1
|
Baeza JA, Minish JJ, Michael TP. Assembly of Mitochondrial Genomes Using Nanopore Long-Read Technology in Three Sea Chubs (Teleostei: Kyphosidae). Mol Ecol Resour 2025; 25:e14034. [PMID: 39403800 DOI: 10.1111/1755-0998.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/03/2024] [Accepted: 10/01/2024] [Indexed: 12/16/2024]
Abstract
Complete mitochondrial genomes have become markers of choice to explore phylogenetic relationships at multiple taxonomic levels and they are often assembled using whole genome short-read sequencing. Herein, using three species of sea chubs as an example, we explored the accuracy of mitochondrial chromosomes assembled using Oxford Nanopore Technology (ONT) Kit 14 R10.4.1 long reads at different sequencing depths (high, low and very low or genome skimming) by comparing them to 'gold' standard reference mitochondrial genomes assembled using Illumina NovaSeq short reads. In two species of sea chubs, Girella nigricans and Kyphosus azureus, ONT long-read assembled mitochondrial genomes at high sequencing depths (> 25× whole [nuclear] genome) were identical to their respective short-read assembled mitochondrial genomes. Not a single 'homopolymer insertion', 'homopolymer deletion', 'simple substitution', 'single insertion', 'short insertion', 'single deletion' or 'short deletion' were detected in the long-read assembled mitochondrial genomes after aligning each one of them to their short-read counterparts. In turn, in a third species, Medialuna californiensis, a 25× sequencing depth long-read assembled mitochondrial genome was 14 nucleotides longer than its short-read counterpart. The difference in total length between the latter two assemblies was due to the presence of a short motif 14 bp long that was repeated (twice) in the long read but not in the short-read assembly. Read subsampling at a sequencing depth of 1× resulted in the assembly of partial or complete mitochondrial genomes with numerous errors, including, among others, simple indels, and indels at homopolymer regions. At 3× and 5× subsampling, genomes were identical (perfect) or almost identical (quasiperfect, 99.5% over 16,500 bp) to their respective Illumina assemblies. The newly assembled mitochondrial genomes exhibit identical gene composition and organisation compared with cofamilial species and a phylomitogenomic analysis based on translated protein-coding genes suggested that the family Kyphosidae is not monophyletic. The same analysis detected possible cases of misidentification of mitochondrial genomes deposited in GenBank. This study demonstrates that perfect (complete and fully accurate) or quasiperfect (complete but with a single or a very few errors) mitochondrial genomes can be assembled at high (> 25×) and low (3-5×) but not very low (1×, genome skimming) sequencing depths using ONT long reads and the latest ONT chemistries (Kit 14 and R10.4.1 flowcells with SUP basecalling). The newly assembled and annotated mitochondrial genomes can be used as a reference in environmental DNA studies focusing on bioprospecting and biomonitoring of these and other coastal species experiencing environmental insult. Given the small size of the sequencing device and low cost, we argue that ONT technology has the potential to improve access to high-throughput sequencing technologies in low- and moderate-income countries.
Collapse
Affiliation(s)
- J Antonio Baeza
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Smithsonian Marine Station at Fort Pierce, Smithsonian Institution, Fort Pierce, Florida, USA
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Jeremiah J Minish
- The Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
2
|
Gomes LB, Gonçalves GR, Velazco SJE, de Moraes KF, Marques Neto OP, Santos FDS, Santos MPD, Lima MGM. Conservation challenges for Brazilian primates and the role of protected areas in a changing climate. Sci Rep 2024; 14:31356. [PMID: 39732844 PMCID: PMC11682228 DOI: 10.1038/s41598-024-82717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
The negative effects of land-use changes on biodiversity significantly contribute to climate change. Primates are among the animals most affected by these changes, because of their high dependence on forest cover where a lack of forest connectivity can limit their dispersal and segregate their populations. In this sense, protected areas (PAs) are crucial for conserving endangered primates, especially endemic species. Using species distribution models, we assessed the impact of climate change and deforestation on the geographic distribution of 35 endangered Brazilian primates. We also evaluated the potential of PAs to retain suitable habitats for primate species under current conditions (baseline) and four future climate scenarios (optimistic and pessimistic, both for the periods 2041-2060 and 2061-2080), as well as the capacity of PAs to preserve species' geographic representation both now and in the future. Our findings indicate that most primate taxa would experience a significant loss of suitable area (> 90%) in both pessimistic and optimistic scenarios. For future scenarios, the loss could exceed 98% for 10 taxa, particularly Amazonian species. Regarding PAs potential to retain suitable areas for maintaining the richness of threatened primates, only 8.6% harbor more species than expected by chance (1-6 taxa) in the baseline conditions, with a decrease in future scenarios. Results suggest that taxa already threatened with extinction are inadequately protected by PAs in the baseline conditions and even less so in future scenarios. Given the restricted geographic distribution and current population decline for most taxa, we emphasize the need to increase the number of PAs to ensure population viability and prevent future extinction.
