1
|
Yousefi Taemeh S, Dehdilani N, Goshayeshi L, Kress C, Rival-Gervier S, Montillet G, Ebrahimi Vishki R, Pain B, Dehghani H. Strain-specific variations in the culture of chicken primordial germ cells. Sci Rep 2025; 15:11858. [PMID: 40195382 PMCID: PMC11977013 DOI: 10.1038/s41598-025-93777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
Efficient long-term cultivation of chicken primordial germ cells (cPGCs) is essential for various avian research and biotechnology applications. Our study aimed to address the challenge of inconsistent culture success by investigating strain-specific variations and optimizing culture conditions using two distinct media: Ovotransferrin-enriched medium (OTM) and chicken serum-supplemented medium (CSM). We demonstrated that each chicken strain has unique nutritional requirements, with Hubbard cPGCs thriving in OTM and Bovans cPGCs favoring CSM. This strain-specific variation was effective in derivation and proliferation rates and the expression of stem cell-specific markers such as POU5F3/OCT4 and NANOG. Furthermore, our study confirmed the sustained germ cell identity of long-term cultured cPGCs through the expression of DAZL, DDX4, and EMA1 germ cell markers. We also showed that cultured cPGCs retained their migratory abilities and transfectability, successfully generating G0 germline chimeras and G1 transgenic Bovans chickens. These findings highlight the importance of optimized culture conditions depending on the genotype to enhance the viability and genetic stability of cPGCs, paving the way for more effective genetic modifications and conservation strategies in avian species.
Collapse
Affiliation(s)
- Sara Yousefi Taemeh
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Medical Biochemistry and Microbiology, Biomedical Center (BMC), Uppsala University, Uppsala, Sweden
| | - Nima Dehdilani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Lena Goshayeshi
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Clémence Kress
- Univ Lyon, Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | - Sylvie Rival-Gervier
- Univ Lyon, Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | - Guillaume Montillet
- Univ Lyon, Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | - Rouzbeh Ebrahimi Vishki
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Bertrand Pain
- Univ Lyon, Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France.
| | - Hesam Dehghani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
2
|
Pelosse M, Marcia M. biGMamAct: efficient CRISPR/Cas9-mediated docking of large functional DNA cargoes at the ACTB locus. Synth Biol (Oxf) 2025; 10:ysaf003. [PMID: 40065842 PMCID: PMC11891445 DOI: 10.1093/synbio/ysaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/27/2025] [Accepted: 02/12/2025] [Indexed: 04/26/2025] Open
Abstract
Recent advances in molecular and cell biology and imaging have unprecedentedly enabled multiscale structure-functional studies of entire metabolic pathways from atomic to micrometer resolution and the visualization of macromolecular complexes in situ, especially if these molecules are expressed with appropriately engineered and easily detectable tags. However, genome editing in eukaryotic cells is challenging when generating stable cell lines loaded with large DNA cargoes. To address this limitation, here, we have conceived biGMamAct, a system that allows the straightforward assembly of a multitude of genetic modules and their subsequent integration in the genome at the ACTB locus with high efficacy, through standardized cloning steps. Our system comprises a set of modular plasmids for mammalian expression, which can be efficiently docked into the genome in tandem with a validated Cas9/sgRNA pair through homologous-independent targeted insertion. As a proof of concept, we have generated a stable cell line loaded with an 18.3-kilobase-long DNA cargo to express six fluorescently tagged proteins and simultaneously visualize five different subcellular compartments. Our protocol leads from the in silico design to the genetic and functional characterization of single clones within 6 weeks and can be implemented by any researcher with familiarity with molecular biology and access to mammalian cell culturing infrastructure.
Collapse
Affiliation(s)
- Martin Pelosse
- EMBL Grenoble, European Molecular Biology Laboratory, 71 avenue des Martyrs, Grenoble Cedex 9 CS 90181, 38042, France
| | - Marco Marcia
- EMBL Grenoble, European Molecular Biology Laboratory, 71 avenue des Martyrs, Grenoble Cedex 9 CS 90181, 38042, France
| |
Collapse
|
3
|
Wang C, Guo X, Wang W, Li JX, Wang TY. From Cell Clones to Recombinant Protein Product Heterogeneity in Chinese Hamster Ovary Cell Systems. Int J Mol Sci 2025; 26:1324. [PMID: 39941092 PMCID: PMC11818180 DOI: 10.3390/ijms26031324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Chinese hamster ovary (CHO) cells are commonly used to produce recombinant therapeutic proteins (RTPs). The yield of RTPs in CHO cells has been greatly improved through cell editing and optimization of culture media, cell culture processes, and expression vectors. However, the heterogeneity of cell clones and product aggregation considerably affect the yield and quality of RTPs. Recently, novel technologies such as semi-targeted and site-specific transgene integration, endoplasmic reticulum-residents, and cell culture process optimization have been used to address these issues. In this review, novel developments in the field of CHO cell expression system heterogeneity are summarized. Moreover, the advantages and limitations of the new strategies are discussed, and important methods for the control of RTP quality are outlined.
Collapse
Affiliation(s)
- Chong Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China;
| | - Xiao Guo
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; (X.G.); (J.-X.L.)
