1
|
Liu XH, Zhong NN, Yi JR, Lin H, Liu B, Man QW. Trends in Research of Odontogenic Keratocyst and Ameloblastoma. J Dent Res 2025; 104:347-368. [PMID: 39876078 DOI: 10.1177/00220345241282256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Odontogenic keratocyst (OKC) and ameloblastoma (AM) are common jaw lesions with high bone-destructive potential and recurrence rates. Recent advancements in technology led to significant progress in understanding these conditions. Single-cell and spatial omics have improved insights into the tumor microenvironment and cellular heterogeneity in OKC and AM. Fibroblast subsets in OKC and tumor cell subsets in AM have been analyzed, revealing mechanisms behind their biological behaviors, including OKC's osteolytic features and AM's recurrence tendencies. Spatial transcriptomics studies of AM have identified engineered fibroblasts and osteoblasts contributing to matrix remodeling gene and oncogene expression at the invasion frontier, driving AM progression. Three-dimensional culture technologies such as organoid models have refined analysis of AM subtypes; uncovered the role of AM fibroblasts in promoting tumor cell proliferation and invasion; and identified signaling pathways such as FOSL1, BRD4, EZH2, and Wnt as potential therapeutic targets. Organoid models also served as preclinical platforms for testing potential therapies. Although preclinical models for AM exist, reliable in vitro and in vivo models for OKC remain scarce. Promising mimic models, including human embryonic stem cells-derived epithelial cells, human oral keratinocytes, human immortalized oral epithelial cells, and HaCaT keratinocytes, show promise, but the advancements in 3-dimensional culture technology are expected to lead to further breakthroughs in this area. Artificial intelligence, including machine learning and deep learning, has enhanced radiomics-based diagnostic accuracy, distinguishing OKC and AM beyond clinician capability. Pathomics-based models further predict OKC prognosis and differentiate AM from ameloblastic carcinoma. Clinical studies have shown positive outcomes with targeted therapies. In a study investigating SMO-targeted treatments for nevoid basal cell carcinoma syndrome, nearly all OKC lesions resolved in 3 patients. A recent clinical trial with neoadjuvant BRAF-targeted therapy for AM demonstrated promising radiologic responses, potentially enabling organ preservation. This review highlights recent advancements and trends in OKC and AM research, aiming to inspire further exploration and progress in these fields.
Collapse
Affiliation(s)
- X-H Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - N-N Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J-R Yi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - B Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Q-W Man
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Yurdakurban E, Süküt Y, Duran GS. Assessment of deep learning technique for fully automated mandibular segmentation. Am J Orthod Dentofacial Orthop 2025; 167:242-249. [PMID: 39863342 DOI: 10.1016/j.ajodo.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/01/2024] [Accepted: 09/01/2024] [Indexed: 01/27/2025]
Abstract
INTRODUCTION This study aimed to assess the precision of an open-source, clinician-trained, and user-friendly convolutional neural network-based model for automatically segmenting the mandible. METHODS A total of 55 cone-beam computed tomography scans that met the inclusion criteria were collected and divided into test and training groups. The MONAI (Medical Open Network for Artificial Intelligence) Label active learning tool extension was used to train the automatic model. To assess the model's performance, 15 cone-beam computed tomography scans from the test group were inputted into the model. The ground truth was obtained from manual segmentation data. Metrics including the Dice similarity coefficient, Hausdorff 95%, precision, recall, and segmentation times were calculated. In addition, surface deviations and volumetric differences between the automated and manual segmentation results were analyzed. RESULTS The automated model showed a high level of similarity to the manual segmentation results, with a mean Dice similarity coefficient of 0.926 ± 0.014. The Hausdorff distance was 1.358 ± 0.466 mm, whereas the mean recall and precision values were 0.941 ± 0.028 and 0.941 ± 0.022, respectively. There were no statistically significant differences in the arithmetic mean of the surface deviation for the entire mandible and 11 different anatomic regions. In terms of volumetric comparisons, the difference between the 2 groups was 1.62 mm³, which was not statistically significant. CONCLUSIONS The automated model was found to be suitable for clinical use, demonstrating a high degree of agreement with the reference manual method. Clinicians can use open-source software to develop custom automated segmentation models tailored to their specific needs.
Collapse
Affiliation(s)
- Ebru Yurdakurban
- Department of Orthodontics, Faculty of Dentistry, Muğla Sıtkı Koçman University, Muğla, Turkey.
