie National Research Institute of Oncology in Cracow, 31-115 Cracow, Poland
| | - Tadeusz Popiela
- Department of Radiology, Jagiellonian University Medical College, 30-688 Cracow, Poland
| | - Jaromir Kargol
- Institute of Medical Sciences, Medical College of Rzeszów University, 35-959 Rzeszów, Poland
| | - Wojciech Rudnicki
- Department of Electroradiology, Jagiellonian University Medical College, 31-008 Cracow, Poland
| |
Collapse
|
34
|
Fanizzi A, Scognamillo G, Nestola A, Bambace S, Bove S, Comes MC, Cristofaro C, Didonna V, Di Rito A, Errico A, Palermo L, Tamborra P, Troiano M, Parisi S, Villani R, Zito A, Lioce M, Massafra R. Transfer learning approach based on computed tomography images for predicting late xerostomia after radiotherapy in patients with oropharyngeal cancer. Front Med (Lausanne) 2022; 9:993395. [PMID: 36213659 PMCID: PMC9537690 DOI: 10.3389/fmed.2022.993395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background and purpose Although the latest breakthroughs in radiotherapy (RT) techniques have led to a decrease in adverse event rates, these techniques are still associated with substantial toxicity, including xerostomia. Imaging biomarkers could be useful to predict the toxicity risk related to each individual patient. Our preliminary work aims to develop a radiomic-based support tool exploiting pre-treatment CT images to predict late xerostomia risk in 3 months after RT in patients with oropharyngeal cancer (OPC). Materials and methods We performed a multicenter data collection. We enrolled 61 patients referred to three care centers in Apulia, Italy, out of which 22 patients experienced at least mild xerostomia 3 months after the end of the RT cycle. Pre-treatment CT images, clinical and dose features, and alcohol-smoking habits were collected. We proposed a transfer learning approach to extract quantitative imaging features from CT images by means of a pre-trained convolutional neural network (CNN) architecture. An optimal feature subset was then identified to train an SVM classifier. To evaluate the robustness of the proposed model with respect to different manual contouring practices on CTs, we repeated the same image analysis pipeline on “fake” parotid contours. Results The best performances were achieved by the model exploiting the radiomic features alone. On the independent test, the model reached median AUC, accuracy, sensitivity, and specificity values of 81.17, 83.33, 71.43, and 90.91%, respectively. The model was robust with respect to diverse manual parotid contouring procedures. Conclusion Radiomic analysis could help to develop a valid support tool for clinicians in planning radiotherapy treatment, by providing a risk score of the toxicity development for each individual patient, thus improving the quality of life of the same patient, without compromising patient care.
Collapse
Affiliation(s)
| | | | | | - Santa Bambace
- Ospedale Monsignor Raffaele Dimiccoli, Barletta, Italy
| | - Samantha Bove
- IRCCS Istituto Tumori “Giovanni Paolo II,”Bari, Italy
- *Correspondence: Samantha Bove,
| | | | | | | | | | - Angelo Errico
- Ospedale Monsignor Raffaele Dimiccoli, Barletta, Italy
| | | | | | - Michele Troiano
- IRCCS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina Viale Cappuccini, Foggia, Italy
| | - Salvatore Parisi
- IRCCS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina Viale Cappuccini, Foggia, Italy
| | | | - Alfredo Zito
- IRCCS Istituto Tumori “Giovanni Paolo II,”Bari, Italy
| | - Marco Lioce
- IRCCS Istituto Tumori “Giovanni Paolo II,”Bari, Italy
| | | |
Collapse
|
35
|
Zhu J, Geng J, Shan W, Zhang B, Shen H, Dong X, Liu M, Li X, Cheng L. Development and validation of a deep learning model for breast lesion segmentation and characterization in multiparametric MRI. Front Oncol 2022; 12:946580. [PMID: 36033449 PMCID: PMC9402900 DOI: 10.3389/fonc.2022.946580] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Importance The utilization of artificial intelligence for the differentiation of benign and malignant breast lesions in multiparametric MRI (mpMRI) assists radiologists to improve diagnostic performance. Objectives To develop an automated deep learning model for breast lesion segmentation and characterization and to evaluate the characterization performance of AI models and radiologists. Materials and methods For lesion segmentation, 2,823 patients were used for the training, validation, and testing of the VNet-based segmentation models, and the average Dice similarity coefficient (DSC) between the manual segmentation by radiologists and the mask generated by VNet was calculated. For lesion characterization, 3,303 female patients with 3,607 pathologically confirmed lesions (2,213 malignant and 1,394 benign lesions) were used for the three ResNet-based characterization models (two single-input and one multi-input models). Histopathology was used as the diagnostic criterion standard to assess the characterization performance of the AI models and the BI-RADS categorized by the radiologists, in terms of sensitivity, specificity, accuracy, and the area under the receiver operating characteristic curve (AUC). An additional 123 patients with 136 lesions (81 malignant and 55 benign lesions) from another institution were available for external testing. Results Of the 5,811 patients included in the study, the mean age was 46.14 (range 11–89) years. In the