1
|
Li J, Cheng R, Bian Z, Niu J, Xia J, Mao G, Liu H, Wu C, Hao C. Development of multiplex allele-specific RT-qPCR assays for differentiation of SARS-CoV-2 Omicron subvariants. Appl Microbiol Biotechnol 2024; 108:35. [PMID: 38183475 DOI: 10.1007/s00253-023-12941-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 01/08/2024]
Abstract
Quick differentiation of current circulating variants and the emerging recombinant variants of SARS-CoV-2 is essential to monitor their transmissions. However, the widely applied gene sequencing method is time-consuming and costly especially when facing recombinant variants, because a large part or whole genome sequencing is required. Allele-specific reverse transcriptase real time RT-PCR (RT-qPCR) represents a quick and cost-effective method for SNP (single nucleotide polymorphism) genotyping and has been successfully applied for SARS-CoV-2 variant screening. In the present study, we developed a panel of 5 multiplex allele-specific RT-qPCR assays targeting 20 key mutations for quick differentiation of the Omicron subvariants (BA.1 to BA.5 and their descendants) and the recombinant variants (XBB.1 and XBB.1.5). Two parallel multiplex RT-qPCR reactions were designed to separately target the prototype allele and the mutated allele of each mutation in the allele-specific RT-qPCR assay. Optimal annealing temperatures, primer and probe dosage, and time for annealing/extension for each reaction were determined by multi-factor and multi-level orthogonal test. The variation of Cp (crossing point) values (ΔCp) between the two multiplex RT-qPCR reactions was applied to determine if a mutation occurs or not. SARS-CoV-2 subvariants and related recombinant variants were differentiated by their unique mutation patterns. The developed multiplex allele-specific RT-qPCR assays exhibited excellent analytical sensitivities (with limits of detection (LoDs) of 1.47-18.52 copies per reaction), wide linear detection ranges (109-100 copies per reaction), good amplification efficiencies (88.25 to 110.68%), excellent reproducibility (coefficient of variations (CVs) < 5% in both intra-assay and inter-assay tests), and good clinical performances (99.5-100% consistencies with Sanger sequencing). The developed multiplex allele-specific RT-qPCR assays in the present study provide an alternative tool for quick differentiation of the SARS-CoV-2 Omicron subvariants and their recombinant variants. KEY POINTS: • A panel of five multiplex allele-specific RT-qPCR assays for quick differentiation of 11 SARS-CoV-2 Omicron subvariants (BA.1, BA.2, BA.4, BA.5, and their descendants) and 2 recombinant variants (XBB.1 and XBB.1.5). • The developed assays exhibited good analytical sensitivities and reproducibility, wide linear detection ranges, and good clinical performances, providing an alternative tool for quick differentiation of the SARS-CoV-2 Omicron subvariants and their recombinant variants.
Collapse
Affiliation(s)
- Jianguo Li
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, People's Republic of China.
| | - Ruiling Cheng
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Zixin Bian
- College of Life Sciences, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Jiahui Niu
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Juan Xia
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Guoli Mao
- Shanxi Guoxin Caregeno Biotechnology Co., Ltd., Taiyuan, 030032, People's Republic of China
| | - Hulong Liu
- Shanxi Guoxin Caregeno Biotechnology Co., Ltd., Taiyuan, 030032, People's Republic of China
| | - Changxin Wu
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Chunyan Hao
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China.
| |
Collapse
|
2
|
Zahornacky O, Rovnakova A, Surimova M, Porubcin S, Jarcuska P. Identifying Mortality Predictors in Hospitalized COVID-19 Patients: Insights from a Single-Center Retrospective Study at a University Hospital. Microorganisms 2024; 12:1032. [PMID: 38792861 PMCID: PMC11124314 DOI: 10.3390/microorganisms12051032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
INTRODUCTION The pandemic instigated by the SARS-CoV-2 virus has led to over 7 million deaths globally, primarily attributable to viral pneumonia. Identifying fundamental markers associated with an elevated risk of mortality can aid in the early identification of patients prone to disease progression to a severe state, enabling prompt intervention. METHODS This was a single-center, retrospective study. RESULTS In this study, we examined 299 patients admitted to the Department of Infectology and Travel Medicine in Košice, Slovakia, with PCR-confirmed COVID-19 pneumonia. Patients were monitored from 1 January 2021 to 31 March 2021, with the endpoint being discharge from the hospital or death. All patient-related data were retrospectively collected from medical records. This study identified several risk factors significantly associated with an increased risk of mortality, including the requirement of HFNO (p < 0.001), age over 60 years (p < 0.001), Ne/Ly values of >6 (p < 0.001), as well as certain lymphocyte subtypes-CD4+ < 0.2 × 109/L (p = 0.035), CD8+ < 0.2 × 109/L (p < 0.001), and CD19+ < 0.1 × 109/L (p < 0.001)-alongside selected biochemical inflammatory markers-IL-6 > 50 ng/L (p < 0.001) and lactate > 3 mmol/L (p < 0.001). CONCLUSIONS We confirmed that the mentioned risk factors were significantly associated with the death of patients from viral pneumonia in the hospital.
Collapse
Affiliation(s)
- Ondrej Zahornacky
- Department of Infectology and Travel Medicine, Faculty of Medicine, Louis Pasteur University Hospital, Pavol Jozef Šafarik University, 041 90 Košice, Slovakia; (O.Z.); (A.R.)
| | - Alena Rovnakova
- Department of Infectology and Travel Medicine, Faculty of Medicine, Louis Pasteur University Hospital, Pavol Jozef Šafarik University, 041 90 Košice, Slovakia; (O.Z.); (A.R.)
| | - Maria Surimova
- Institute of Mathematic, Faculty of Science, Pavol Jozef Šafarik University, 041 90 Košice, Slovakia;
| | - Stefan Porubcin
- Department of Infectology and Travel Medicine, Faculty of Medicine, Louis Pasteur University Hospital, Pavol Jozef Šafarik University, 041 90 Košice, Slovakia; (O.Z.); (A.R.)
| | - Pavol Jarcuska
- Department of Infectology and Travel Medicine, Faculty of Medicine, Louis Pasteur University Hospital, Pavol Jozef Šafarik University, 041 90 Košice, Slovakia; (O.Z.); (A.R.)
| |
Collapse
|
3
|
Abdel-Sater F, Makki R, Khalil A, Hussein N, Borghol N, Abi Khattar Z, Hamade A, Khreich N, El Homsi M, Kanaan H, Raad L, Skafi N, Al-Nemer F, Ghandour Z, El-Zein N, Abou-Hamdan M, Akl H, Hamade E, Badran B, Hamze K. Detection of SARS-CoV-2 B.1.1.529 (Omicron) variant by SYBR Green-based RT-qPCR. Biol Methods Protoc 2024; 9:bpae020. [PMID: 38680163 PMCID: PMC11055497 DOI: 10.1093/biomethods/bpae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/23/2024] [Indexed: 05/01/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is unceasingly spreading across the globe, and recently a highly transmissible Omicron SARS-CoV-2 variant (B.1.1.529) has been discovered in South Africa and Botswana. Rapid identification of this variant is essential for pandemic assessment and containment. However, variant identification is mainly being performed using expensive and time-consuming genomic sequencing. In this study, we propose an alternative RT-qPCR approach for the detection of the Omicron BA.1 variant using a low-cost and rapid SYBR Green method. We have designed specific primers to confirm the deletion mutations in the spike (S Δ143-145) and the nucleocapsid (N Δ31-33) which are characteristics of this variant. For the evaluation, we used 120 clinical samples from patients with PCR-confirmed SARS-CoV-2 infections, and displaying an S-gene target failure (SGTF) when using TaqPath COVID-19 kit (Thermo Fisher Scientific, Waltham, USA) that included the ORF1ab, S, and N gene targets. Our results showed that all the 120 samples harbored S Δ143-145 and N Δ31-33, which was further confirmed by whole-genome sequencing of 10 samples, thereby validating our SYBR Green-based protocol. This protocol can be easily implemented to rapidly confirm the diagnosis of the Omicron BA.1 variant in COVID-19 patients and prevent its spread among populations, especially in countries with high prevalence of SGTF profile.