| | - Yağızalp Süküt
- Department of Orthodontics, Gulhane Faculty of Dentistry, University of Health Sciences, Ankara, Turkey
| | - Gökhan Serhat Duran
- Department of Orthodontics, Faculty of Dentistry, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
3
|
Dang RR, Kadaikal B, Abbadi SE, Brar BR, Sethi A, Chigurupati R. The current landscape of artificial intelligence in oral and maxillofacial surgery- a narrative review. Oral Maxillofac Surg 2025; 29:37. [PMID: 39820789 DOI: 10.1007/s10006-025-01334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
OBJECTIVE This narrative review aims to explore the current applications and future prospects of AI within the subfields of oral and maxillofacial surgery (OMS), emphasizing its potential benefits and anticipated challenges. METHODS A detailed review of the literature was conducted to evaluate the role of AI in oral and maxillofacial surgery. All domains within OMS were reviewed with a focus on diagnostic, therapeutic and prognostic interventions. RESULTS AI has been successfully integrated into surgical specialties to enhance clinical outcomes. In OMS, AI demonstrates potential to improve clinical and administrative workflows in both ambulatory and hospital-based settings. Notable applications include more accurate risk prediction, minimally invasive surgical techniques, and optimized postoperative management. CONCLUSION OMS stands to benefit enormously from the integration of AI. However, significant roadblocks, such as ethical concerns, data security, and integration challenges, must be addressed to ensure effective adoption. Further research and innovation are needed to fully realize the potential of AI in this specialty.
Collapse
Affiliation(s)
- Rushil Rajiv Dang
- Department of Oral and Maxillofacial, Boston University and Boston Medical Center, 635 Albany Street, 02118, Boston, MA, USA.
| | - Balram Kadaikal
- Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Sam El Abbadi
- Consultant, Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital OWL, Campus Klinikum Bielefeld, Bielefeld, Germany
| | - Branden R Brar
- Department of Oral and Maxillofacial, Boston University and Boston Medical Center, Boston, MA, USA
| | - Amit Sethi
- Department of Oral and Maxillofacial, Boston University and Boston Medical Center, Boston, MA, USA
| | - Radhika Chigurupati
- Department of Oral and Maxillofacial surgery, Boston Medical Center, Boston, MA, USA
| |
Collapse
|
4
|
Yao S, Huang Y, Wang X, Zhang Y, Paixao IC, Wang Z, Chai CL, Wang H, Lu D, Webb GI, Li S, Guo Y, Chen Q, Song J. A Radiograph Dataset for the Classification, Localization, and Segmentation of Primary Bone Tumors. Sci Data 2025; 12:88. [PMID: 39820508 PMCID: PMC11739492 DOI: 10.1038/s41597-024-04311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025] Open
Abstract
Primary malignant bone tumors are the third highest cause of cancer-related mortality among patients under the age of 20. X-ray scan is the primary tool for detecting bone tumors. However, due to the varying morphologies of bone tumors, it is challenging for radiologists to make a definitive diagnosis based on radiographs. With the recent advancement in deep learning algorithms, there is a surge of interest in computer-aided diagnosis of primary bone tumors. Nonetheless, the development in this field has been hindered by the lack of publicly available X-ray datasets for bone tumors. To tackle this challenge, we established the Bone Tumor X-ray Radiograph dataset (termed BTXRD) in collaboration with multiple medical institutes and hospitals. The BTXRD dataset comprises 3,746 bone images (1,879 normal and 1,867 tumor), with clinical information and global labels available for each image, and distinct mask and annotated bounding box for each tumor instance. This publicly available dataset can support the development and evaluation of deep learning algorithms for the diagnosis of primary bone tumors.
Collapse
Affiliation(s)
- Shunhan Yao
- Medical College, Guangxi University, Nanning, Guangxi, 530000, China
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Yuanxiang Huang
- School of Computer, Electronic and Information, Guangxi University, Nanning, Guangxi, 530000, China
| | - Xiaoyu Wang
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Yiwen Zhang
- School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Ian Costa Paixao
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Zhikang Wang
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Charla Lu Chai
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Hongtao Wang
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, China
| | - Dinggui Lu
- Department of Traumatology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Geoffrey I Webb
- Department of Data Science and AI, Faculty of Information Technology, Monash University, Melbourne, VIC, 3800, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Qingfeng Chen
- School of Computer, Electronic and Information, Guangxi University, Nanning, Guangxi, 530000, China.
- Department of Data Science and AI, Faculty of Information Technology, Monash University, Melbourne, VIC, 3800, Australia.
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
5
|
Chen S, Yang Y, Wu W, Wei R, Wang Z, Tay FR, Hu J, Ma J. Classification of Caries Based on CBCT: A Deep Learning Network Interpretability Study. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:3160-3173. [PMID: 38806951 PMCID: PMC11612060 DOI: 10.1007/s10278-024-01143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
This study aimed to create a caries classification scheme based on cone-beam computed tomography (CBCT) and develop two deep learning models to improve caries classification accuracy. A total of 2713 axial slices were obtained from CBCT images of 204 carious teeth. Both classification models were trained and tested using the same pretrained classification networks on the dataset, including ResNet50_vd, MobileNetV3_large_ssld, and ResNet50_vd_ssld. The first model was used directly to classify the original images (direct classification model). The second model incorporated a presegmentation step for interpretation (interpretable classification model). Performance evaluation metrics including accuracy, precision, recall, and F1 score were calculated. The Local Interpretable Model-agnostic Explanations (LIME) method was employed to elucidate the decision-making process of the two models. In addition, a minimum distance between caries and pulp was introduced for determining the treatment strategies for type II carious teeth. The direct model that utilized the ResNet50_vd_ssld network achieved top accuracy, precision, recall, and F1 score of 0.700, 0.786, 0.606, and 0.616, respectively. Conversely, the interpretable model consistently yielded metrics surpassing 0.917, irrespective of the network employed. The LIME algorithm confirmed the interpretability of the classification models by identifying key image features for caries classification. Evaluation of treatment strategies for type II carious teeth revealed a significant negative correlation (p < 0.01) with the minimum distance. These results demonstrated that the CBCT-based caries classification scheme and the two classification models appeared to be acceptable tools for the diagnosis and categorization of dental caries.