segmentation task, a DSC of 0.860 was obtained between the VNet-generated mask and manual segmentation by radiologists. In the characterization task, the AUCs of the multi-input and the other two single-input models were 0.927, 0.821, and 0.795, respectively. Compared to the single-input DWI or DCE model, the multi-input DCE and DWI model obtained a significant increase in sensitivity, specificity, and accuracy (0.831 vs. 0.772/0.776, 0.874 vs. 0.630/0.709, 0.846 vs. 0.721/0.752). Furthermore, the specificity of the multi-input model was higher than that of the radiologists, whether using BI-RADS category 3 or 4 as a cutoff point (0.874 vs. 0.404/0.841), and the accuracy was intermediate between the two assessment methods (0.846 vs. 0.773/0.882). For the external testing, the performance of the three models remained robust with AUCs of 0.812, 0.831, and 0.885, respectively. Conclusions Combining DCE with DWI was superior to applying a single sequence for breast lesion characterization. The deep learning computer-aided diagnosis (CADx) model we developed significantly improved specificity and achieved comparable accuracy to the radiologists with promise for clinical application to provide preliminary diagnoses.
Collapse
Affiliation(s)
- Jingjin Zhu
- School of Medicine, Nankai University, Tianjin, China
- Department of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Jiahui Geng
- Department of Neurology, Beijing Tiantan Hospital, Beijing, China
| | - Wei Shan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Boya Zhang
- School of Medicine, Nankai University, Tianjin, China
- Department of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Huaqing Shen
- Department of Neurology, Beijing Tiantan Hospital, Beijing, China
| | - Xiaohan Dong
- Department of Radiology, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Mei Liu
- Department of Pathology, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Xiru Li
- Department of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing, China
- *Correspondence: Liuquan Cheng, ; Xiru Li,
| | - Liuquan Cheng
- Department of Radiology, Chinese People’s Liberation Army General Hospital, Beijing, China
- *Correspondence: Liuquan Cheng, ; Xiru Li,
| |
Collapse
|
36
|
Delta-Radiomics Based on Dynamic Contrast-Enhanced MRI Predicts Pathologic Complete Response in Breast Cancer Patients Treated with Neoadjuvant Chemotherapy. Cancers (Basel) 2022; 14:cancers14143515. [PMID: 35884576 PMCID: PMC9316501 DOI: 10.3390/cancers14143515] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/06/2022] [Accepted: 07/16/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Neoadjuvant chemotherapy (NAC) followed with surgery is the standard strategy in the treatment of locally advanced breast cancer, but the individual efficacy varies. Early and accurate prediction of complete responders determines the NAC regimens and prognosis. Breast MRI has been recommended to monitor NAC response before, during, and after treatment. Radiomics has been heralded as a breakthrough in medicine and regarded to have changed the landscape of biomedical research in oncology. Delta-radiomics characterizing the change in feature values by applying radiomics to multiple time points, is a promising strategy for predicting response after NAC. In our study, the delta-radiomics model built with the change of radiomic features before and after one cycle NAC could effectively predict pathological complete response (pCR) in breast cancer. The model provides strong support for clinical decision-making at the earliest stage and helps patients benefit the most from NAC. Abstract Objective: To investigate the value of delta-radiomics after the first cycle of neoadjuvant chemotherapy (NAC) using dynamic contrast-enhanced (DCE) MRI for early prediction of pathological complete response (pCR) in patients with breast cancer. Methods: From September 2018 to May 2021, a total of 140 consecutive patients (training, n = 98: validation, n = 42), newly diagnosed with breast cancer who received NAC before surgery, were prospectively enrolled. All patients underwent DCE-MRI at pre-NAC (pre-) and after the first cycle (1st-) of NAC. Radiomic features were extracted from the postcontrast early, peak, and delay phases. Delta-radiomics features were computed in each contrast phases. Least absolute shrinkage and selection operator (LASSO) and a logistic regression model were used to select features and build models. The model performance was assessed by receiver operating characteristic (ROC) analysis and compared by DeLong test. Results: The delta-radiomics model based on the early phases of DCE-MRI showed a highest AUC (0.917/0.842 for training/validation cohort) compared with that using the peak and delay phases images. The delta-radiomics model outperformed the pre-radiomics model (AUC = 0.759/0.617, p = 0.011/0.047 for training/validation cohort) in early phase. Based on the optimal model, longitudinal fusion radiomic models achieved an AUC of 0.871/0.869 in training/validation cohort. Clinical-radiomics model generated good calibration and discrimination capacity with AUC 0.934 (95%CI: 0.882, 0.986)/0.864 (95%CI: 0.746, 0.982) for training and validation cohort. Delta-radiomics based on early contrast phases of DCE-MRI combined clinicopathology information could predict pCR after one cycle of NAC in patients with breast cancer.
