1
|
Wang HY, Chen YY, Liu CJ, Huang SW, Ho ST. Evaluating the Potential Immunostimulatory Effects of Cryptomeria japonica Leaf Essential Oil on Honey Bees (Apis mellifera). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70040. [PMID: 39966591 DOI: 10.1002/arch.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/23/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
This study investigated the effects of Cryptomeria japonica leaf essential oil (CjLEO) on honey bee health, focusing on both toxicity and gene expression modulation. Initial toxicity assessments revealed that high concentrations of CjLEO (75 and 100 ppm) were lethal to honey bees, resulting in complete mortality within a short period. Conversely, a lower concentration of 10 ppm exhibited no significant toxic effects, prompting further investigation into its sublethal impacts. Transcriptome analysis via next-generation sequencing demonstrated that CjLEO at 10 ppm induced significant changes in honey bee gene expression compared to the control group. Principal component analysis (PCA) and differential gene expression (DEG) analysis identified more than 9,000 genes, with notable upregulation of immune-related genes, including hymenoptaecin, abaecin, and apidaecin1. Gene ontology (GO) enrichment analysis indicated that these differentially expressed genes were primarily associated with immune responses, such as defense and innate immune pathways. The chemical composition of CjLEO, characterized by GC-MS, identified 16 compounds, with major components including α-pinene, elemol, α-eudesmol, and kaur-16-ene. These compounds are known for their antimicrobial properties, which likely contribute to the observed immunomodulatory effects. CjLEO at a concentration of 10 ppm enhances honey bee immunity without exhibiting significant toxicity, positioning it a promising candidate for improving honey bee resilience against pathogens. Future research should investigate the mechanisms of immune activation and optimize application methods for practical beekeeping, aiming to improve colony health while reducing dependence on synthetic chemicals.
Collapse
Affiliation(s)
- Hao-Yung Wang
- Department of Wood Based Materials and Design, National Chiayi University, Chiayi, Taiwan
| | - Ying-Yu Chen
- Department of Wood Based Materials and Design, National Chiayi University, Chiayi, Taiwan
| | - Chin-Jung Liu
- Department of Wood Based Materials and Design, National Chiayi University, Chiayi, Taiwan
| | - Shih-Wei Huang
- Department of Wood Based Materials and Design, National Chiayi University, Chiayi, Taiwan
| | - Shang-Tse Ho
- Department of Wood Based Materials and Design, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
2
|
Ho ST, Nai YS, Chang ZT, Chang JC, Hsu WC, Ko CY, Chen YW, Yang YL. Dimethyl sulfoxide, an alternative for control of Nosema ceranae infection in honey bees (Apis mellifera). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22099. [PMID: 39137216 DOI: 10.1002/arch.22099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 08/15/2024]
Abstract
Nosema ceranae is a microsporidian parasite that threatens current apiculture. N. ceranae-infected honey bees (Apis mellifera) exhibit morbid physiological impairments and reduced honey production, malnutrition, shorter life span, and higher mortality than healthy honey bees. In this study, we found that dimethyl sulfoxide (DMSO) could enhance the survival rate of N. ceranae-infected honey bees. Therefore, we investigated the effect of DMSO on N. ceranae-infected honey bees using comparative RNA sequencing analysis. Our results revealed that DMSO was able to affect several biochemical pathways, especially the metabolic-related pathways in N. ceranae-infected honey bees. Based on these findings, we conclude that DMSO may be a useful alternative for treating N. ceranae infection in apiculture.
Collapse
Affiliation(s)
- Shang-Tse Ho
- Department of Wood Based Materials and Design, National Chiayi University, Chiayi, Taiwan
| | - Yu-Shin Nai
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Zih-Ting Chang
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - Ju-Chun Chang
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Chen Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Chung-Yu Ko
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - Yue-Wen Chen
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| |
Collapse
|
3
|
Wang Y, Zhang X, Lin Y, Lin H. The electron transport mechanism of downflow Leersia hexandra Swartz constructed wetland-microbial fuel cell when used to treat Cr(VI) and p-chlorophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37929-37945. [PMID: 36576625 DOI: 10.1007/s11356-022-24872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Constructed wetland-microbial fuel cells are used to treat heavy metal and/or refractory organic wastewater. However, the electron transport mechanism of downflow Leersia hexandra constructed wetland-microbial fuel cells (DLCW-MFCs) is poorly understood when used to treat composite-polluted wastewater containing Cr(VI) and p-chlorophenol (4-CP) (C&P). In this study, metagenomics and in situ electrochemical techniques were used to investigate the electrochemical properties and the electricigens and their dominant gene functions. The DLCW-MFC was used to treat C&P and single-pollutant wastewater containing Cr(VI) (SC) and 4-CP (SP). The results showed that C&P had a higher current response and charge transfer capability and lower solution resistance plus charge transfer resistance. The anode bacteria solution of C&P contained more electron carriers (RF, FMN, FAD, CoQ10, and Cyt c). Metagenomic sequencing indicated that the total relative abundance of the microorganisms associated with electricity production (Desulfovibrio, Pseudomonas, Azospirillum, Nocardia, Microbacterium, Delftia, Geobacter, Acinetobacter, Bacillus, and Clostridium) was the highest in C&P (4.24%). However, Microbacterium was abundant in SP (0.12%), which exerted antagonistic effects on other electricigens. Among the 10 electricigens based on gene annotation, C&P had a higher overall relative abundance of the Unigene gene annotated to the KO pathway and CAZy level B compared with SC and SP, which were 1.31% and 0.582% respectively. Unigene153954 (ccmC), Unigene357497 (coxB), and Unigene1033667 (ubiG) were related to the electron carrier Cyt c, electron transfer, and CoQ biosynthesis, respectively. These were annotated to Desulfovibrio, Delftia, and Pseudomonas, respectively. Unigene161312 (AA1) used phenols and other substrates as electron donors and was annotated to Pseudomonas. Other functional carbohydrate enzyme genes (e.g., GT2, GT4, and GH31) used carbohydrates as donors and were annotated to other electricigens. This study provides a theoretical basis for electron transfer to promote the development of CW-MFCs.