Collapse
Affiliation(s)
- Surong Chen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yan Yang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Weiwei Wu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Ruonan Wei
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zezhou Wang
- West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Franklin R Tay
- Department of Endodontics, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Jingyu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| | - Jingzhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
6
|
Chen W, Dhawan M, Liu J, Ing D, Mehta K, Tran D, Lawrence D, Ganhewa M, Cirillo N. Mapping the Use of Artificial Intelligence-Based Image Analysis for Clinical Decision-Making in Dentistry: A Scoping Review. Clin Exp Dent Res 2024; 10:e70035. [PMID: 39600121 PMCID: PMC11599430 DOI: 10.1002/cre2.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/19/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES Artificial intelligence (AI) is an emerging field in dentistry. AI is gradually being integrated into dentistry to improve clinical dental practice. The aims of this scoping review were to investigate the application of AI in image analysis for decision-making in clinical dentistry and identify trends and research gaps in the current literature. MATERIAL AND METHODS This review followed the guidelines provided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR). An electronic literature search was performed through PubMed and Scopus. After removing duplicates, a preliminary screening based on titles and abstracts was performed. A full-text review and analysis were performed according to predefined inclusion criteria, and data were extracted from eligible articles. RESULTS Of the 1334 articles returned, 276 met the inclusion criteria (consisting of 601,122 images in total) and were included in the qualitative synthesis. Most of the included studies utilized convolutional neural networks (CNNs) on dental radiographs such as orthopantomograms (OPGs) and intraoral radiographs (bitewings and periapicals). AI was applied across all fields of dentistry - particularly oral medicine, oral surgery, and orthodontics - for direct clinical inference and segmentation. AI-based image analysis was use in several components of the clinical decision-making process, including diagnosis, detection or classification, prediction, and management. CONCLUSIONS A variety of machine learning and deep learning techniques are being used for dental image analysis to assist clinicians in making accurate diagnoses and choosing appropriate interventions in a timely manner.
Collapse
Affiliation(s)
- Wei Chen
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Monisha Dhawan
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Jonathan Liu
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Damie Ing
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Kruti Mehta
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Daniel Tran
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | | | - Max Ganhewa
- CoTreatAI, CoTreat Pty Ltd.MelbourneVictoriaAustralia
| | - Nicola Cirillo
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
- CoTreatAI, CoTreat Pty Ltd.MelbourneVictoriaAustralia
| |
Collapse
|
7
|
Esmaeilyfard R, Esmaeeli N, Paknahad M. An artificial intelligence mechanism for detecting cystic lesions on CBCT images using deep learning. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 126:102152. [PMID: 39551180 DOI: 10.1016/j.jormas.2024.102152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
INTRODUCTION The present study aimed to provide and evaluate the efficiency of an artificial intelligence mechanism for detecting cystic lesions on cone beam computed tomography (CBCT) scans. METHOD AND MATERIALS The CBCT image dataset consisted of 150 samples, including 50 cases without lesions, 50 dentigerous cysts (DC), and 50 periapical cysts (PC) based on both radiographic and histopathological diagnosis. The dataset was divided into a development set with 70 % of samples for training and validation and a final test set with the other 30 % of samples. Four images were obtained for each case, including panoramic, manually segmented panoramic, axial, and manually segmented axial images. A deep convolutional neural network (CNN) architecture was used for automatic lesion detection and diagnosing the type of cystic lesion. To increase the number of image samples and avoid overfitting, a data augmentation procedure was applied. Recall, precision, F1-score, and average precision (AP) values were measured for lesion detection performance, and sensitivity, specificity, and accuracy indicators from the confusion matrix were calculated for the lesion classification performance of the CNN model. RESULTS Mean average precision, recall, and F1-score for the detection of DCs and PCs were respectively, 0.87, 0.92, and 0.89 before data augmentation, and 0.93, 0.95, and 0.93, after the augmentation process. For the classification of DCs with data augmentation, sensitivity, specificity, accuracy, and AUC values were 96.4 %, 99.5 %, 97.3 %, and 0.98, respectively, and for PCs with augmentation, these values were 89.6 %, 98.9 %, 98.1 %, and 0.94, respectively. Lastly, for no lesion samples, sensitivity, specificity, accuracy, and AUC values were 100 %, 99.1 %, 99.4 %, and 0.99, respectively, by application of data augmentation. CONCLUSION Our developed deep learning-based CNN algorithm showed high accuracy, sensitivity, and precision values (more than 90 %) for detecting and classifying dentigerous and periapical cysts on CBCT images using data augmentation.