Collapse
|
37
|
Zhu X, Shen J, Zhang H, Wang X, Zhang H, Yu J, Zhang Q, Song D, Guo L, Zhang D, Zhu R, Wu J. A Novel Combined Nomogram Model for Predicting the Pathological Complete Response to Neoadjuvant Chemotherapy in Invasive Breast Carcinoma of No Specific Type: Real-World Study. Front Oncol 2022; 12:916526. [PMID: 35734603 PMCID: PMC9207207 DOI: 10.3389/fonc.2022.916526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/02/2022] [Indexed: 12/03/2022] Open
Abstract
Objective To explore the value of a predictive model combining the multiparametric magnetic resonance imaging (mpMRI) radiomics score (RAD-score), clinicopathologic features, and morphologic features for the pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in invasive breast carcinoma of no specific type (IBC-NST). Methods We enrolled, retrospectively and consecutively, 206 women with IBC-NST who underwent surgery after NAC and obtained pathological results from August 2018 to October 2021. Four RAD-scores were constructed for predicting the pCR based on fat-suppression T2-weighted imaging (FS-T2WI), diffusion-weighted imaging (DWI), contrast-enhanced T1-weighted imaging (T1WI+C) and their combination, which was called mpMRI. The best RAD-score was combined with clinicopathologic and morphologic features to establish a nomogram model through binary logistic regression. The predictive performance of the nomogram was evaluated using the area under receiver operator characteristic (ROC) curve (AUC) and calibration curve. The clinical net benefit of the model was evaluated using decision curve analysis (DCA). Results The mpMRI RAD-score had the highest diagnostic performance, with AUC of 0.848 among the four RAD-scores. T stage, human epidermal growth factor receptor-2 (HER2) status, RAD-score, and roundness were independent factors for predicting the pCR (P < 0.05 for all). The combined nomogram model based on these factors achieved AUCs of 0.930 and 0.895 in the training cohort and validation cohort, respectively, higher than other models (P < 0.05 for all). The calibration curve showed that the predicted probabilities of the nomogram were in good agreement with the actual probabilities, and DCA indicated that it provided more net benefit than the treat-none or treat-all scheme by decision curve analysis in both training and validation datasets. Conclusion The combined nomogram model based on the mpMRI RAD-score combined with clinicopathologic and morphologic features may improve the predictive performance for the pCR of NAC in patients with IBC-NST.
Collapse
Affiliation(s)
- Xuelin Zhu
- Graduate School, Tianjin Medical University, Tianjin, China.,Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China.,Department of Ultrasound, Qingzhou People's Hospital, Weifang, China
| | - Jing Shen
- Graduate School, Tianjin Medical University, Tianjin, China.,Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Huanlei Zhang
- Department of Radiology, Yidu Central Hospital of Weifang, Weifang, China
| | - Xiulin Wang
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China.,School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
| | - Huihui Zhang
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jing Yu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Qing Zhang
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Dongdong Song
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Liping Guo
- Department of Ultrasound, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Dianlong Zhang
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ruiping Zhu
- Department of Pathology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jianlin Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
38
|
Mazaheri Y, Thakur SB, Bitencourt AGV, Lo Gullo R, Hötker AM, Bates DDB, Akin O. Evaluation of cancer outcome assessment using MRI: A review of deep-learning methods. BJR Open 2022; 4:20210072. [PMID: 36105425 PMCID: PMC9459949 DOI: 10.1259/bjro.20210072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Accurate evaluation of tumor response to treatment is critical to allow personalized treatment regimens according to the predicted response and to support clinical trials investigating new therapeutic agents by providing them with an accurate response indicator. Recent advances in medical imaging, computer hardware, and machine-learning algorithms have resulted in the increased use of these tools in the field of medicine as a whole and specifically in cancer imaging for detection and characterization of malignant lesions, prognosis, and assessment of treatment response. Among the currently available imaging techniques, magnetic resonance imaging (MRI) plays an important role in the evaluation of treatment assessment of many cancers, given its superior soft-tissue contrast and its ability to allow multiplanar imaging and functional evaluation. In recent years, deep learning (DL) has become an active area of research, paving the way for computer-assisted clinical and radiological decision support. DL can uncover associations between imaging features that cannot be visually identified by the naked eye and pertinent clinical outcomes. The aim of this review is to highlight the use of DL in the evaluation of tumor response assessed on MRI. In this review, we will first provide an overview of common DL architectures used in medical imaging research in general. Then, we will review the studies to date that have applied DL to magnetic resonance imaging for the task of treatment response assessment. Finally, we will discuss the challenges and opportunities of using DL within the clinical workflow.