Collapse
Affiliation(s)
- Letícia Braga Gomes
- Programa de Pós-Graduação em Ecologia, Instituto de Ciência Biológicas, Universidade Federal do Pará, Belém, Brazil
- Laboratório de Biogeografia da Conservação e Macroecologia, Instituto de Ciência Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Gabriela Ribeiro Gonçalves
- Programa de Pesquisa em Biodiversidade Amazônia Oriental, Rede Resiliência, Instituto Tecnológico da Vale, Belém, Pará, Brazil
| | - Santiago José Elías Velazco
- Instituto de Biología Subtropical, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Misiones, Tres Fronteras 183, Puerto Iguazú, Misiones, Argentina
- Department of Geography, San Diego State University, San Diego, CA, USA
| | - Kauê Felippe de Moraes
- Laboratório de Biogeografia da Conservação e Macroecologia, Instituto de Ciência Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Osvaldo Pimentel Marques Neto
- Programa de Pós-Graduação em Ecologia, Instituto de Ciência Biológicas, Universidade Federal do Pará, Belém, Brazil
- Laboratório de Biogeografia da Conservação e Macroecologia, Instituto de Ciência Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Fernanda da Silva Santos
- Laboratório de Biogeografia da Conservação e Macroecologia, Instituto de Ciência Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Marcos Pérsio Dantas Santos
- Programa de Pós-Graduação em Ecologia, Instituto de Ciência Biológicas, Universidade Federal do Pará, Belém, Brazil
- Laboratório de Biogeografia da Conservação e Macroecologia, Instituto de Ciência Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Marcela Guimarães Moreira Lima
- Programa de Pós-Graduação em Ecologia, Instituto de Ciência Biológicas, Universidade Federal do Pará, Belém, Brazil.
- Laboratório de Biogeografia da Conservação e Macroecologia, Instituto de Ciência Biológicas, Universidade Federal do Pará, Belém, Brazil.
| |
Collapse
|
3
|
Velasquez-Restrepo S, Corrales Orozco M, Franco-Sierra ND, Martínez-Cerón JM, Díaz-Nieto JF. Identification of non-model mammal species using the MinION DNA sequencer from Oxford Nanopore. PeerJ 2024; 12:e17887. [PMID: 39346050 PMCID: PMC11438440 DOI: 10.7717/peerj.17887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/18/2024] [Indexed: 10/01/2024] Open
Abstract
Background The Neotropics harbors the largest species richness of the planet; however, even in well-studied groups, there are potentially hundreds of species that lack a formal description, and likewise, many already described taxa are difficult to identify using morphology. Specifically in small mammals, complex morphological diagnoses have been facilitated by the use of molecular data, particularly from mitochondrial sequences, to obtain accurate species identifications. Obtaining mitochondrial markers implies the use of PCR and specific primers, which are largely absent for non-model organisms. Oxford Nanopore Technologies (ONT) is a new alternative for sequencing the entire mitochondrial genome without the need for specific primers. Only a limited number of studies have employed exclusively ONT long-reads to assemble mitochondrial genomes, and few studies have yet evaluated the usefulness of such reads in multiple non-model organisms. Methods We implemented fieldwork to collect small mammals, including rodents, bats, and marsupials, in five localities in the northern extreme of the Cordillera Central of Colombia. DNA samples were sequenced using the MinION device and Flongle flow cells. Shotgun-sequenced data was used to reconstruct the mitochondrial genome of all the samples. In parallel, using a customized computational pipeline, species-level identifications were obtained based on sequencing raw reads (Whole Genome Sequencing). ONT-based identifications were corroborated using traditional morphological characters and phylogenetic analyses. Results A total of 24 individuals from 18 species were collected, morphologically identified, and deposited in the biological collection of Universidad EAFIT. Our different computational pipelines were able to reconstruct mitochondrial genomes from exclusively ONT reads. We obtained three new mitochondrial genomes and eight new molecular mitochondrial sequences for six species. Our species identification pipeline was able to obtain accurate species identifications for up to 75% of the individuals in as little as 5 s. Finally, our phylogenetic analyses corroborated the identifications from our automated species identification pipeline and revealed important contributions to the knowledge of the diversity of Neotropical small mammals. Discussion This study was able to evaluate different pipelines to reconstruct mitochondrial genomes from non-model organisms, using exclusively ONT reads, benchmarking these protocols on a multi-species dataset. The proposed methodology can be applied by non-expert taxonomists and has the potential to be implemented in real-time, without the need to euthanize the organisms and under field conditions. Therefore, it stands as a relevant tool to help increase the available data for non-model organisms, and the rate at which researchers can characterize life specially in highly biodiverse places as the Neotropics.