Collapse
Affiliation(s)
- Rasool Esmaeilyfard
- Department of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran
| | - Nasim Esmaeeli
- Assistant Professor, Department of oral and maxillofacial Radiology, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Maryam Paknahad
- Oral and Dental Disease Research Center, Oral and Maxillofacial Radiology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Lin H, Chen J, Hu Y, Li W. Embracing technological revolution: A panorama of machine learning in dentistry. Med Oral Patol Oral Cir Bucal 2024; 29:e742-e749. [PMID: 39418127 PMCID: PMC11584966 DOI: 10.4317/medoral.26679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The overarching aim of this study is to furnish dental experts and researchers with a comprehensive understanding of the role of machine learning in dentistry. This entails a nuanced understanding of prevailing technologies, discerning emerging trends, and providing strategic guidance for future research endeavors and practical implementations. MATERIAL AND METHODS We assessed the literature by looking for papers related to the issue after 2019 in the Pubmed, Web of Science, and Google Scholar databases. A narrative review of 29 papers satisfying the search criteria was undertaken, with an emphasis on the application of machine learning in dentistry. RESULTS A review was conducted, including 29 publications. The advent of emerging technologies holds promise for enhancing the accuracy and efficiency of dental diagnosis, treatment, and prognosis. Nevertheless, the intricate nature of oral disease diagnosis and outcome prediction mandates acknowledgment of variables such as individual idiosyncrasies, lifestyle, genetics, image quality, and tooth morphology. These factors may impact the precision of machine learning models. Dental professionals should not rely solely on AI-based results but rather use them as references. Integrating these findings with clinical examinations, assessing the patient's overall health, and oral condition is crucial for informed decision-making. CONCLUSIONS This review explores the clinical applications of machine learning in dentistry, encompassing disciplines like cariology, endodontics, periodontology, oral medicine, oral and maxillofacial surgery, prosthodontics and orthodontics. It serves as a valuable resource for dental practitioners and scholars in understanding the computer algorithms employed in each study, facilitating the clinical translation of machine learning research outcomes.
Collapse
Affiliation(s)
- H Lin
- 72 Xiangya Road, Kaifu District Hunan Key Laboratory of Oral Health Research Central South University, Changsha, 410008, P. R. China
| | | | | | | |
Collapse
|
9
|
Alharbi SS, Alhasson HF. Exploring the Applications of Artificial Intelligence in Dental Image Detection: A Systematic Review. Diagnostics (Basel) 2024; 14:2442. [PMID: 39518408 PMCID: PMC11545562 DOI: 10.3390/diagnostics14212442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Dental care has been transformed by neural networks, introducing advanced methods for improving patient outcomes. By leveraging technological innovation, dental informatics aims to enhance treatment and diagnostic processes. Early diagnosis of dental problems is crucial, as it can substantially reduce dental disease incidence by ensuring timely and appropriate treatment. The use of artificial intelligence (AI) within dental informatics is a pivotal tool that has applications across all dental specialties. This systematic literature review aims to comprehensively summarize existing research on AI implementation in dentistry. It explores various techniques used for detecting oral features such as teeth, fillings, caries, prostheses, crowns, implants, and endodontic treatments. AI plays a vital role in the diagnosis of dental diseases by enabling precise and quick identification of issues that may be difficult to detect through traditional methods. Its ability to analyze large volumes of data enhances diagnostic accuracy and efficiency, leading to better patient outcomes. METHODS An extensive search was conducted across a number of databases, including Science Direct, PubMed (MEDLINE), arXiv.org, MDPI, Nature, Web of Science, Google Scholar, Scopus, and Wiley Online Library. RESULTS The studies included in this review employed a wide range of neural networks, showcasing their versatility in detecting the dental categories mentioned above. Additionally, the use of diverse datasets underscores the adaptability of these AI models to different clinical scenarios. This study highlights the compatibility, robustness, and heterogeneity among the reviewed studies. This indicates that AI technologies can be effectively integrated into current dental practices. The review also discusses potential challenges and future directions for AI in dentistry. It emphasizes the need for further research to optimize these technologies for broader clinical applications. CONCLUSIONS By providing a detailed overview of AI's role in dentistry, this review aims to inform practitioners and researchers about the current capabilities and future potential of AI-driven dental care, ultimately contributing to improved patient outcomes and more efficient dental practices.