Collapse
Affiliation(s)
- Yian Wang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 319 Yanshan Street, 541000, Guilin, China
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 319 Yanshan Street, 541000, Guilin, China
| | - Yi Lin
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 319 Yanshan Street, 541000, Guilin, China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China.
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 319 Yanshan Street, 541000, Guilin, China.
| |
Collapse
|
4
|
Yokoi K, Wakamiya T, Bono H. Meta-Analysis of the Public RNA-Seq Data of the Western Honeybee Apis mellifera to Construct Reference Transcriptome Data. INSECTS 2022; 13:931. [PMID: 36292879 PMCID: PMC9604386 DOI: 10.3390/insects13100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The Western honeybee (Apis mellifera) is valuable in biological research and agriculture. Its genome sequence was published before those for other insect species. RNA-Seq data for A. mellifera have been applied in several recently published studies. Nevertheless, these data have not been prepared for use in subsequent meta-analyses. To promote A. mellifera transcriptome analysis, we constructed reference transcriptome data using the reference genome sequence and RNA-Seq data curated from about 1,000 runs of public databases. The new reference transcriptome data construct comprised 149,685 transcripts, and 194,174 protein sequences were predicted. Approximately 50-60% of the predicted protein sequences were functionally annotated using the protein sequence data for several model and insect species. Novel candidate immune-related transcripts were searched by meta-analysis using immune-response-related RNA-Seq and reference transcriptome data. Three to twenty candidate transcripts including autophagy-related protein 3 were upregulated or downregulated in response to both viral and bacterial infections. The constructed reference transcriptome data may facilitate future transcriptome analyses of A. mellifera.
Collapse
Affiliation(s)
- Kakeru Yokoi
- Insect Design Technology Module, Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Takeshi Wakamiya
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City 739-0046, Hiroshima, Japan
| | - Hidemasa Bono
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City 739-0046, Hiroshima, Japan
- Laboratory of BioDX, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City 739-0046, Hiroshima, Japan
| |
Collapse
|
5
|
Penn HJ, Simone-Finstrom MD, Chen Y, Healy KB. Honey Bee Genetic Stock Determines Deformed Wing Virus Symptom Severity but not Viral Load or Dissemination Following Pupal Exposure. Front Genet 2022; 13:909392. [PMID: 35719388 PMCID: PMC9204523 DOI: 10.3389/fgene.2022.909392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Honey bees exposed to Varroa mites incur substantial physical damage in addition to potential exposure to vectored viruses such as Deformed wing virus (DWV) that exists as three master variants (DWV-A, DWV-B, and DWV-C) and recombinants. Although mite-resistant bees have been primarily bred to mitigate the impacts of Varroa mites, mite resistance may be associated with increased tolerance or resistance to the vectored viruses. The goal of our study is to determine if five honey bee stocks (Carniolan, Italian, Pol-Line, Russian, and Saskatraz) differ in their resistance or tolerance to DWV based on prior breeding for mite resistance. We injected white-eyed pupae with a sublethal dose (105) of DWV or exposed them to mites and then evaluated DWV levels and dissemination and morphological symptoms upon adult emergence. While we found no evidence of DWV resistance across stocks (i.e., similar rates of viral replication and dissemination), we observed that some stocks exhibited reduced symptom severity suggestive of differential tolerance. However, DWV tolerance was not consistent across mite-resistant stocks as Russian bees were most tolerant, while Pol-Line exhibited the most severe symptoms. DWV variants A and B exhibited differential dissemination patterns that interacted significantly with the treatment group but not bee stock. Furthermore, elevated DWV-B levels reduced adult emergence time, while both DWV variants were associated with symptom likelihood and severity. These data indicate that the genetic differences underlying bee resistance to Varroa mites are not necessarily correlated with DWV tolerance and may interact differentially with DWV variants, highlighting the need for further work on mechanisms of tolerance and bee stock-specific physiological interactions with pathogen variants.
Collapse
Affiliation(s)
- Hannah J. Penn
- United States Department of Agriculture, Agricultural Research Service, Sugarcane Research Unit, Houma, LA, United States
| | - Michael D. Simone-Finstrom
- United States Department of Agriculture, Agricultural Research Service, Honey Bee Breeding, Genetics and Physiology Research Unit, Baton Rouge, LA, United States
| | - Yanping Chen
- United States Department of Agriculture, Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Kristen B. Healy
- Department of Entomology, Louisiana State University and AgCenter, Baton Rouge, LA, United States
| |
Collapse
|