Collapse
Affiliation(s)
- Fadi Abdel-Sater
- Laboratory of Molecular Biology and Cancer Immunology (COVID-19 Unit), Faculty of science I, Lebanese University, Rafik Hariri Campus, Hadat. Lebanon
| | - Rawan Makki
- Laboratory of Molecular Biology and Cancer Immunology (COVID-19 Unit), Faculty of science I, Lebanese University, Rafik Hariri Campus, Hadat. Lebanon
| | - Alia Khalil
- Laboratory of Molecular Biology and Cancer Immunology (COVID-19 Unit), Faculty of science I, Lebanese University, Rafik Hariri Campus, Hadat. Lebanon
| | - Nader Hussein
- Laboratory of Molecular Biology and Cancer Immunology (COVID-19 Unit), Faculty of science I, Lebanese University, Rafik Hariri Campus, Hadat. Lebanon
| | - Nada Borghol
- Laboratory of Molecular Biology and Cancer Immunology (COVID-19 Unit), Faculty of science I, Lebanese University, Rafik Hariri Campus, Hadat. Lebanon
| | - Ziad Abi Khattar
- Laboratory of Molecular Biology and Cancer Immunology (COVID-19 Unit), Faculty of science I, Lebanese University, Rafik Hariri Campus, Hadat. Lebanon
| | - Aline Hamade
- Laboratory of Molecular Biology and Cancer Immunology (COVID-19 Unit), Faculty of science I, Lebanese University, Rafik Hariri Campus, Hadat. Lebanon
| | - Nathalie Khreich
- Laboratory of Molecular Biology and Cancer Immunology (COVID-19 Unit), Faculty of science I, Lebanese University, Rafik Hariri Campus, Hadat. Lebanon
| | - Mahoumd El Homsi
- Laboratory of Molecular Biology and Cancer Immunology (COVID-19 Unit), Faculty of science I, Lebanese University, Rafik Hariri Campus, Hadat. Lebanon
| | - Hussein Kanaan
- Laboratory of Molecular Biology and Cancer Immunology (COVID-19 Unit), Faculty of science I, Lebanese University, Rafik Hariri Campus, Hadat. Lebanon
| | - Line Raad
- Laboratory of Molecular Biology and Cancer Immunology (COVID-19 Unit), Faculty of science I, Lebanese University, Rafik Hariri Campus, Hadat. Lebanon
| | - Najwa Skafi
- Laboratory of Molecular Biology and Cancer Immunology (COVID-19 Unit), Faculty of science I, Lebanese University, Rafik Hariri Campus, Hadat. Lebanon
| | - Fatima Al-Nemer
- Laboratory of Molecular Biology and Cancer Immunology (COVID-19 Unit), Faculty of science I, Lebanese University, Rafik Hariri Campus, Hadat. Lebanon
| | - Zeinab Ghandour
- Laboratory of Molecular Biology and Cancer Immunology (COVID-19 Unit), Faculty of science I, Lebanese University, Rafik Hariri Campus, Hadat. Lebanon
| | - Nabil El-Zein
- Laboratory of Molecular Biology and Cancer Immunology (COVID-19 Unit), Faculty of science I, Lebanese University, Rafik Hariri Campus, Hadat. Lebanon
| | - Mhamad Abou-Hamdan
- Laboratory of Molecular Biology and Cancer Immunology (COVID-19 Unit), Faculty of science I, Lebanese University, Rafik Hariri Campus, Hadat. Lebanon
| | - Haidar Akl
- Laboratory of Molecular Biology and Cancer Immunology (COVID-19 Unit), Faculty of science I, Lebanese University, Rafik Hariri Campus, Hadat. Lebanon
| | - Eva Hamade
- Laboratory of Molecular Biology and Cancer Immunology (COVID-19 Unit), Faculty of science I, Lebanese University, Rafik Hariri Campus, Hadat. Lebanon
| | - Bassam Badran
- Laboratory of Molecular Biology and Cancer Immunology (COVID-19 Unit), Faculty of science I, Lebanese University, Rafik Hariri Campus, Hadat. Lebanon
| | - Kassem Hamze
- Laboratory of Molecular Biology and Cancer Immunology (COVID-19 Unit), Faculty of science I, Lebanese University, Rafik Hariri Campus, Hadat. Lebanon
| |
Collapse
|
4
|
Paz M, Moreno P, Moratorio G. Perspective Chapter: Real-Time Genomic Surveillance for SARS-CoV-2 on Center Stage. Infect Dis (Lond) 2023. [DOI: 10.5772/intechopen.107842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
The course of the COVID-19 pandemic depends not only on how the SARS-CoV-2 virus mutates but on the actions taken to respond to it. Important public health decisions can only be taken if we know viral dynamics, viral variants distribution, and whether new variants are emerging that may be more transmissible or/and more virulent, displaying evasion to vaccines or antiviral treatments. This situation has put the use of different approaches, such as molecular techniques and real-time genomic sequencing, to support public health decision-making on center stage. To achieve this, robust programs based on: (i) diagnostic capacity; (ii) high-throughput sequencing technologies; and (iii) high-performance bioinformatic resources, need to be established. This chapter focuses on how SARS-CoV-2 evolved since its discovery and it summarizes the scientific efforts to obtain genomic data as the virus spread throughout the globe.