Collapse
Affiliation(s)
| | | | - Nicolás D Franco-Sierra
- Syndesis Health, Palm Beach Gardens, Florida, United States
- Corporación de Investigación e Innovación (VEDAS CII), VEDAS, Medellín, Antioquia, Colombia
| | - Juan M Martínez-Cerón
- Natural Systems and Sustainability Area, Universidad EAFIT, Medellín, Antioquia, Colombia
| | - Juan F Díaz-Nieto
- Natural Systems and Sustainability Area, Universidad EAFIT, Medellín, Antioquia, Colombia
| |
Collapse
|
4
|
Urban L, Perlas A, Francino O, Martí‐Carreras J, Muga BA, Mwangi JW, Boykin Okalebo L, Stanton JL, Black A, Waipara N, Fontsere C, Eccles D, Urel H, Reska T, Morales HE, Palmada‐Flores M, Marques‐Bonet T, Watsa M, Libke Z, Erkenswick G, van Oosterhout C. Real-time genomics for One Health. Mol Syst Biol 2023; 19:e11686. [PMID: 37325891 PMCID: PMC10407731 DOI: 10.15252/msb.202311686] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
The ongoing degradation of natural systems and other environmental changes has put our society at a crossroad with respect to our future relationship with our planet. While the concept of One Health describes how human health is inextricably linked with environmental health, many of these complex interdependencies are still not well-understood. Here, we describe how the advent of real-time genomic analyses can benefit One Health and how it can enable timely, in-depth ecosystem health assessments. We introduce nanopore sequencing as the only disruptive technology that currently allows for real-time genomic analyses and that is already being used worldwide to improve the accessibility and versatility of genomic sequencing. We showcase real-time genomic studies on zoonotic disease, food security, environmental microbiome, emerging pathogens, and their antimicrobial resistances, and on environmental health itself - from genomic resource creation for wildlife conservation to the monitoring of biodiversity, invasive species, and wildlife trafficking. We stress why equitable access to real-time genomics in the context of One Health will be paramount and discuss related practical, legal, and ethical limitations.