Collapse
Affiliation(s)
| | | | | | - Roberto Lo Gullo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Andreas M. Hötker
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - David D B Bates
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Oguz Akin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
39
|
Massafra R, Comes MC, Bove S, Didonna V, Gatta G, Giotta F, Fanizzi A, La Forgia D, Latorre A, Pastena MI, Pomarico D, Rinaldi L, Tamborra P, Zito A, Lorusso V, Paradiso AV. Robustness Evaluation of a Deep Learning Model on Sagittal and Axial Breast DCE-MRIs to Predict Pathological Complete Response to Neoadjuvant Chemotherapy. J Pers Med 2022; 12:jpm12060953. [PMID: 35743737 PMCID: PMC9225219 DOI: 10.3390/jpm12060953] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
To date, some artificial intelligence (AI) methods have exploited Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) to identify finer tumor properties as potential earlier indicators of pathological Complete Response (pCR) in breast cancer patients undergoing neoadjuvant chemotherapy (NAC). However, they work either for sagittal or axial MRI protocols. More flexible AI tools, to be used easily in clinical practice across various institutions in accordance with its own imaging acquisition protocol, are required. Here, we addressed this topic by developing an AI method based on deep learning in giving an early prediction of pCR at various DCE-MRI protocols (axial and sagittal). Sagittal DCE-MRIs refer to 151 patients (42 pCR; 109 non-pCR) from the public I-SPY1 TRIAL database (DB); axial DCE-MRIs are related to 74 patients (22 pCR; 52 non-pCR) from a private DB provided by Istituto Tumori “Giovanni Paolo II” in Bari (Italy). By merging the features extracted from baseline MRIs with some pre-treatment clinical variables, accuracies of 84.4% and 77.3% and AUC values of 80.3% and 78.0% were achieved on the independent tests related to the public DB and the private DB, respectively. Overall, the presented method has shown to be robust regardless of the specific MRI protocol.
Collapse
Affiliation(s)
- Raffaella Massafra
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (R.M.); (M.C.C.); (S.B.); (V.D.); (D.P.); (P.T.)
| | - Maria Colomba Comes
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (R.M.); (M.C.C.); (S.B.); (V.D.); (D.P.); (P.T.)
| | - Samantha Bove
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (R.M.); (M.C.C.); (S.B.); (V.D.); (D.P.); (P.T.)
| | - Vittorio Didonna
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (R.M.); (M.C.C.); (S.B.); (V.D.); (D.P.); (P.T.)
| | - Gianluca Gatta
- Dipartimento di Medicina di Precisione Università della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (G.G.); (A.L.)
| | - Francesco Giotta
- Unità Operativa Complessa di Oncologia Medica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (F.G.); (V.L.)
| | - Annarita Fanizzi
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (R.M.); (M.C.C.); (S.B.); (V.D.); (D.P.); (P.T.)