Collapse
|
5
|
Szobi A, Buranovská K, Vojtaššáková N, Lovíšek D, Özbaşak HÖ, Szeibeczederová S, Kapustian L, Hudáčová Z, Kováčová V, Drobná D, Putaj P, Bírová S, Čirková I, Čarnecký M, Kilián P, Jurkáček P, Čabanová V, Boršová K, Sláviková M, Vaňová V, Klempa B, Čekan P, Paul ED. Vivid COVID-19 LAMP is an ultrasensitive, quadruplexed test using LNA-modified primers and a zinc ion and 5-Br-PAPS colorimetric detection system. Commun Biol 2023; 6:233. [PMID: 36864129 PMCID: PMC9979146 DOI: 10.1038/s42003-023-04612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Sensitive and rapid point-of-care assays have been crucial in the global response to SARS-CoV-2. Loop-mediated isothermal amplification (LAMP) has emerged as an important diagnostic tool given its simplicity and minimal equipment requirements, although limitations exist regarding sensitivity and the methods used to detect reaction products. We describe the development of Vivid COVID-19 LAMP, which leverages a metallochromic detection system utilizing zinc ions and a zinc sensor, 5-Br-PAPS, to circumvent the limitations of classic detection systems dependent on pH indicators or magnesium chelators. We make important strides in improving RT-LAMP sensitivity by establishing principles for using LNA-modified LAMP primers, multiplexing, and conducting extensive optimizations of reaction parameters. To enable point-of-care testing, we introduce a rapid sample inactivation procedure without RNA extraction that is compatible with self-collected, non-invasive gargle samples. Our quadruplexed assay (targeting E, N, ORF1a, and RdRP) reliably detects 1 RNA copy/µl of sample (=8 copies/reaction) from extracted RNA and 2 RNA copies/µl of sample (=16 copies/reaction) directly from gargle samples, making it one of the most sensitive RT-LAMP tests and even comparable to RT-qPCR. Additionally, we demonstrate a self-contained, mobile version of our assay in a variety of high-throughput field testing scenarios on nearly 9,000 crude gargle samples. Vivid COVID-19 LAMP can be an important asset for the endemic phase of COVID-19 as well as preparing for future pandemics.
Collapse
Affiliation(s)
- Adrián Szobi
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Katarína Buranovská
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Nina Vojtaššáková
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Daniel Lovíšek
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Halil Önder Özbaşak
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Sandra Szeibeczederová
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Liudmyla Kapustian
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Zuzana Hudáčová
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
- Stanford University, 730 Escondido Rd., Stanford, CA, 94305, USA
| | - Viera Kováčová
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
- University of Cologne, Institute for Biological Physics, Zülpicher Str. 77, 50937, Köln, Germany
| | - Diana Drobná
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Piotr Putaj
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Stanislava Bírová
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Ivana Čirková
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Martin Čarnecký
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Peter Kilián
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Peter Jurkáček
- AstonITM s.r.o., Račianska 153, 831 54, Bratislava, Slovakia
| | - Viktória Čabanová
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Kristína Boršová
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Monika Sláviková
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Veronika Vaňová
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Boris Klempa
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Pavol Čekan
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia.
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA.
| | - Evan D Paul
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, 841 04, Bratislava, Slovakia.
- MultiplexDX, Inc., One Research Court, Suite 450, Rockville, MD, 20850, USA.
| |
Collapse
|
6
|
Farkas K, Pellett C, Williams R, Alex-Sanders N, Bassano I, Brown MR, Denise H, Grimsley JMS, Kevill JL, Khalifa MS, Pântea I, Story R, Wade MJ, Woodhall N, Jones DL. Rapid Assessment of SARS-CoV-2 Variant-Associated Mutations in Wastewater Using Real-Time RT-PCR. Microbiol Spectr 2023; 11:e0317722. [PMID: 36629447 PMCID: PMC9927140 DOI: 10.1128/spectrum.03177-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/11/2022] [Indexed: 01/12/2023] Open
Abstract
Within months of the COVID-19 pandemic being declared on March 20, 2020, novel, more infectious variants of SARS-CoV-2 began to be detected in geospatially distinct regions of the world. With international travel being a lead cause of spread of the disease, the importance of rapidly identifying variants entering a country is critical. In this study, we utilized wastewater-based epidemiology (WBE) to monitor the presence of variants in wastewater generated in managed COVID-19 quarantine facilities for international air passengers entering the United Kingdom. Specifically, we developed multiplex reverse transcription quantitative PCR (RT-qPCR) assays for the identification of defining mutations associated with Beta (K417N), Gamma (K417T), Delta (156/157DEL), and Kappa (E154K) variants which were globally prevalent at the time of sampling (April to July 2021). The assays sporadically detected mutations associated with the Beta, Gamma, and Kappa variants in 0.7%, 2.3%, and 0.4% of all samples, respectively. The Delta variant was identified in 13.3% of samples, with peak detection rates and concentrations observed in May 2021 (24%), concurrent with its emergence in the United Kingdom. The RT-qPCR results correlated well with those from sequencing, suggesting that PCR-based detection is a good predictor for variant presence; although, inadequate probe binding may lead to false positive or negative results. Our findings suggest that WBE coupled with RT-qPCR may be used as a rapid, initial assessment to identify emerging variants at international borders and mass quarantining facilities. IMPORTANCE With the global spread of COVID-19, it is essential to identify emerging variants which may be more harmful or able to escape vaccines rapidly. To date, the gold standard to assess variants circulating in communities has been the sequencing of the S gene or the whole genome of SARS-CoV-2; however, that approach is time-consuming and expensive. In this study, we developed two duplex RT-qPCR assays to detect and quantify defining mutations associated with the Beta, Gamma, Delta, and Kappa variants. The assays were validated using RNA extracts derived from wastewater samples taken at quarantine facilities. The results showed good correlation with the results of sequencing and demonstrated the emergence of the Delta variant in the United Kingdom in May 2021. The assays developed here enable the assessment of variant-specific mutations within 2 h after the RNA extract was generated which is essential for outbreak rapid response.
Collapse
Affiliation(s)
- Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, United Kingdom
| | - Cameron Pellett
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Rachel Williams
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Natasha Alex-Sanders
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Irene Bassano
- UK Health Security Agency, Environmental Monitoring for Health Protection, London, United Kingdom
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Mathew R. Brown
- UK Health Security Agency, Environmental Monitoring for Health Protection, London, United Kingdom
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Hubert Denise
- UK Health Security Agency, Environmental Monitoring for Health Protection, London, United Kingdom
| | - Jasmine M. S. Grimsley
- UK Health Security Agency, Environmental Monitoring for Health Protection, London, United Kingdom
- The London Data Company, London, United Kingdom
| | - Jessica L. Kevill
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Mohammad S. Khalifa
- UK Health Security Agency, Environmental Monitoring for Health Protection, London, United Kingdom
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University, London, United Kingdom
| | - Igor Pântea
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Rich Story
- UK Health Security Agency, Environmental Monitoring for Health Protection, London, United Kingdom
- Servita Professional Services (UK) Ltd., London, United Kingdom
| | - Matthew J. Wade
- UK Health Security Agency, Environmental Monitoring for Health Protection, London, United Kingdom
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Nick Woodhall
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Davey L. Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
- Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
7
|
Zhu Y, Zhang M, Jie Z, Tao S. Nucleic acid testing of SARS-CoV-2: A review of current methods, challenges, and prospects. Front Microbiol 2022; 13:1074289. [PMID: 36569096 PMCID: PMC9780671 DOI: 10.3389/fmicb.2022.1074289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has brought a huge threat to public health and the global economy. Rapid identification and isolation of SARS-CoV-2-infected individuals are regarded as one of the most effective measures to control the pandemic. Because of its high sensitivity and specificity, nucleic acid testing has become the major method of SARS-CoV-2 detection. A deep understanding of different diagnosis methods for COVID-19 could help researchers make an optimal choice in detecting COVID-19 at different symptom stages. In this review, we summarize and evaluate the latest developments in current nucleic acid detection methods for SARS-CoV-2. In particular, we discuss biosensors and CRISPR-based diagnostic systems and their characteristics and challenges. Furthermore, the emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis are systematically introduced and discussed. Considering the disease dynamics, we also recommend optional diagnostic tests for different symptom stages. From sample preparation to results readout, we conclude by pointing out the pain points and future directions of COVID-19 detection.