Collapse
Affiliation(s)
- Lara Urban
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| | - Albert Perlas
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
| | - Olga Francino
- Nano1Health SL, Parc de Recerca UABCampus Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Joan Martí‐Carreras
- Nano1Health SL, Parc de Recerca UABCampus Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Brenda A Muga
- Department of AnatomyUniversity of OtagoDunedinNew Zealand
| | | | | | | | - Amanda Black
- Bioprotection AotearoaLincoln UniversityLincolnNew Zealand
| | | | - Claudia Fontsere
- Center for Evolutionary HologenomicsThe Globe Institute, University of CopenhagenCopenhagenDenmark
| | - David Eccles
- Hugh Green Cytometry CentreMalaghan Institute of Medical ResearchWellingtonNew Zealand
| | - Harika Urel
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| | - Tim Reska
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| | - Hernán E Morales
- Center for Evolutionary HologenomicsThe Globe Institute, University of CopenhagenCopenhagenDenmark
- Department of Biology, Ecology BuildingLund UniversityLundSweden
| | - Marc Palmada‐Flores
- Institute of Evolutionary BiologyUniversitat Pompeu Fabra‐CSIC, PRBBBarcelonaSpain
| | - Tomas Marques‐Bonet
- Institute of Evolutionary BiologyUniversitat Pompeu Fabra‐CSIC, PRBBBarcelonaSpain
- Catalan Institution of Research and Advanced Studies (ICREA)BarcelonaSpain
- CNAGCentre of Genomic AnalysisBarcelonaSpain
- Institut Català de Paleontologia Miquel CrusafontUniversitat Autònoma de BarcelonaBarcelonaSpain
| | | | - Zane Libke
- Instituto Nacional de BiodiversidadQuitoEcuador
- Fundación Sumak Kawsay In SituCantón MeraEcuador
| | | | | |
Collapse
|
5
|
Abalde S, Crocetta F, Tenorio MJ, D'Aniello S, Fassio G, Rodríguez-Flores PC, Uribe JE, M L Afonso C, Oliverio M, Zardoya R. Hidden species diversity and mito-nuclear discordance within the Mediterranean cone snail, Lautoconus ventricosus. Mol Phylogenet Evol 2023:107838. [PMID: 37286063 DOI: 10.1016/j.ympev.2023.107838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/15/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
The Mediterranean cone snail, Lautoconus ventricosus, is currently considered a single species inhabiting the whole Mediterranean basin and the adjacent Atlantic coasts. Yet, no population genetic study has assessed its taxonomic status. Here, we collected 245 individuals from 75 localities throughout the Mediterranean Sea and used cox1 barcodes, complete mitochondrial genomes, and genome skims to test whether L. ventricosus represents a complex of cryptic species. The maximum likelihood phylogeny based on complete mitochondrial genomes recovered six main clades (hereby named blue, brown, green, orange, red, and violet) with sufficient sequence divergence to be considered putative species. On the other hand, phylogenomic analyses based on 437 nuclear genes only recovered four out of the six clades: blue and orange clades were thoroughly mixed and the brown one was not recovered. This mito-nuclear discordance revealed instances of incomplete lineage sorting and introgression, and may have caused important differences in the dating of main cladogenetic events. Species delimitation tests proposed the existence of at least three species: green, violet, and red+blue+orange (i.e., cyan). Green plus cyan (with sympatric distributions) and violet, had West and East Mediterranean distributions, respectively, mostly separated by the Siculo-Tunisian biogeographical barrier. Morphometric analyses of the shell using species hypotheses as factor and shell length as covariate showed that the discrimination power of the studied parameters was only 70.2%, reinforcing the cryptic nature of the uncovered species, and the importance of integrative taxonomic approaches considering morphology, ecology, biogeography, and mitochondrial and nuclear population genetic variation.
Collapse
Affiliation(s)
- Samuel Abalde
- Department of Zoology, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain.
| | - Fabio Crocetta
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy
| | - Manuel J Tenorio
- Departamento CMIM y Q. Inorgánica-INBIO, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy
| | - Giulia Fassio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Zoology-Viale dell'Università 32, 00185 Rome, Italy
| | - Paula C Rodríguez-Flores
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain; Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge MA 02138, USA
| | - Juan E Uribe
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Carlos M L Afonso
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005 - 139 Faro, Portugal
| | - Marco Oliverio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Zoology-Viale dell'Università 32, 00185 Rome, Italy
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
6
|
Faulk C. Genome skimming with nanopore sequencing precisely determines global and transposon DNA methylation in vertebrates. Genome Res 2023; 33:948-956. [PMID: 37442577 PMCID: PMC10519409 DOI: 10.1101/gr.277743.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023]
Abstract
Genome skimming is defined as low-pass sequencing below 0.05× coverage and is typically used for mitochondrial genome recovery and species identification. Long-read nanopore sequencers enable simultaneous reading of both DNA sequence and methylation and can multiplex samples for low-cost genome skimming. Here I present nanopore sequencing as a highly precise platform for global DNA methylation and transposon assessment. At coverage of just 0.001×, or 30 Mb of reads, accuracy is sub-1%. Biological and technical replicates validate high precision. Skimming 40 vertebrate species reveals conserved patterns of global methylation consistent with whole-genome bisulfite sequencing and an average mapping rate >97%. Genome size directly correlates to global DNA methylation, explaining 39% of its variance. Accurate SINE and LINE transposon methylation in both the mouse and primates can be obtained with just 0.0001× coverage, or 3 Mb of reads. Sample multiplexing, field portability, and the low price of this instrument combine to make genome skimming for DNA methylation an accessible method for epigenetic assessment from ecology to epidemiology and for low-resource groups.