- Correspondence: (A.F.); (D.L.F.)
| | - Daniele La Forgia
- Struttura Semplice Dipartimentale di Radiologia Senologica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
- Correspondence: (A.F.); (D.L.F.)
| | - Agnese Latorre
- Dipartimento di Medicina di Precisione Università della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (G.G.); (A.L.)
| | - Maria Irene Pastena
- Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.I.P.); (A.Z.)
| | - Domenico Pomarico
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (R.M.); (M.C.C.); (S.B.); (V.D.); (D.P.); (P.T.)
| | - Lucia Rinaldi
- Struttura Semplice Dipartimentale di Oncologia Per la Presa in Carico Globale del Paziente, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Pasquale Tamborra
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (R.M.); (M.C.C.); (S.B.); (V.D.); (D.P.); (P.T.)
| | - Alfredo Zito
- Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.I.P.); (A.Z.)
| | - Vito Lorusso
- Unità Operativa Complessa di Oncologia Medica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (F.G.); (V.L.)
| | - Angelo Virgilio Paradiso
- Oncologia Sperimentale e Biobanca, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| |
Collapse
|
40
|
Leong YS, Hasikin K, Lai KW, Mohd Zain N, Azizan MM. Microcalcification Discrimination in Mammography Using Deep Convolutional Neural Network: Towards Rapid and Early Breast Cancer Diagnosis. Front Public Health 2022; 10:875305. [PMID: 35570962 PMCID: PMC9096221 DOI: 10.3389/fpubh.2022.875305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
Breast cancer is among the most common types of cancer in women and under the cases of misdiagnosed, or delayed in treatment, the mortality risk is high. The existence of breast microcalcifications is common in breast cancer patients and they are an effective indicator for early sign of breast cancer. However, microcalcifications are often missed and wrongly classified during screening due to their small sizes and indirect scattering in mammogram images. Motivated by this issue, this project proposes an adaptive transfer learning deep convolutional neural network in segmenting breast mammogram images with calcifications cases for early breast cancer diagnosis and intervention. Mammogram images of breast microcalcifications are utilized to train several deep neural network models and their performance is compared. Image filtering of the region of interest images was conducted to remove possible artifacts and noises to enhance the quality of the images before the training. Different hyperparameters such as epoch, batch size, etc were tuned to obtain the best possible result. In addition, the performance of the proposed fine-tuned hyperparameter of ResNet50 is compared with another state-of-the-art machine learning network such as ResNet34, VGG16, and AlexNet. Confusion matrices were utilized for comparison. The result from this study shows that the proposed ResNet50 achieves the highest accuracy with a value of 97.58%, followed by ResNet34 of 97.35%, VGG16 96.97%, and finally AlexNet of 83.06%.
Collapse
Affiliation(s)
- Yew Sum Leong
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Khairunnisa Hasikin
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia.,Department of Biomedical Engineering, Center for Image and Signal Processing (CISIP), Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Norita Mohd Zain
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Muhammad Mokhzaini Azizan
- Department of Electrical and Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, Nilai, Malaysia
| |
Collapse
|
41
|
Endrikat J, Schmidt G, Haverstock D, Weber O, Trnkova ZJ, Barkhausen J. Sensitivity of Contrast-Enhanced Breast MRI vs X-ray Mammography Based on Cancer Histology, Tumor Grading, Receptor Status, and Molecular Subtype: A Supplemental Analysis of 2 Large Phase III Studies. BREAST CANCER: BASIC AND CLINICAL RESEARCH 2022; 16:11782234221092155. [PMID: 35462754 PMCID: PMC9021463 DOI: 10.1177/11782234221092155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
Background: The impact of certain tumor parameters on the sensitivity of imaging tools is unknown. The purpose was to study the impact of breast cancer histology, tumor grading, single receptor status, and molecular subtype on the sensitivity of contrast-enhanced breast magnetic resonance imaging (CE-BMRI) vs X-ray mammography (XRM) to detect breast cancer. Materials and Methods: We ran a supplemental analysis of 2 global Phase III studies which recruited patients with histologically proven breast cancers. The sensitivity of CE-BMRI vs XRM to detect cancer lesions with different histologies, tumor grading, single receptor status, and molecular subtype was compared. Six blinded readers for each study evaluated the images. Results were summarized as the “Mean Reader.” For each reader, sensitivity was defined as the proportion of detected lesions vs the total number of lesions identified by the standard of reference. Two-sided 95% confidence intervals were calculated for within-group proportions, and for the difference between CE-BMRI and XRM, using a normal approximation to the binomial distribution. Results: In 778 patients, 1273 cancer lesions were detected. A total of 435 patients had 1 lesion, 254 had 2 lesions, and 77 had 3 or more lesions. The sensitivity of CE-BMRI was significantly higher compared with XRM irrespective of the histology. The largest difference was seen for invasive lobular carcinoma (22.3%) and ductal carcinoma in situ (19%). Across all 3 tumor grades, the sensitivity advantage of CE-BMRI over XRM ranged from 15.7% to 18.5%. Contrast-enhanced breast magnetic resonance imaging showed higher sensitivity compared with XRM irrespective of single receptor expressions (15.3%-19.4%). The sensitivities for both imaging methods were numerically higher for the more aggressive ER– (estrogen receptor), PR– (progesterone receptor), and HER2+ (human epidermal growth factor receptor 2) tumors. Irrespective of molecular subtype, sensitivity of CE-BMRI was 14.8% to 18.9% higher compared with XRM. Conclusions: Contrast-enhanced breast magnetic resonance imaging showed significantly higher sensitivity compared with XRM independent of tumor histology, tumor grading, single receptor status, and molecular subtype. Trial Registration: ClinicalTrials.gov: NCT01067976 and NCT01104584.