Collapse
Affiliation(s)
- Yuanshou Zhu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China,Center of Community-Based Health Research, Fudan University, Shanghai, China,*Correspondence: Zhijun Jie,
| | - Shengce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China,Shengce Tao,
| |
Collapse
|
8
|
Silva CS, Tryndyak VP, Camacho L, Orloff MS, Porter A, Garner K, Mullis L, Azevedo M. Temporal dynamics of SARS-CoV-2 genome and detection of variants of concern in wastewater influent from two metropolitan areas in Arkansas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157546. [PMID: 35914602 PMCID: PMC9338166 DOI: 10.1016/j.scitotenv.2022.157546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Although SARS-CoV-2 can cause severe illness and death, a percentage of the infected population is asymptomatic. This, along with other factors, such as insufficient diagnostic testing and underreporting due to self-testing, contributes to the silent transmission of SARS-CoV-2 and highlights the importance of implementing additional surveillance tools. The fecal shedding of the virus from infected individuals enables its detection in community wastewater, and this has become a valuable public health tool worldwide as it allows the monitoring of the disease on a populational scale. Here, we monitored the presence of SARS-CoV-2 and its dynamic genomic changes in wastewater sampled from two metropolitan areas in Arkansas during major surges of COVID-19 cases and assessed how the viral titers in these samples related to the clinical case counts between late April 2020 and January 2022. The levels of SARS-CoV-2 RNA were quantified by reverse-transcription quantitative polymerase chain reaction (RT-qPCR) using a set of TaqMan assays targeting three different viral genes (encoding ORF1ab polyprotein, surface glycoprotein, and nucleocapsid phosphoprotein). An allele-specific RT-qPCR approach was used to screen the samples for SARS-CoV-2 mutations. The identity and genetic diversity of the virus were further investigated through amplicon-based RNA sequencing, and SARS-CoV-2 variants of concern were detected in wastewater samples throughout the duration of this study. Our data show how changes in the virus genome can affect the sensitivity of specific RT-qPCR assays used in COVID-19 testing with the surge of new variants. A significant association was observed between viral titers in wastewater and recorded number of COVID-19 cases in the areas studied, except when assays failed to detect targets due to the presence of particular variants. These findings support the use of wastewater surveillance as a reliable complementary tool for monitoring SARS-CoV-2 and its genetic variants at the community level.
Collapse
Affiliation(s)
- Camila S Silva
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA.
| | - Volodymyr P Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Luísa Camacho
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Mohammed S Orloff
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Center for the Studies of Tobacco, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Austin Porter
- Department of Health Policy and Management, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Arkansas Department of Health, Little Rock, AR, USA
| | - Kelley Garner
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Arkansas Department of Health, Little Rock, AR, USA
| | - Lisa Mullis
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Marli Azevedo
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
9
|
Li J, Gao Z, Chen J, Cheng R, Niu J, Zhang J, Yang Y, Yuan X, Xia J, Mao G, Liu H, Dong Y, Wu C. Development of a panel of three multiplex allele-specific qRT-PCR assays for quick differentiation of recombinant variants and Omicron subvariants of SARS-CoV-2. Front Cell Infect Microbiol 2022; 12:953027. [PMID: 36061868 PMCID: PMC9433905 DOI: 10.3389/fcimb.2022.953027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Quick differentiation of the circulating variants and the emerging recombinant variants of SARS-CoV-2 is essential to monitor their transmission. However, the widely used gene sequencing method is time-consuming and costly when facing the viral recombinant variants, because partial or whole genome sequencing is required. Allele-specific real time RT-PCR (qRT-PCR) represents a quick and cost-effective method in SNP genotyping and has been successfully applied for SARS-CoV-2 variant screening. In the present study, we developed a panel of 3 multiplex allele-specific qRT-PCR assays targeting 12 key differential mutations for quick differentiation of SARS-CoV-2 recombinant variants (XD and XE) and Omicron subvariants (BA.1 and BA.2). Two parallel multiplex qRT-PCR reactions were designed to separately target the protype allele and the mutated allele of the four mutations in each allele-specific qRT-PCR assay. The variation of Cp values (ΔCp) between the two multiplex qRT-PCR reactions was applied for mutation determination. The developed multiplex allele-specific qRT-PCR assays exhibited outstanding analytical sensitivities (with limits of detection [LoDs] of 2.97-27.43 copies per reaction), wide linear detection ranges (107-100 copies per reaction), good amplification efficiencies (82% to 95%), good reproducibility (Coefficient of Variations (CVs) < 5% in both intra-assay and inter-assay tests) and clinical performances (99.5%-100% consistency with Sanger sequencing). The developed multiplex allele-specific qRT-PCR assays in this study provide an alternative tool for quick differentiation of SARS-CoV-2 recombinant variants (XD and XE) and Omicron subvariants (BA.1 and BA.2).
Collapse
Affiliation(s)
- Jianguo Li
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- *Correspondence: Jianguo Li, ; Changxin Wu,
| | - Zefeng Gao
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jing Chen
- Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Shanxi Provincial Center for Disease Control and Prevention, Taiyuan, China
| | - Ruiling Cheng
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jiahui Niu
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jialei Zhang
- College of Life Sciences, Shanxi University, Taiyuan, China
| | - You Yang
- College of Life Sciences, Shanxi University, Taiyuan, China
| | - Ximei Yuan
- College of Life Sciences, Shanxi University, Taiyuan, China
| | - Juan Xia
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Guoli Mao
- Laboratory, Shanxi Guoxin Caregeno Biotechnology Co., Ltd, Taiyuan, China
| | - Hulong Liu
- Laboratory, Shanxi Guoxin Caregeno Biotechnology Co., Ltd, Taiyuan, China
| | - Yongkang Dong
- Administrative Office, the Fourth People's Hospital of Taiyuan, Taiyuan, China
| | - Changxin Wu
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- *Correspondence: Jianguo Li, ; Changxin Wu,
| |
Collapse
|
10
|
Lai E, Kennedy EB, Lozach J, Hayashibara K, Davis-Turak J, Becker D, Brzoska P, Cassens T, Diamond E, Gandhi M, Greninger AL, Hajian P, Leonetti NA, Nguyen JM, O’Donovan KMC, Peck T, Ramirez JM, Roychoudhury P, Sandoval E, Wesselman C, Wesselman T, White S, Williams S, Wong D, Yu Y, Creager RS. A Method for Variant Agnostic Detection of SARS-CoV-2, Rapid Monitoring of Circulating Variants, and Early Detection of Emergent Variants Such as Omicron. J Clin Microbiol 2022; 60:e0034222. [PMID: 35766514 PMCID: PMC9297815 DOI: 10.1128/jcm.00342-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/04/2022] [Indexed: 12/13/2022] Open
Abstract
The rapid emergence of SARS-CoV-2 variants raised public health questions concerning the capability of diagnostic tests to detect new strains, the efficacy of vaccines, and how to map the geographical distribution of variants to understand transmission patterns and loads on healthcare resources. Next-generation sequencing (NGS) is the primary method for detecting and tracing new variants, but it is expensive, and it can take weeks before sequence data are available in public repositories. This article describes a customizable reverse transcription PCR (RT-PCR)-based genotyping approach which is significantly less expensive, accelerates reporting, and can be implemented in any lab that performs RT-PCR. Specific single-nucleotide polymorphisms (SNPs) and indels were identified which had high positive-percent agreement (PPA) and negative-percent agreement (NPA) compared to NGS for the major genotypes that circulated through September 11, 2021. Using a 48-marker panel, testing on 1,031 retrospective SARS-CoV-2 positive samples yielded a PPA and NPA ranging from 96.3 to 100% and 99.2 to 100%, respectively, for the top 10 most prevalent World Health Organization (WHO) lineages during that time. The effect of reducing the quantity of panel markers was explored, and a 16-marker panel was determined to be nearly as effective as the 48-marker panel at lineage assignment. Responding to the emergence of Omicron, a genotyping panel was developed which distinguishes Delta and Omicron using four highly specific SNPs. The results demonstrate the utility of the condensed panel to rapidly track the growing prevalence of Omicron across the US in December 2021 and January 2022.