Collapse
Affiliation(s)
- Christopher Faulk
- Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
7
|
De León LF, Silva B, Avilés-Rodríguez KJ, Buitrago-Rosas D. Harnessing the omics revolution to address the global biodiversity crisis. Curr Opin Biotechnol 2023; 80:102901. [PMID: 36773576 DOI: 10.1016/j.copbio.2023.102901] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 02/12/2023]
Abstract
Human disturbances are altering global biodiversity in unprecedented ways. We identify three fundamental challenges underpinning our understanding of global biodiversity (namely discovery, loss, and preservation), and discuss how the omics revolution (e.g. genomics, transcriptomics, proteomics, metabolomics, and meta-omics) can help address these challenges. We also discuss how omics tools can illuminate the major drivers of biodiversity loss, including invasive species, pollution, urbanization, overexploitation, and climate change, with a special focus on highly diverse tropical environments. Although omics tools are transforming the traditional toolkit of biodiversity research, their application to addressing the current biodiversity crisis remains limited and may not suffice to offset current rates of biodiversity loss. Despite technical and logistical challenges, omics tools need to be fully integrated into global biodiversity research, and better strategies are needed to improve their translation into biodiversity policy and practice. It is also important to recognize that although the omics revolution can be considered the biologist's dream, socioeconomic disparity limits their application in biodiversity research.
Collapse
Affiliation(s)
- Luis F De León
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA.
| | - Bruna Silva
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kevin J Avilés-Rodríguez
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA; Department of Biology, Fordham University, Bronx, NY, USA
| | | |
Collapse
|
8
|
De Vivo M, Lee HH, Huang YS, Dreyer N, Fong CL, de Mattos FMG, Jain D, Wen YHV, Mwihaki JK, Wang TY, Machida RJ, Wang J, Chan BKK, Tsai IJ. Utilisation of Oxford Nanopore sequencing to generate six complete gastropod mitochondrial genomes as part of a biodiversity curriculum. Sci Rep 2022; 12:9973. [PMID: 35705661 PMCID: PMC9200733 DOI: 10.1038/s41598-022-14121-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
High-throughput sequencing has enabled genome skimming approaches to produce complete mitochondrial genomes (mitogenomes) for species identification and phylogenomics purposes. In particular, the portable sequencing device from Oxford Nanopore Technologies (ONT) has the potential to facilitate hands-on training from sampling to sequencing and interpretation of mitogenomes. In this study, we present the results from sampling and sequencing of six gastropod mitogenomes (Aplysia argus, Cellana orientalis, Cellana toreuma, Conus ebraeus, Conus miles and Tylothais aculeata) from a graduate level biodiversity course. The students were able to produce mitogenomes from sampling to annotation using existing protocols and programs. Approximately 4 Gb of sequence was produced from 16 Flongle and one MinION flow cells, averaging 235 Mb and N50 = 4.4 kb per flow cell. Five of the six 14.1-18 kb mitogenomes were circlised containing all 13 core protein coding genes. Additional Illumina sequencing revealed that the ONT assemblies spanned over highly AT rich sequences in the control region that were otherwise missing in Illumina-assembled mitogenomes, but still contained a base error of one every 70.8-346.7 bp under the fast mode basecalling with the majority occurring at homopolymer regions. Our findings suggest that the portable MinION device can be used to rapidly produce low-cost mitogenomes onsite and tailored to genomics-based training in biodiversity research.