Collapse
Affiliation(s)
- Jan Endrikat
- Bayer AG, Radiology R&D, Berlin, Germany.,Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
| | - Gilda Schmidt
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
| | | | - Olaf Weber
- Bayer AG, Radiology R&D, Berlin, Germany
| | | | - Jörg Barkhausen
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Luebeck, Germany
| |
Collapse
|
42
|
Chen J, Bermejo I, Dekker A, Wee L. Generative models improve radiomics performance in different tasks and different datasets: An experimental study. Phys Med 2022; 98:11-17. [PMID: 35468494 DOI: 10.1016/j.ejmp.2022.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/11/2022] [Accepted: 04/17/2022] [Indexed: 02/02/2023] Open
Abstract
PURPOSE Radiomics is an active area of research focusing on high throughput feature extraction from medical images with a wide array of applications in clinical practice, such as clinical decision support in oncology. However, noise in low dose computed tomography (CT) scans can impair the accurate extraction of radiomic features. In this article, we investigate the possibility of using deep learning generative models to improve the performance of radiomics from low dose CTs. METHODS We used two datasets of low dose CT scans - NSCLC Radiogenomics and LIDC-IDRI - as test datasets for two tasks - pre-treatment survival prediction and lung cancer diagnosis. We used encoder-decoder networks and conditional generative adversarial networks (CGANs) trained in a previous study as generative models to transform low dose CT images into full dose CT images. Radiomic features extracted from the original and improved CT scans were used to build two classifiers - a support vector machine (SVM) and a deep attention based multiple instance learning model - for survival prediction and lung cancer diagnosis respectively. Finally, we compared the performance of the models derived from the original and improved CT scans. RESULTS Denoising with the encoder-decoder network and the CGAN improved the area under the curve (AUC) of survival prediction from 0.52 to 0.57 (p-value < 0.01). On the other hand, the encoder-decoder network and the CGAN improved the AUC of lung cancer diagnosis from 0.84 to 0.88 and 0.89 respectively (p-value < 0.01). Finally, there are no statistically significant improvements in AUC using encoder-decoder networks and CGAN (p-value = 0.34) when networks trained at 75 and 100 epochs. CONCLUSION Generative models can improve the performance of low dose CT-based radiomics in different tasks. Hence, denoising using generative models seems to be a necessary pre-processing step for calculating radiomic features from low dose CTs.
Collapse
Affiliation(s)
- Junhua Chen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht 6229 ET, Netherlands.