Collapse
Affiliation(s)
- Eric Lai
- Personalized Science, Burlington, Vermont, USA
| | | | | | | | | | | | - Pius Brzoska
- Thermo Fisher Scientific, South San Francisco, California, USA
| | | | - Evan Diamond
- Thermo Fisher Scientific, South San Francisco, California, USA
| | - Manoj Gandhi
- Thermo Fisher Scientific, South San Francisco, California, USA
| | - Alexander L. Greninger
- University of Washington Medical Center, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Pooneh Hajian
- University of Washington Medical Center, Seattle, Washington, USA
| | | | | | | | - Troy Peck
- Helix OpCo, San Diego, California, USA
| | | | - Pavitra Roychoudhury
- University of Washington Medical Center, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | | | | | | | - Yufei Yu
- Biocomx, Dana Point, California, USA
| | | |
Collapse
|
11
|
Morawiec E, Miklasińska-Majdanik M, Bratosiewicz-Wąsik J, Wojtyczka RD, Swolana D, Stolarek I, Czerwiński M, Skubis-Sikora A, Samul M, Polak A, Kruszniewska-Rajs C, Pudełko A, Figlerowicz M, Bednarska-Czerwińska A, Wąsik TJ. From Alpha to Delta-Genetic Epidemiology of SARS-CoV-2 (hCoV-19) in Southern Poland. Pathogens 2022; 11:780. [PMID: 35890025 PMCID: PMC9316897 DOI: 10.3390/pathogens11070780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
In Poland, the first case of SARS-CoV-2 infection was confirmed in March 2020. Since then, many circulating virus lineages fueled rapid pandemic waves which inflicted a severe burden on the Polish healthcare system. Some of these lineages were associated with increased transmissibility and immune escape. Mutations in the viral spike protein, which is responsible for host cell recognition and serves as the primary target for neutralizing antibodies, are of particular importance. We investigated the molecular epidemiology of the SARS-CoV-2 clades circulating in Southern Poland from February 2021 to August 2021. The 921 whole-genome sequences were used for variant identification, spike mutation, and phylogenetic analyses. The Pango B.1.1.7 was the dominant variant (n = 730, 89.68%) from March 2021 to July 2021. In July 2021, the B.1.1.7 was displaced by the B.1.617.2 lineage with 66.66% in July 2021 and 92.3% in August 2021 frequencies, respectively. Moreover, our results were compared with the sequencing available on the GISAID platform for other regions of Poland, the Czech Republic, and Slovakia. The analysis showed that the dominant variant in the analyzed period was B.1.1.7 in all countries and Southern Poland (Silesia). Interestingly, B.1.1.7 was replaced by B.1.617.2 earlier in Southern Poland than in the rest of the country. Moreover, in the Czech Republic and Slovakia, AY lineages were predominant at that time, contrary to the Silesia region.
Collapse
Affiliation(s)
- Emilia Morawiec
- Department of Microbiology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800 Zabrze, Poland;
- Gyncentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland; (M.C.); (A.S.-S.); (M.S.); (A.P.); (C.K.-R.); (A.P.); (A.B.-C.)
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800 Zabrze, Poland
| | - Maria Miklasińska-Majdanik
- Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (M.M.-M.); (R.D.W.); (D.S.)
| | - Jolanta Bratosiewicz-Wąsik
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| | - Robert D. Wojtyczka
- Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (M.M.-M.); (R.D.W.); (D.S.)
| | - Denis Swolana
- Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (M.M.-M.); (R.D.W.); (D.S.)
| | - Ireneusz Stolarek
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznań, Poland; (I.S.); (M.F.)
| | - Michał Czerwiński
- Gyncentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland; (M.C.); (A.S.-S.); (M.S.); (A.P.); (C.K.-R.); (A.P.); (A.B.-C.)
- American Medical Clinic, 40-851 Katowice, Poland
| | - Aleksandra Skubis-Sikora
- Gyncentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland; (M.C.); (A.S.-S.); (M.S.); (A.P.); (C.K.-R.); (A.P.); (A.B.-C.)
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Magdalena Samul
- Gyncentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland; (M.C.); (A.S.-S.); (M.S.); (A.P.); (C.K.-R.); (A.P.); (A.B.-C.)
| | - Agnieszka Polak
- Gyncentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland; (M.C.); (A.S.-S.); (M.S.); (A.P.); (C.K.-R.); (A.P.); (A.B.-C.)
| | - Celina Kruszniewska-Rajs
- Gyncentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland; (M.C.); (A.S.-S.); (M.S.); (A.P.); (C.K.-R.); (A.P.); (A.B.-C.)
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Adam Pudełko
- Gyncentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland; (M.C.); (A.S.-S.); (M.S.); (A.P.); (C.K.-R.); (A.P.); (A.B.-C.)
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Marek Figlerowicz
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznań, Poland; (I.S.); (M.F.)
| | - Anna Bednarska-Czerwińska
- Gyncentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland; (M.C.); (A.S.-S.); (M.S.); (A.P.); (C.K.-R.); (A.P.); (A.B.-C.)
- American Medical Clinic, 40-851 Katowice, Poland
- Department of Gynecology and Obstetrics, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800 Zabrze, Poland
| | - Tomasz J. Wąsik
- Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (M.M.-M.); (R.D.W.); (D.S.)
| |
Collapse
|
12
|
Gasparek M, Hantabal J. De novo synthesis of synthetic biology ecosystem in Slovakia: Challenges and opportunities. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 3:45-49. [PMID: 39416451 PMCID: PMC11446393 DOI: 10.1016/j.biotno.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 10/19/2024]
Abstract
Synthetic biology is an engineering discipline that applies engineering principles to rationally design novel biological systems. It has the potential to contribute to solving major global challenges in a multitude of areas, from healthcare to sustainability. While the engineering biology landscape is robust and well-established in certain countries, the ecosystem and infrastructure for genetic engineering in other countries, including Slovakia, are underdeveloped. Consequently, such countries are missing the major economic and social benefits that the practical applications of the rational design of biological systems may provide. In this work, we briefly assess the status of the synthetic biology landscape in Slovakia in different areas, including research efforts, industrial participation, governmental policy, and the educational landscape. We describe the major challenges that the Slovak synthetic biology sector faces and propose a strategy that academics, policymakers, and industry could take to activate the proliferation of the Slovak synthetic biology ecosystem.