Collapse
Affiliation(s)
- Mattia De Vivo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| | - Hsin-Han Lee
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei, Taiwan
- Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Yu-Sin Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| | - Niklas Dreyer
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Natural History Museum of Denmark, University of Copenhagen, Faculty of Science, Copenhagen, Denmark
| | - Chia-Ling Fong
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| | - Felipe Monteiro Gomes de Mattos
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| | - Dharmesh Jain
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, Taiwan
| | - Yung-Hui Victoria Wen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
| | - John Karichu Mwihaki
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ryuji J Machida
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - John Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Benny K K Chan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
9
|
Emser SV, Schaschl H, Millesi E, Steinborn R. Extension of Mitogenome Enrichment Based on Single Long-Range PCR: mtDNAs and Putative Mitochondrial-Derived Peptides of Five Rodent Hibernators. Front Genet 2021; 12:685806. [PMID: 35027919 PMCID: PMC8749263 DOI: 10.3389/fgene.2021.685806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Enriching mitochondrial DNA (mtDNA) for sequencing entire mitochondrial genomes (mitogenomes) can be achieved by single long-range PCR. This avoids interference from the omnipresent nuclear mtDNA sequences (NUMTs). The approach is currently restricted to the use of samples collected from humans and ray-finned fishes. Here, we extended the use of single long-range PCR by introducing back-to-back oligonucleotides that target a sequence of extraordinary homology across vertebrates. The assay was applied to five hibernating rodents, namely alpine marmot, Arctic and European ground squirrels, and common and garden dormice, four of which have not been fully sequenced before. Analysis of the novel mitogenomes focussed on the prediction of mitochondrial-derived peptides (MDPs) providing another level of information encoded by mtDNA. The comparison of MOTS-c, SHLP4 and SHLP6 sequences across vertebrate species identified segments of high homology that argue for future experimentation. In addition, we evaluated four candidate polymorphisms replacing an amino acid in mitochondrially encoded subunits of the oxidative phosphorylation (OXPHOS) system that were reported in relation to cold-adaptation. No obvious pattern was found for the diverse sets of mammalian species that either apply daily or multiday torpor or otherwise cope with cold. In summary, our single long-range PCR assay applying a pair of back-to-back primers that target a consensus sequence motif of Vertebrata has potential to amplify (intact) mitochondrial rings present in templates from a taxonomically diverse range of vertebrates. It could be promising for studying novel mitogenomes, mitotypes of a population and mitochondrial heteroplasmy in a sensitive, straightforward and flexible manner.
Collapse
Affiliation(s)
- Sarah V. Emser
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Helmut Schaschl
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Eva Millesi
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
10
|
Wanner N, Larsen PA, McLain A, Faulk C. The mitochondrial genome and Epigenome of the Golden lion Tamarin from fecal DNA using Nanopore adaptive sequencing. BMC Genomics 2021; 22:726. [PMID: 34620074 PMCID: PMC8499546 DOI: 10.1186/s12864-021-08046-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/29/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The golden lion tamarin (Leontopithecus rosalia) is an endangered Platyrrhine primate endemic to the Atlantic coastal forests of Brazil. Despite ongoing conservation efforts, genetic data on this species remains scarce. Complicating factors include limitations on sample collection and a lack of high-quality reference sequences. Here, we used nanopore adaptive sampling to resequence the L. rosalia mitogenome from feces, a sample which can be collected non-invasively. RESULTS Adaptive sampling doubled the fraction of both host-derived and mitochondrial sequences compared to sequencing without enrichment. 258x coverage of the L. rosalia mitogenome was achieved in a single flow cell by targeting the unfinished genome of the distantly related emperor tamarin (Saguinus imperator) and the mitogenome of the closely related black lion tamarin (Leontopithecus chrysopygus). The L. rosalia mitogenome has a length of 16,597 bp, sharing 99.68% sequence identity with the L. chrysopygus mitogenome. A total of 38 SNPs between them were identified, with the majority being found in the non-coding D-loop region. DNA methylation and hydroxymethylation were directly detected using a neural network model applied to the raw signal from the MinION sequencer. In contrast to prior reports, DNA methylation was negligible in mitochondria in both CpG and non-CpG contexts. Surprisingly, a quarter of the 642 CpG sites exhibited DNA hydroxymethylation greater than 1% and 44 sites were above 5%, with concentration in the 3' side of several coding regions. CONCLUSIONS Overall, we report a robust new mitogenome assembly for L. rosalia and direct detection of cytosine base modifications in all contexts.
Collapse
Affiliation(s)
- Nicole Wanner
- Department of Animal Sciences, University of Minnesota, College of Food, Agricultural, and Natural Resource Sciences, 1988 Fitch Ave., Saint Paul, MN 55108 USA
| | - Peter A. Larsen
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN USA
| | - Adam McLain
- Department of Biology and Chemistry, College of Arts and Sciences, SUNY Polytechnic Institute, Utica, NY USA
| | - Christopher Faulk
- Department of Animal Sciences, University of Minnesota, College of Food, Agricultural, and Natural Resource Sciences, 1988 Fitch Ave., Saint Paul, MN 55108 USA
| |
Collapse
|