Collapse
Affiliation(s)
- Shuaa S. Alharbi
- Department of Information Technology, College of Computer, Qassim University, Buraydah 52571, Saudi Arabia;
| | | |
Collapse
|
10
|
Ding X, Jiang X, Zheng H, Shi H, Wang B, Chan S. MARes-Net: multi-scale attention residual network for jaw cyst image segmentation. Front Bioeng Biotechnol 2024; 12:1454728. [PMID: 39161348 PMCID: PMC11330813 DOI: 10.3389/fbioe.2024.1454728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Jaw cyst is a fluid-containing cystic lesion that can occur in any part of the jaw and cause facial swelling, dental lesions, jaw fractures, and other associated issues. Due to the diversity and complexity of jaw images, existing deep-learning methods still have challenges in segmentation. To this end, we propose MARes-Net, an innovative multi-scale attentional residual network architecture. Firstly, the residual connection is used to optimize the encoder-decoder process, which effectively solves the gradient disappearance problem and improves the training efficiency and optimization ability. Secondly, the scale-aware feature extraction module (SFEM) significantly enhances the network's perceptual abilities by extending its receptive field across various scales, spaces, and channel dimensions. Thirdly, the multi-scale compression excitation module (MCEM) compresses and excites the feature map, and combines it with contextual information to obtain better model performance capabilities. Furthermore, the introduction of the attention gate module marks a significant advancement in refining the feature map output. Finally, rigorous experimentation conducted on the original jaw cyst dataset provided by Quzhou People's Hospital to verify the validity of MARes-Net architecture. The experimental data showed that precision, recall, IoU and F1-score of MARes-Net reached 93.84%, 93.70%, 86.17%, and 93.21%, respectively. Compared with existing models, our MARes-Net shows its unparalleled capabilities in accurately delineating and localizing anatomical structures in the jaw cyst image segmentation.
Collapse
Affiliation(s)
- Xiaokang Ding
- College of Mechanical Engineering, Quzhou University, Quzhou, China
| | - Xiaoliang Jiang
- College of Mechanical Engineering, Quzhou University, Quzhou, China
| | - Huixia Zheng
- Department of Stomatology, Quzhou People’s Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Hualuo Shi
- College of Mechanical Engineering, Quzhou University, Quzhou, China
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Ban Wang
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Sixian Chan
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
11
|
Shrivastava PK, Hasan S, Abid L, Injety R, Shrivastav AK, Sybil D. Accuracy of machine learning in the diagnosis of odontogenic cysts and tumors: a systematic review and meta-analysis. Oral Radiol 2024; 40:342-356. [PMID: 38530559 DOI: 10.1007/s11282-024-00745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND The recent impact of artificial intelligence in diagnostic services has been enormous. Machine learning tools offer an innovative alternative to diagnose cysts and tumors radiographically that pose certain challenges due to the near similar presentation, anatomical variations, and superimposition. It is crucial that the performance of these models is evaluated for their clinical applicability in diagnosing cysts and tumors. METHODS A comprehensive literature search was carried out on eminent databases for published studies between January 2015 and December 2022. Studies utilizing machine learning models in the diagnosis of odontogenic cysts or tumors using Orthopantomograms (OPG) or Cone Beam Computed Tomographic images (CBCT) were included. QUADAS-2 tool was used for the assessment of the risk of bias and applicability concerns. Meta-analysis was performed for studies reporting sufficient performance metrics, separately for OPG and CBCT. RESULTS 16 studies were included for qualitative synthesis including a total of 10,872 odontogenic cysts and tumors. The sensitivity and specificity of machine learning in diagnosing cysts and tumors through OPG were 0.83 (95% CI 0.81-0.85) and 0.82 (95% CI 0.81-0.83) respectively. Studies utilizing CBCT noted a sensitivity of 0.88 (95% CI 0.87-0.88) and specificity of 0.88 (95% CI 0.87-0.89). Highest classification accuracy was 100%, noted for Support Vector Machine classifier. CONCLUSION The results from the present review favoured machine learning models to be used as a clinical adjunct in the radiographic diagnosis of odontogenic cysts and tumors, provided they undergo robust training with a huge dataset. However, the arduous process, investment, and certain ethical concerns associated with the total dependence on technology must be taken into account. Standardized reporting of outcomes for diagnostic studies utilizing machine learning methods is recommended to ensure homogeneity in assessment criteria, facilitate comparison between different studies, and promote transparency in research findings.