Collapse
Affiliation(s)
- Miroslav Gasparek
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom
| | - Jakub Hantabal
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY233FL, United Kingdom
| |
Collapse
|
13
|
Abstract
Scaling up SARS-CoV-2 testing during the COVID-19 pandemic was critical to maintaining clinical operations and an open society. Pooled testing and automation were two critical strategies used by laboratories to meet the unprecedented demand. Here, we review these and other cutting-edge strategies that sought to expand SARS-CoV-2 testing capacity while maintaining high individual test performance.
Collapse
Affiliation(s)
- Sanchita Das
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Karen M Frank
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Yeung PSW, Wang H, Sibai M, Solis D, Yamamoto F, Iwai N, Jiang B, Hammond N, Truong B, Bihon S, Santos S, Mar M, Mai C, Mfuh KO, Miller JA, Huang C, Sahoo MK, Zehnder JL, Pinsky BA. Evaluation of a Rapid and Accessible Reverse Transcription-Quantitative PCR Approach for SARS-CoV-2 Variant of Concern Identification. J Clin Microbiol 2022; 60:e0017822. [PMID: 35465708 PMCID: PMC9119066 DOI: 10.1128/jcm.00178-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
The ability to distinguish between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) is of ongoing interest due to differences in transmissibility, responses to vaccination, clinical prognosis, and therapy. Although detailed genetic characterization requires whole-genome sequencing (WGS), targeted nucleic acid amplification tests can serve a complementary role in clinical settings, as they are more rapid and accessible than sequencing in most laboratories. We designed and analytically validated a two-reaction multiplex reverse transcription-quantitative PCR (RT-qPCR) assay targeting spike protein mutations L452R, E484K, and N501Y in reaction 1 and del69-70, K417N, and T478K in reaction 2. This assay had 95 to 100% agreement with WGS for 502 upper respiratory tract swab samples collected between 26 April 2021 and 1 August 2021, consisting of 43 Alpha, 2 Beta, 20 Gamma, 378 Delta, and 59 non-VOC infections. Validation in a separate group of 230 WGS-confirmed Omicron variant samples collected in December 2021 and January 2022 demonstrated 100% agreement. This RT-qPCR-based approach can be implemented in clinical laboratories already performing SARS-CoV-2 nucleic acid amplification tests to assist in local epidemiological surveillance and clinical decision-making.
Collapse
Affiliation(s)
- Priscilla S.-W. Yeung
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Hannah Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Mamdouh Sibai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel Solis
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Fumiko Yamamoto
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Naomi Iwai
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Becky Jiang
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Nathan Hammond
- Clinical Genomics Laboratory, Stanford Health Care, Stanford, California, USA
| | - Bernadette Truong
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Selamawit Bihon
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Suzette Santos
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Marilyn Mar
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Claire Mai
- Clinical Genomics Laboratory, Stanford Health Care, Stanford, California, USA
| | - Kenji O. Mfuh
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Jacob A. Miller
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - ChunHong Huang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Malaya K. Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - James L. Zehnder
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin A. Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
15
|
Radvánszka M, Paul ED, Hajdu R, Boršová K, Kováčová V, Putaj P, Bírová S, Čirková I, Čarnecký M, Buranovská K, Szobi A, Vojtaššáková N, Drobná D, Čabanová V, Sláviková M, Ličková M, Vaňová V, Fumačová Havlíková S, Lukáčiková Ľ, Kajanová I, Koči J, Rusňáková D, Sedláčková T, Max KEA, Tuschl T, Szemes T, Klempa B, Čekan P. Sequential development of several RT-qPCR tests using LNA nucleotides and dual probe technology to differentiate SARS-CoV-2 from influenza A and B. Microb Biotechnol 2022; 15:1995-2021. [PMID: 35316574 PMCID: PMC9111289 DOI: 10.1111/1751-7915.14031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 12/19/2022] Open
Abstract
Sensitive and accurate RT-qPCR tests are the primary diagnostic tools to identify SARS-CoV-2-infected patients. While many SARS-CoV-2 RT-qPCR tests are available, there are significant differences in test sensitivity, workflow (e.g. hands-on-time), gene targets and other functionalities that users must consider. Several publicly available protocols shared by reference labs and public health authorities provide useful tools for SARS-CoV-2 diagnosis, but many have shortcomings related to sensitivity and laborious workflows. Here, we describe a series of SARS-CoV-2 RT-qPCR tests that are originally based on the protocol targeting regions of the RNA-dependent RNA polymerase (RdRp) and envelope (E) coding genes developed by the Charité Berlin. We redesigned the primers/probes, utilized locked nucleic acid nucleotides, incorporated dual probe technology and conducted extensive optimizations of reaction conditions to enhance the sensitivity and specificity of these tests. By incorporating an RNase P internal control and developing multiplexed assays for distinguishing SARS-CoV-2 and influenza A and B, we streamlined the workflow to provide quicker results and reduced consumable costs. Some of these tests use modified enzymes enabling the formulation of a room temperature-stable master mix and lyophilized positive control, thus increasing the functionality of the test and eliminating cold chain shipping and storage. Moreover, a rapid, RNA extraction-free version enables high sensitivity detection of SARS-CoV-2 in about an hour using minimally invasive, self-collected gargle samples. These RT-qPCR assays can easily be implemented in any diagnostic laboratory and can provide a powerful tool to detect SARS-CoV-2 and the most common seasonal influenzas during the vaccination phase of the pandemic.