| | - Inigo Bermejo
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht 6229 ET, Netherlands
| | - Andre Dekker
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht 6229 ET, Netherlands
| | - Leonard Wee
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht 6229 ET, Netherlands
| |
Collapse
|
43
|
Massafra R, Catino A, Perrotti PMS, Pizzutilo P, Fanizzi A, Montrone M, Galetta D. Informative Power Evaluation of Clinical Parameters to Predict Initial Therapeutic Response in Patients with Advanced Pleural Mesothelioma: A Machine Learning Approach. J Clin Med 2022; 11:jcm11061659. [PMID: 35329985 PMCID: PMC8950691 DOI: 10.3390/jcm11061659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/10/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare neoplasm whose early diagnosis is challenging and systemic treatments are generally administered as first line in the advanced disease stage. The initial clinical response may represent a useful parameter in terms of identifying patients with a better long-term outcome. In this report, the initial therapeutical response in 46 patients affected with advanced/unresectable pleural mesothelioma was investigated. The initial therapeutic response was assessed by CT scan and clinical examination after 2–3 treatment cycles. Our preliminary evaluation shows that the group of patients treated with regimens including antiangiogenetics and/or immunotherapy had a significantly better initial response as compared to patients only treated with standard chemotherapy, exhibiting a disease control rate (DCR) of 100% (95% IC, 79.40–100%) and 80.0% (95% IC, 61.40–92.30%), respectively. Furthermore, the therapeutic response was correlated with the disease stage, blood leukocytes and neutrophils, high albumin serum levels, and basal body mass index (BMI). Specifically, the patients with disease stage III showed a DCR of 95.7% (95% IC, 78.1–99.9%), whereas for disease stage IV the DCR decreased to 66.7% (95% IC, 34.9–9.1%). Moreover, a better initial response was observed in patients with a higher BMI, who reached a DCR of 96.10% (95% IC, 80.36–99.90%). Furthermore, in order to evaluate in the predictive power of the collected features a multivariate way, we report the preliminary results of a machine learning model for predicting the initial therapeutic response. We trained a state-of-the-art algorithm combined to a sequential forward feature selection procedure. The model reached a median AUC value, accuracy, sensitivity, and specificity of 77.0%, 75%, 74.8%, and 83.3%, respectively. The features with greater informational power were gender, histotype, BMI, smoking habits, packs/year, and disease stage. Our preliminary data support the possible favorable correlation between innovative treatments and therapeutic response in patients with unresectable/advanced pleural mesothelioma. The small sample size does not allow concrete conclusions to be drawn; nevertheless, this work is the basis of an ongoing study that will also involve radiomics in a larger dataset.
Collapse
Affiliation(s)
- Raffaella Massafra
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Annamaria Catino
- Struttura Semplice Dipartimentale di Oncologia Medica per la Patologia Toracica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.C.); (P.P.); (M.M.); (D.G.)
| | - Pia Maria Soccorsa Perrotti
- Struttura Semplice Dipartimentale di Radiologia, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Pamela Pizzutilo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Patologia Toracica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.C.); (P.P.); (M.M.); (D.G.)
| | - Annarita Fanizzi
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
- Correspondence: ; Tel.: +39-080-555-5111
| | - Michele Montrone
- Struttura Semplice Dipartimentale di Oncologia Medica per la Patologia Toracica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.C.); (P.P.); (M.M.); (D.G.)
| | - Domenico Galetta
- Struttura Semplice Dipartimentale di Oncologia Medica per la Patologia Toracica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.C.); (P.P.); (M.M.); (D.G.)
| |
Collapse
|
44
|
Park S, Yi G. Development of Gene Expression-Based Random Forest Model for Predicting Neoadjuvant Chemotherapy Response in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14040881. [PMID: 35205629 PMCID: PMC8870575 DOI: 10.3390/cancers14040881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Only 20–50% of patients with triple negative breast cancer achieve a pathological complete response from neoadjuvant chemotherapy, a strong indicator of patient survival. Therefore, there is an urgent need for a reliable predictive model of the patient’s pathological complete response prior to actual treatment. The purpose of this study was to develop such a model based on random forest recursive feature elimination and to benchmark the performance of the proposed model against existing predictive models. Our study suggests that an 86-gene-based random forest model associated to DNA repair and cell cycle mechanisms can provide reliable predictions of neoadjuvant chemotherapy response in patients with triple negative breast cancer. Abstract Neoadjuvant chemotherapy (NAC) response is an important indicator of patient survival in triple negative breast cancer (TNBC), but predicting chemosensitivity remains a challenge in clinical practice. We developed an 86-gene-based random forest (RF) classifier capable of predicting neoadjuvant chemotherapy response (pathological Complete Response (pCR) or Residual Disease (RD)) in TNBC patients. The performance of pCR classification of the proposed model was evaluated by Receiver Operating Characteristic (ROC) curve and Precision Recall (PR) curve. The AUROC and AUPRC of the proposed model on the test set were 0.891 and 0.829, respectively. At a predefined specificity (>90%), the proposed model shows a superior sensitivity compared to the best performing reported NAC response prediction model (69.2% vs. 36.9%). Moreover, the predicted pCR status by the model well explains the distance recurrence free survival (DRFS) of TNBC patients. In addition, the pCR probabilities of the proposed model using the expression profiles of the CCLE TNBC cell lines show a high Spearman rank correlation with cyclophosphamide sensitivity in the TNBC cell lines (SRCC =0.697, p-value =0.031). Associations between the 86 genes and DNA repair/cell cycle mechanisms were provided through function enrichment analysis. Our study suggests that the random forest-based prediction model provides a reliable prediction of the clinical response to neoadjuvant chemotherapy and may explain chemosensitivity in TNBC.