Collapse
Affiliation(s)
| | - Shamimul Hasan
- Department of Oral Medicine and Radiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Laraib Abid
- Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Ranjit Injety
- Department of Neurology, Christian Medical College & Hospital, Ludhiana, Punjab, India
| | - Ayush Kumar Shrivastav
- Computer Science and Engineering, Centre for Development of Advanced Computing, Noida, Uttar Pradesh, India
| | - Deborah Sybil
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
12
|
Shi YJ, Li JP, Wang Y, Ma RH, Wang YL, Guo Y, Li G. Deep learning in the diagnosis for cystic lesions of the jaws: a review of recent progress. Dentomaxillofac Radiol 2024; 53:271-280. [PMID: 38814810 PMCID: PMC11211683 DOI: 10.1093/dmfr/twae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
Cystic lesions of the gnathic bones present challenges in differential diagnosis. In recent years, artificial intelligence (AI) represented by deep learning (DL) has rapidly developed and emerged in the field of dental and maxillofacial radiology (DMFR). Dental radiography provides a rich resource for the study of diagnostic analysis methods for cystic lesions of the jaws and has attracted many researchers. The aim of the current study was to investigate the diagnostic performance of DL for cystic lesions of the jaws. Online searches were done on Google Scholar, PubMed, and IEEE Xplore databases, up to September 2023, with subsequent manual screening for confirmation. The initial search yielded 1862 titles, and 44 studies were ultimately included. All studies used DL methods or tools for the identification of a variable number of maxillofacial cysts. The performance of algorithms with different models varies. Although most of the reviewed studies demonstrated that DL methods have better discriminative performance than clinicians, further development is still needed before routine clinical implementation due to several challenges and limitations such as lack of model interpretability, multicentre data validation, etc. Considering the current limitations and challenges, future studies for the differential diagnosis of cystic lesions of the jaws should follow actual clinical diagnostic scenarios to coordinate study design and enhance the impact of AI in the diagnosis of oral and maxillofacial diseases.
Collapse
Affiliation(s)
- Yu-Jie Shi
- School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Ju-Peng Li
- School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Yue Wang
- School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Ruo-Han Ma
- Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yan-Lin Wang
- Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yong Guo
- School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Gang Li
- Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
13
|
Liang B, Qin H, Nong X, Zhang X. Classification of Ameloblastoma, Periapical Cyst, and Chronic Suppurative Osteomyelitis with Semi-Supervised Learning: The WaveletFusion-ViT Model Approach. Bioengineering (Basel) 2024; 11:571. [PMID: 38927807 PMCID: PMC11200596 DOI: 10.3390/bioengineering11060571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Ameloblastoma (AM), periapical cyst (PC), and chronic suppurative osteomyelitis (CSO) are prevalent maxillofacial diseases with similar imaging characteristics but different treatments, thus making preoperative differential diagnosis crucial. Existing deep learning methods for diagnosis often require manual delineation in tagging the regions of interest (ROIs), which triggers some challenges in practical application. We propose a new model of Wavelet Extraction and Fusion Module with Vision Transformer (WaveletFusion-ViT) for automatic diagnosis using CBCT panoramic images. In this study, 539 samples containing healthy (n = 154), AM (n = 181), PC (n = 102), and CSO (n = 102) were acquired by CBCT for classification, with an additional 2000 healthy samples for pre-training the domain-adaptive network (DAN). The WaveletFusion-ViT model was initialized with pre-trained weights obtained from the DAN and further trained using semi-supervised learning (SSL) methods. After five-fold cross-validation, the model achieved average sensitivity, specificity, accuracy, and AUC scores of 79.60%, 94.48%, 91.47%, and 0.942, respectively. Remarkably, our method achieved 91.47% accuracy using less than 20% labeled samples, surpassing the fully supervised approach's accuracy of 89.05%. Despite these promising results, this study's limitations include a low number of CSO cases and a relatively lower accuracy for this condition, which should be addressed in future research. This research is regarded as an innovative approach as it deviates from the fully supervised learning paradigm typically employed in previous studies. The WaveletFusion-ViT model effectively combines SSL methods to effectively diagnose three types of CBCT panoramic images using only a small portion of labeled data.
Collapse
Affiliation(s)
- Bohui Liang
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China;
| | - Hongna Qin
- School of Information and Management, Guangxi Medical University, Nanning 530021, China;
| | - Xiaolin Nong
- College & Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China
| | - Xuejun Zhang
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China;
| |
Collapse
|
14
|
Delamare E, Fu X, Huang Z, Kim J. Panoramic imaging errors in machine learning model development: a systematic review. Dentomaxillofac Radiol 2024; 53:165-172. [PMID: 38273661 PMCID: PMC11003661 DOI: 10.1093/dmfr/twae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVES To investigate the management of imaging errors from panoramic radiography (PAN) datasets used in the development of machine learning (ML) models. METHODS This systematic literature followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and used three databases. Keywords were selected from relevant literature. ELIGIBILITY CRITERIA PAN studies that used ML models and mentioned image quality concerns. RESULTS Out of 400 articles, 41 papers satisfied the inclusion criteria. All the studies used ML models, with 35 papers using deep learning (DL) models. PAN quality assessment was approached in 3 ways: acknowledgement and acceptance of imaging errors in the ML model, removal of low-quality radiographs from the dataset before building the model, and application of image enhancement methods prior to model development. The criteria for determining PAN image quality varied widely across studies and were prone to bias. CONCLUSIONS This study revealed significant inconsistencies in the management of PAN imaging errors in ML research. However, most studies agree that such errors are detrimental when building ML models. More research is needed to understand the impact of low-quality inputs on model performance. Prospective studies may streamline image quality assessment by leveraging DL models, which excel at pattern recognition tasks.