Collapse
Affiliation(s)
- Monika Radvánszka
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Evan D Paul
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Roman Hajdu
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA.,College of Medical, Veterinary and Life Sciences, School of Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Kristína Boršová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Viera Kováčová
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA.,Institute for Biological Physics, University of Cologne, Zülpicher Str. 77, Köln, 50937, Germany
| | - Piotr Putaj
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Stanislava Bírová
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Ivana Čirková
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Martin Čarnecký
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Katarína Buranovská
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Adrián Szobi
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Nina Vojtaššáková
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Diana Drobná
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Viktória Čabanová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Monika Sláviková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Martina Ličková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Veronika Vaňová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Sabína Fumačová Havlíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Ľubomíra Lukáčiková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Ivana Kajanová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Juraj Koči
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Diana Rusňáková
- Geneton s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava, 842 15, Slovakia
| | - Tatiana Sedláčková
- Geneton s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia
| | - Klaas E A Max
- Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Thomas Tuschl
- Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Tomáš Szemes
- Geneton s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava, 842 15, Slovakia.,Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia
| | - Boris Klempa
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Pavol Čekan
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| |
Collapse
|
16
|
Nörz D, Grunwald M, Tang HT, Weinschenk C, Günther T, Robitaille A, Giersch K, Fischer N, Grundhoff A, Aepfelbacher M, Pfefferle S, Lütgehetmann M. Clinical Evaluation of a Fully-Automated High-Throughput Multiplex Screening-Assay to Detect and Differentiate the SARS-CoV-2 B.1.1.529 (Omicron) and B.1.617.2 (Delta) Lineage Variants. Viruses 2022; 14:608. [PMID: 35337015 PMCID: PMC8950896 DOI: 10.3390/v14030608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The recently emerged SARS-CoV-2 B.1.1.529 lineage and its sublineages (Omicron variant) pose a new challenge to healthcare systems worldwide due to its ability to efficiently spread in immunized populations and its resistance to currently available monoclonal antibody therapies. RT-PCR-based variant tests can be used to screen large sample-sets rapidly and accurately for relevant variants of concern (VOC). The aim of this study was to establish and validate a multiplex assay on the cobas 6800/8800 systems to allow discrimination between the two currently circulating VOCs, Omicron and Delta, in clinical samples. METHODS Primers and probes were evaluated for multiplex compatibility. Analytic performance was assessed using cell culture supernatant of an Omicron variant isolate and a clinical Delta variant sample, normalized to WHO-Standard. Clinical performance of the multiplex assay was benchmarked against NGS results. RESULTS In silico testing of all oligos showed no interactions with a high risk of primer-dimer formation or amplification of human DNA/RNA. Over 99.9% of all currently available Omicron variant sequences are a perfect match for at least one of the three Omicron targets included in the multiplex. Analytic sensitivity was determined as 19.0 IU/mL (CI95%: 12.9-132.2 IU/mL) for the A67V + del-HV69-70 target, 193.9 IU/mL (CI95%: 144.7-334.7 IU/mL) for the E484A target, 35.5 IU/mL (CI95%: 23.3-158.0 IU/mL) for the N679K + P681H target and 105.0 IU/mL (CI95%: 80.7-129.3 IU/mL) for the P681R target. All sequence variances were correctly detected in the clinical sample set (225/225 Targets). CONCLUSION RT-PCR-based variant screening compared to whole genome sequencing is both rapid and reliable in detecting relevant sequence variations in SARS-CoV-2 positive samples to exclude or verify relevant VOCs. This allows short-term decision-making, e.g., for patient treatment or public health measures.
Collapse
Affiliation(s)
- Dominik Nörz
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.N.); (M.G.); (H.T.T.); (C.W.); (K.G.); (N.F.); (M.A.); (S.P.)
| | - Moritz Grunwald
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.N.); (M.G.); (H.T.T.); (C.W.); (K.G.); (N.F.); (M.A.); (S.P.)
| | - Hui Ting Tang
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.N.); (M.G.); (H.T.T.); (C.W.); (K.G.); (N.F.); (M.A.); (S.P.)
| | - Celine Weinschenk
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.N.); (M.G.); (H.T.T.); (C.W.); (K.G.); (N.F.); (M.A.); (S.P.)
| | - Thomas Günther
- Leibniz Institute for Experimental Virology (HPI), Virus Genomics, 20251 Hamburg, Germany; (T.G.); (A.R.); (A.G.)
| | - Alexis Robitaille
- Leibniz Institute for Experimental Virology (HPI), Virus Genomics, 20251 Hamburg, Germany; (T.G.); (A.R.); (A.G.)
| | - Katja Giersch
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.N.); (M.G.); (H.T.T.); (C.W.); (K.G.); (N.F.); (M.A.); (S.P.)
| | - Nicole Fischer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.N.); (M.G.); (H.T.T.); (C.W.); (K.G.); (N.F.); (M.A.); (S.P.)
| | - Adam Grundhoff
- Leibniz Institute for Experimental Virology (HPI), Virus Genomics, 20251 Hamburg, Germany; (T.G.); (A.R.); (A.G.)
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.N.); (M.G.); (H.T.T.); (C.W.); (K.G.); (N.F.); (M.A.); (S.P.)
| | - Susanne Pfefferle
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.N.); (M.G.); (H.T.T.); (C.W.); (K.G.); (N.F.); (M.A.); (S.P.)
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.N.); (M.G.); (H.T.T.); (C.W.); (K.G.); (N.F.); (M.A.); (S.P.)
| |
Collapse
|
17
|
Hosch S, Mpina M, Nyakurungu E, Borico NS, Obama TMA, Ovona MC, Wagner P, Rubin SE, Vickos U, Milang DVN, Ayekaba MO, Phiri WP, Daubenberger CA, Schindler T. Genomic Surveillance Enables the Identification of Co-infections With Multiple SARS-CoV-2 Lineages in Equatorial Guinea. Front Public Health 2022; 9:818401. [PMID: 35059385 PMCID: PMC8763705 DOI: 10.3389/fpubh.2021.818401] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
COVID-19 disease caused by SARS-CoV-2 represents an ongoing global public health emergency. Rapid identification of emergence, evolution, and spread of SARS-CoV-2 variants of concern (VOC) would enable timely and tailored responses by public health decision-making bodies. Yet, global disparities in current SARS-CoV-2 genomic surveillance activities reveal serious geographical gaps. Here, we discuss the experiences and lessons learned from the SARS-CoV-2 monitoring and surveillance program at the Public Health Laboratory on Bioko Island, Equatorial Guinea that was implemented as part of the national COVID-19 response and monitoring activities. We report how three distinct SARS-CoV-2 variants have dominated the epidemiological situation in Equatorial Guinea since March 2020. In addition, a case of co-infection of two SARS-CoV-2 VOC, Beta and Delta, in a clinically asymptomatic and fully COVID-19 vaccinated man living in Equatorial Guinea is presented. To our knowledge, this is the first report of a person co-infected with Beta and Delta VOC globally. Rapid identification of co-infections is relevant since these might provide an opportunity for genetic recombination resulting in emergence of novel SARS-CoV-2 lineages with enhanced transmission or immune evasion potential.
Collapse
Affiliation(s)
- Salome Hosch
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Maxmillian Mpina
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Laboratorio de Investigaciones de Baney, Baney, Equatorial Guinea
| | | | | | | | | | - Philipp Wagner
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sarah E. Rubin
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ulrich Vickos
- Infectious and Tropical Diseases Unit, Department of Medicine, Amitié Hospital, Bangui, Central African Republic
- Academic Department of Pediatrics, Clinical Immunology and Vaccinology, Children's Hospital Bambino Gesù, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | | | | | - Wonder P. Phiri
- Medical Care Development International, Malabo, Equatorial Guinea
| | - Claudia A. Daubenberger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Tobias Schindler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Brejová B, Boršová K, Hodorová V, Čabanová V, Gafurov A, Fričová D, Neboháčová M, Vinař T, Klempa B, Nosek J. Nanopore sequencing of SARS-CoV-2: Comparison of short and long PCR-tiling amplicon protocols. PLoS One 2021; 16:e0259277. [PMID: 34714886 PMCID: PMC8555800 DOI: 10.1371/journal.pone.0259277] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
Surveillance of the SARS-CoV-2 variants including the quickly spreading mutants by rapid and near real-time sequencing of the viral genome provides an important tool for effective health policy decision making in the ongoing COVID-19 pandemic. Here we evaluated PCR-tiling of short (~400-bp) and long (~2 and ~2.5-kb) amplicons combined with nanopore sequencing on a MinION device for analysis of the SARS-CoV-2 genome sequences. Analysis of several sequencing runs demonstrated that using the long amplicon schemes outperforms the original protocol based on the 400-bp amplicons. It also illustrated common artefacts and problems associated with PCR-tiling approach, such as uneven genome coverage, variable fraction of discarded sequencing reads, including human and bacterial contamination, as well as the presence of reads derived from the viral sub-genomic RNAs.