Collapse
|
45
|
Peng S, Chen L, Tao J, Liu J, Zhu W, Liu H, Yang F. Radiomics Analysis of Multi-Phase DCE-MRI in Predicting Tumor Response to Neoadjuvant Therapy in Breast Cancer. Diagnostics (Basel) 2021; 11:diagnostics11112086. [PMID: 34829433 PMCID: PMC8625316 DOI: 10.3390/diagnostics11112086] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/19/2022] Open
Abstract
Objective: To explore whether the pretreatment dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) and radiomics signatures were associated with pathologic complete response (pCR) to neoadjuvant therapy (NAT) in breast cancer. Method: A retrospective review of 70 patients with breast invasive carcinomas proved by biopsy between June 2017 and October 2020 (26 patients were pathological complete response, and 44 patients were non-pathological complete response). Within the pre-contrast and five post-contrast dynamic series, a total of 1037 quantitative imaging features were extracted from in each phase. Additionally, the Δfeatures (the difference between the features before and after the comparison) were used for subsequent analysis. The least absolute shrinkage and selection operator (LASSO) regression method was used to select features related to pCR, and then use these features to train multiple machine learning classifiers to predict the probability of pCR for a given patient. The area under the curve (AUC), accuracy, sensitivity, and specificity were calculated to assess the predictive performances of the radiomics model for each of the five phases of time points. Result: Among the five phases, each individual phase performed with AUCs ranging from 0.845 to 0.919 in predicting pCR. The best single phases performance was given by the 3rd phase (AUC = 0.919, sensitivity 0.885, specificity 0.864). 5 of the features have significant differences between pCR and non-pCR groups in each phase, most features reach their maximum or minimum in the 2nd or 3rd phase. Conclusion: The radiomic features extracted from each phase of pre-treatment DCE-MRI possess discriminatory power to predict tumor response.
Collapse
Affiliation(s)
- Shuyi Peng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.P.); (L.C.); (J.T.); (J.L.); (W.Z.)
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Leqing Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.P.); (L.C.); (J.T.); (J.L.); (W.Z.)
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Juan Tao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.P.); (L.C.); (J.T.); (J.L.); (W.Z.)
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jie Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.P.); (L.C.); (J.T.); (J.L.); (W.Z.)
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenying Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.P.); (L.C.); (J.T.); (J.L.); (W.Z.)
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Huan Liu
- Precision Healthcare Institute, GE Healthcare, Shanghai 201203, China;
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.P.); (L.C.); (J.T.); (J.L.); (W.Z.)
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Correspondence: ; Tel.: +86-027-85726392
| |
Collapse
|
46
|
Ali M, Ali R. Multi-Input Dual-Stream Capsule Network for Improved Lung and Colon Cancer Classification. Diagnostics (Basel) 2021; 11:1485. [PMID: 34441419 PMCID: PMC8393706 DOI: 10.3390/diagnostics11081485] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/19/2022] Open
Abstract
Lung and colon cancers are two of the most common causes of death and morbidity in humans. One of the most important aspects of appropriate treatment is the histopathological diagnosis of such cancers. As a result, the main goal of this study is to use a multi-input capsule network and digital histopathology images to build an enhanced computerized diagnosis system for detecting squamous cell carcinomas and adenocarcinomas of the lungs, as well as adenocarcinomas of the colon. Two convolutional layer blocks are used in the proposed multi-input capsule network. The CLB (Convolutional Layers Block) employs traditional convolutional layers, whereas the SCLB (Separable Convolutional Layers Block) employs separable convolutional layers. The CLB block takes unprocessed histopathology images as input, whereas the SCLB block takes uniquely pre-processed histopathological images. The pre-processing method uses color balancing, gamma correction, image sharpening, and multi-scale fusion as the major processes because histopathology slide images are typically red blue. All three channels (Red, Green, and Blue) are adequately compensated during the color balancing phase. The dual-input technique aids the model's ability to learn features more effectively. On the benchmark LC25000 dataset, the empirical analysis indicates a significant improvement in classification results. The proposed model provides cutting-edge performance in all classes, with 99.58% overall accuracy for lung and colon abnormalities based on histopathological images.
Collapse
Affiliation(s)
- Mumtaz Ali
- School of Computer Science, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Computer Systems Engineering, Sukkur IBA University, Sukkur 65200, Pakistan
| | - Riaz Ali
- Department of Computer Science, Sukkur IBA University, Sukkur 65200, Pakistan;
| |
Collapse
|