Collapse
Affiliation(s)
- Eduardo Delamare
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
- Digital Health and Data Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Xingyue Fu
- School of Computer Science, Faculty of Engineering, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Zimo Huang
- School of Computer Science, Faculty of Engineering, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Jinman Kim
- School of Computer Science, Faculty of Engineering, The University of Sydney, Camperdown, NSW, 2050, Australia
| |
Collapse
|
15
|
Farajollahi M, Safarian MS, Hatami M, Esmaeil Nejad A, Peters OA. Applying artificial intelligence to detect and analyse oral and maxillofacial bone loss-A scoping review. AUST ENDOD J 2023; 49:720-734. [PMID: 37439465 DOI: 10.1111/aej.12775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Radiographic evaluation of bone changes is one of the main tools in the diagnosis of many oral and maxillofacial diseases. However, this approach to assessment has limitations in accuracy, inconsistency and comparatively low diagnostic efficiency. Recently, artificial intelligence (AI)-based algorithms like deep learning networks have been introduced as a solution to overcome these challenges. Based on recent studies, AI can improve the detection accuracy of an expert clinician for periapical pathology, periodontal diseases and their prognostication, as well as peri-implant bone loss. Also, AI has been successfully used to detect and diagnose oral and maxillofacial lesions with a high predictive value. This study aims to review the current evidence on artificial intelligence applications in the detection and analysis of bone loss in the oral and maxillofacial regions.
Collapse
Affiliation(s)
- Mehran Farajollahi
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Safarian
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Hatami
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Esmaeil Nejad
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ove A Peters
- School of Dentistry, The University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
16
|
Cuschieri LA, Schembri-Higgans R, Bezzina N, Betts A, Cortes ARG. Importance of 3-dimensional imaging in the early diagnosis of chondroblastic osteosarcoma. Imaging Sci Dent 2023; 53:247-256. [PMID: 37799747 PMCID: PMC10548150 DOI: 10.5624/isd.20220223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 10/07/2023] Open
Abstract
The aim of this report is to present a case of chondroblastic osteosarcoma located in the right maxillary premolar region of a 17-year-old female patient. The initial clinical presentation and 2-dimensional (2D) radiographic methods proved inadequate for a definitive diagnosis. However, a cone-beam computed tomography scan revealed a hyperdense, heterogeneous lesion in the right maxillary premolar region, exhibiting a characteristic "sun-ray" appearance. To assess soft tissue involvement, a medical computed tomography scan was subsequently conducted. A positron emission tomography scan detected no metastasis or indications of secondary tumors. T1- and T2-weighted magnetic resonance imaging showed signal heterogeneity within the lesion, including areas of low signal intensity at the periphery. A histological examination conducted after an incisional biopsy confirmed the diagnosis of high-grade chondroblastic osteosarcoma. The patient was then referred to an oncology department for chemotherapy before surgery. In conclusion, these findings suggest that early diagnosis using 3-dimensional imaging can detect chondroblastic osteosarcoma in its early stages, such as before metastasis occurs, thereby improving the patient's prognosis.
Collapse
Affiliation(s)
- Laura Althea Cuschieri
- Department of Dental Surgery, Faculty of Dental Surgery, University of Malta, Msida, Malta
| | | | - Nicholas Bezzina
- Department of Dental Surgery, Faculty of Dental Surgery, University of Malta, Msida, Malta
| | - Alexandra Betts
- Department of Dental Surgery, Faculty of Dental Surgery, University of Malta, Msida, Malta
| | | |
Collapse
|
17
|
Sivari E, Senirkentli GB, Bostanci E, Guzel MS, Acici K, Asuroglu T. Deep Learning in Diagnosis of Dental Anomalies and Diseases: A Systematic Review. Diagnostics (Basel) 2023; 13:2512. [PMID: 37568875 PMCID: PMC10416832 DOI: 10.3390/diagnostics13152512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Deep learning and diagnostic applications in oral and dental health have received significant attention recently. In this review, studies applying deep learning to diagnose anomalies and diseases in dental image material were systematically compiled, and their datasets, methodologies, test processes, explainable artificial intelligence methods, and findings were analyzed. Tests and results in studies involving human-artificial intelligence comparisons are discussed in detail to draw attention to the clinical importance of deep learning. In addition, the review critically evaluates the literature to guide and further develop future studies in this field. An extensive literature search was conducted for the 2019-May 2023 range using the Medline (PubMed) and Google Scholar databases to identify eligible articles, and 101 studies were shortlisted, including applications for diagnosing dental anomalies (n = 22) and diseases (n = 79) using deep learning for classification, object detection, and segmentation tasks. According to the results, the most commonly used task type was classification (n = 51), the most commonly used dental image material was panoramic radiographs (n = 55), and the most frequently used performance metric was sensitivity/recall/true positive rate (n = 87) and accuracy (n = 69). Dataset sizes ranged from 60 to 12,179 images. Although deep learning algorithms are used as individual or at least individualized architectures, standardized architectures such as pre-trained CNNs, Faster R-CNN, YOLO, and U-Net have been used in most studies. Few studies have used the explainable AI method (n = 22) and applied tests comparing human and artificial intelligence (n = 21). Deep learning is promising for better diagnosis and treatment planning in dentistry based on the high-performance results reported by the studies. For all that, their safety should be demonstrated using a more reproducible and comparable methodology, including tests with information about their clinical applicability, by defining a standard set of tests and performance metrics.