Collapse
Affiliation(s)
- Broňa Brejová
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Kristína Boršová
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovak Republic
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Viktória Hodorová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Viktória Čabanová
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Askar Gafurov
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Dominika Fričová
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Martina Neboháčová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Tomáš Vinař
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Boris Klempa
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
19
|
Yaniv K, Ozer E, Shagan M, Lakkakula S, Plotkin N, Bhandarkar NS, Kushmaro A. Direct RT-qPCR assay for SARS-CoV-2 variants of concern (Alpha, B.1.1.7 and Beta, B.1.351) detection and quantification in wastewater. ENVIRONMENTAL RESEARCH 2021; 201:111653. [PMID: 34245731 PMCID: PMC8262398 DOI: 10.1016/j.envres.2021.111653] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 05/18/2023]
Abstract
Less than a year following the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak, variants of concern have emerged in the form of variant Alpha (B.1.1.7, the British variant) and Beta (B.1.351, the South Africa variant). Due to their high infectivity and morbidity, it has become clear that it is crucial to quickly and effectively detect these and other variants. Here, we report improved primers-probe sets for reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) for SARS-CoV-2 detection including a rapid, cost-effective, and direct RT-qPCR method for detection of the two variants of concern (Alpha, B.1.1.7 and Beta, B.1.351). All the developed primers-probe sets were fully characterized, demonstrating sensitive and specific detection. These primer-probe sets were also successfully employed on wastewater samples aimed at detecting and even quantifying new variants in a geographical area, even prior to the reports by the medical testing. The novel primers-probe sets presented here will enable proper responses for pandemic containment, particularly considering the emergence of variants of concern.
Collapse
Affiliation(s)
- Karin Yaniv
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Eden Ozer
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marilou Shagan
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Satish Lakkakula
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Noam Plotkin
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Nikhil Suresh Bhandarkar
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel; The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel.
| |
Collapse
|
20
|
Nörz D, Grunwald M, Tang HT, Olearo F, Günther T, Robitaille A, Fischer N, Grundhoff A, Aepfelbacher M, Pfefferle S, Lütgehetmann M. Rapid Automated Screening for SARS-CoV-2 B.1.617 Lineage Variants (Delta/Kappa) through a Versatile Toolset of qPCR-Based SNP Detection. Diagnostics (Basel) 2021; 11:1818. [PMID: 34679517 PMCID: PMC8534837 DOI: 10.3390/diagnostics11101818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The recent emergence of distinct and highly successful SARS-CoV-2 lineages has substantial implications for individual patients and public health measures. While next-generation-sequencing is routinely performed for surveillance purposes, RT-qPCR can be used to rapidly rule-in or rule-out relevant variants, e.g., in outbreak scenarios. The objective of this study was to create an adaptable and comprehensive toolset for multiplexed Spike-gene SNP detection, which was applied to screen for SARS-CoV-2 B.1.617 lineage variants. METHODS We created a broad set of single nucleotide polymorphism (SNP)-assays including del-Y144/145, E484K, E484Q, P681H, P681R, L452R, and V1176F based on a highly specific multi-LNA (locked nucleic acid)-probe design to maximize mismatch discrimination. As proof-of-concept, a multiplex-test was compiled and validated (SCOV2-617VOC-UCT) including SNP-detection for L452R, P681R, E484K, and E484Q to provide rapid screening capabilities for the novel B.1.617 lineages. RESULTS For the multiplex-test (SCOV2-617VOC-UCT), the analytic lower limit of detection was determined as 182 IU/mL for L452R, 144 IU/mL for P681R, and 79 IU/mL for E484Q. A total of 233 clinical samples were tested with the assay, including various on-target and off-target sequences. All SNPs (179/179 positive) were correctly identified as determined by SARS-CoV-2 whole genome sequencing. CONCLUSION The recurrence of SNP locations and flexibility of methodology presented in this study allows for rapid adaptation to current and future variants. Furthermore, the ability to multiplex various SNP-assays into screening panels improves speed and efficiency for variant testing. We show 100% concordance with whole genome sequencing for a B.1.617.2 screening assay on the cobas6800 high-throughput system.
Collapse
Affiliation(s)
- Dominik Nörz
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.N.); (M.G.); (H.T.T.); (F.O.); (N.F.); (M.A.); (S.P.)
| | - Moritz Grunwald
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.N.); (M.G.); (H.T.T.); (F.O.); (N.F.); (M.A.); (S.P.)
| | - Hui Ting Tang
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.N.); (M.G.); (H.T.T.); (F.O.); (N.F.); (M.A.); (S.P.)
| | - Flaminia Olearo
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.N.); (M.G.); (H.T.T.); (F.O.); (N.F.); (M.A.); (S.P.)
| | - Thomas Günther
- Virus Genomics, Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (T.G.); (A.R.); (A.G.)
| | - Alexis Robitaille
- Virus Genomics, Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (T.G.); (A.R.); (A.G.)
| | - Nicole Fischer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.N.); (M.G.); (H.T.T.); (F.O.); (N.F.); (M.A.); (S.P.)
| | - Adam Grundhoff
- Virus Genomics, Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (T.G.); (A.R.); (A.G.)
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.N.); (M.G.); (H.T.T.); (F.O.); (N.F.); (M.A.); (S.P.)
| | - Susanne Pfefferle
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.N.); (M.G.); (H.T.T.); (F.O.); (N.F.); (M.A.); (S.P.)
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.N.); (M.G.); (H.T.T.); (F.O.); (N.F.); (M.A.); (S.P.)
| |
Collapse
|
21
|
Yaniv K, Ozer E, Shagan M, Lakkakula S, Plotkin N, Bhandarkar NS, Kushmaro A. Direct RT-qPCR assay for SARS-CoV-2 variants of concern (Alpha, B.1.1.7 and Beta, B.1.351) detection and quantification in wastewater. ENVIRONMENTAL RESEARCH 2021. [PMID: 34245731 DOI: 10.1016/j.envres.2021a.111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Less than a year following the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak, variants of concern have emerged in the form of variant Alpha (B.1.1.7, the British variant) and Beta (B.1.351, the South Africa variant). Due to their high infectivity and morbidity, it has become clear that it is crucial to quickly and effectively detect these and other variants. Here, we report improved primers-probe sets for reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) for SARS-CoV-2 detection including a rapid, cost-effective, and direct RT-qPCR method for detection of the two variants of concern (Alpha, B.1.1.7 and Beta, B.1.351). All the developed primers-probe sets were fully characterized, demonstrating sensitive and specific detection. These primer-probe sets were also successfully employed on wastewater samples aimed at detecting and even quantifying new variants in a geographical area, even prior to the reports by the medical testing. The novel primers-probe sets presented here will enable proper responses for pandemic containment, particularly considering the emergence of variants of concern.
Collapse
Affiliation(s)
- Karin Yaniv
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Eden Ozer
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marilou Shagan
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Satish Lakkakula
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Noam Plotkin
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Nikhil Suresh Bhandarkar
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel; The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel.
| |
Collapse
|