Collapse
Affiliation(s)
- Esra Sivari
- Department of Computer Engineering, Cankiri Karatekin University, Cankiri 18100, Turkey
| | | | - Erkan Bostanci
- Department of Computer Engineering, Ankara University, Ankara 06830, Turkey
| | | | - Koray Acici
- Department of Artificial Intelligence and Data Engineering, Ankara University, Ankara 06830, Turkey
| | - Tunc Asuroglu
- Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland
| |
Collapse
|
18
|
Feher B, Kuchler U, Schwendicke F, Schneider L, Cejudo Grano de Oro JE, Xi T, Vinayahalingam S, Hsu TMH, Brinz J, Chaurasia A, Dhingra K, Gaudin RA, Mohammad-Rahimi H, Pereira N, Perez-Pastor F, Tryfonos O, Uribe SE, Hanisch M, Krois J. Emulating Clinical Diagnostic Reasoning for Jaw Cysts with Machine Learning. Diagnostics (Basel) 2022; 12:diagnostics12081968. [PMID: 36010318 PMCID: PMC9406703 DOI: 10.3390/diagnostics12081968] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
The detection and classification of cystic lesions of the jaw is of high clinical relevance and represents a topic of interest in medical artificial intelligence research. The human clinical diagnostic reasoning process uses contextual information, including the spatial relation of the detected lesion to other anatomical structures, to establish a preliminary classification. Here, we aimed to emulate clinical diagnostic reasoning step by step by using a combined object detection and image segmentation approach on panoramic radiographs (OPGs). We used a multicenter training dataset of 855 OPGs (all positives) and an evaluation set of 384 OPGs (240 negatives). We further compared our models to an international human control group of ten dental professionals from seven countries. The object detection model achieved an average precision of 0.42 (intersection over union (IoU): 0.50, maximal detections: 100) and an average recall of 0.394 (IoU: 0.50–0.95, maximal detections: 100). The classification model achieved a sensitivity of 0.84 for odontogenic cysts and 0.56 for non-odontogenic cysts as well as a specificity of 0.59 for odontogenic cysts and 0.84 for non-odontogenic cysts (IoU: 0.30). The human control group achieved a sensitivity of 0.70 for odontogenic cysts, 0.44 for non-odontogenic cysts, and 0.56 for OPGs without cysts as well as a specificity of 0.62 for odontogenic cysts, 0.95 for non-odontogenic cysts, and 0.76 for OPGs without cysts. Taken together, our results show that a combined object detection and image segmentation approach is feasible in emulating the human clinical diagnostic reasoning process in classifying cystic lesions of the jaw.
Collapse
Affiliation(s)
- Balazs Feher
- Department of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Competence Center Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40070-2623
| | - Ulrike Kuchler
- Department of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Falk Schwendicke
- Department of Oral Diagnostics, Digital Health, and Health Services Research, Charité—University Medicine Berlin, 14197 Berlin, Germany
| | - Lisa Schneider
- Department of Oral Diagnostics, Digital Health, and Health Services Research, Charité—University Medicine Berlin, 14197 Berlin, Germany
| | - Jose Eduardo Cejudo Grano de Oro
- Department of Oral Diagnostics, Digital Health, and Health Services Research, Charité—University Medicine Berlin, 14197 Berlin, Germany
| | - Tong Xi
- Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Shankeeth Vinayahalingam
- Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Tzu-Ming Harry Hsu
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Janet Brinz
- Department of Restorative Dentistry, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | - Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, Faculty of Dental Sciences, King George’s Medical University, Lucknow 226003, India
| | - Kunaal Dhingra
- Periodontics Division, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Robert Andre Gaudin
- Department of Oral and Maxillofacial Surgery, Charité—University Medicine Berlin, 14197 Berlin, Germany
- Berlin Institute of Health, 10178 Berlin, Germany
| | - Hossein Mohammad-Rahimi
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1416634793, Iran
| | - Nielsen Pereira
- Private Practice in Oral and Maxillofacial Radiology, Rio de Janeiro 22430-000, Brazil
| | - Francesc Perez-Pastor
- Servei Salut Dental, Gerencia Atencio Primaria, Institut Balear de la Salut, 07003 Palma, Spain
| | - Olga Tryfonos
- Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Sergio E. Uribe
- Department of Conservative Dentistry & Oral Health, Riga Stradins University, LV-1007 Riga, Latvia
- School of Dentistry, Universidad Austral de Chile, Valdivia 5110566, Chile
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| | - Marcel Hanisch
- Department of Oral and Maxillofacial Surgery, University Clinic Münster, 48143 Münster, Germany
| | - Joachim Krois
- Department of Oral Diagnostics, Digital Health, and Health Services Research, Charité—University Medicine Berlin, 14197 Berlin, Germany
| |
Collapse
|