- International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China;
| | - Wen Wang
- International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China;
| | - Jia-Xin Li
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; (X.G.); (J.-X.L.)
| | - Tian-Yun Wang
- International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China;
| |
Collapse
|
4
|
Zeh N, Schmidt M, Schulz P, Fischer S. The new frontier in CHO cell line development: From random to targeted transgene integration technologies. Biotechnol Adv 2024; 75:108402. [PMID: 38950872 DOI: 10.1016/j.biotechadv.2024.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Cell line development represents a crucial step in the development process of a therapeutic glycoprotein. Chinese hamster ovary (CHO) cells are the most frequently employed mammalian host cell system for the industrial manufacturing of biologics. The predominant application of CHO cells for heterologous recombinant protein expression lies in the relative simplicity of stably introducing ectopic DNA into the CHO host cell genome. Since CHO cells were first used as expression host for the industrial production of biologics in the late 1980s, stable genomic transgene integration has been achieved almost exclusively by random integration. Since then, random transgene integration had become the gold standard for generating stable CHO production cell lines due to a lack of viable alternatives. However, it was eventually demonstrated that this approach poses significant challenges on the cell line development process such as an increased risk of inducing cell line instability. In recent years, significant discoveries of new and highly potent (semi)-targeted transgene integration systems have paved the way for a technological revolution in the cell line development sector. These advanced methodologies comprise the application of transposase-, recombinase- or Cas9 nuclease-mediated site-specific genomic integration techniques, which enable a scarless transfer of the transgene expression cassette into transcriptionally active loci within the host cell genome. This review summarizes recent advancements in the field of transgene integration technologies for CHO cell line development and compare them to the established random integration approach. Moreover, advantages and limitations of (semi)-targeted integration techniques are discussed, and benefits and opportunities for the biopharmaceutical industry are outlined.
Collapse
Affiliation(s)
- Nikolas Zeh
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany
| | - Moritz Schmidt
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany
| | - Patrick Schulz
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany
| | - Simon Fischer
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany.
| |
Collapse
|
5
|
Metanat Y, Viktor P, Amajd A, Kaur I, Hamed AM, Abed Al-Abadi NK, Alwan NH, Chaitanya MVNL, Lakshmaiya N, Ghildiyal P, Khalaf OM, Ciongradi CI, Sârbu I. The paths toward non-viral CAR-T cell manufacturing: A comprehensive review of state-of-the-art methods. Life Sci 2024; 348:122683. [PMID: 38702027 DOI: 10.1016/j.lfs.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Although CAR-T cell therapy has emerged as a game-changer in cancer immunotherapy several bottlenecks limit its widespread use as a front-line therapy. Current protocols for the production of CAR-T cells rely mainly on the use of lentiviral/retroviral vectors. Nevertheless, according to the safety concerns around the use of viral vectors, there are several regulatory hurdles to their clinical use. Large-scale production of viral vectors under "Current Good Manufacturing Practice" (cGMP) involves rigorous quality control assessments and regulatory requirements that impose exorbitant costs on suppliers and as a result, lead to a significant increase in the cost of treatment. Pursuing an efficient non-viral method for genetic modification of immune cells is a hot topic in cell-based gene therapy. This study aims to investigate the current state-of-the-art in non-viral methods of CAR-T cell manufacturing. In the first part of this study, after reviewing the advantages and disadvantages of the clinical use of viral vectors, different non-viral vectors and the path of their clinical translation are discussed. These vectors include transposons (sleeping beauty, piggyBac, Tol2, and Tc Buster), programmable nucleases (ZFNs, TALENs, and CRISPR/Cas9), mRNA, plasmids, minicircles, and nanoplasmids. Afterward, various methods for efficient delivery of non-viral vectors into the cells are reviewed.
Collapse
Affiliation(s)
- Yekta Metanat
- Faculty of Medicine, Zahedan University of Medical Sciences, Sistan and Baluchestan Province, Iran
| | - Patrik Viktor
- Óbuda University, Karoly Keleti faculty, Tavaszmező u. 15-17, H-1084 Budapest, Hungary
| | - Ayesha Amajd
- Faculty of Transport and Aviation Engineering, Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bangalore, Karnataka, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | | | | | | | - M V N L Chaitanya
- School of pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab - 144411, India
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Carmen Iulia Ciongradi
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| |
Collapse
|
6
|
Villiger L, Joung J, Koblan L, Weissman J, Abudayyeh OO, Gootenberg JS. CRISPR technologies for genome, epigenome and transcriptome editing. Nat Rev Mol Cell Biol 2024; 25:464-487. [PMID: 38308006 DOI: 10.1038/s41580-023-00697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/04/2024]
Abstract
Our ability to edit genomes lags behind our capacity to sequence them, but the growing understanding of CRISPR biology and its application to genome, epigenome and transcriptome engineering is narrowing this gap. In this Review, we discuss recent developments of various CRISPR-based systems that can transiently or permanently modify the genome and the transcriptome. The discovery of further CRISPR enzymes and systems through functional metagenomics has meaningfully broadened the applicability of CRISPR-based editing. Engineered Cas variants offer diverse capabilities such as base editing, prime editing, gene insertion and gene regulation, thereby providing a panoply of tools for the scientific community. We highlight the strengths and weaknesses of current CRISPR tools, considering their efficiency, precision, specificity, reliance on cellular DNA repair mechanisms and their applications in both fundamental biology and therapeutics. Finally, we discuss ongoing clinical trials that illustrate the potential impact of CRISPR systems on human health.
Collapse
Affiliation(s)
- Lukas Villiger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA
| | - Julia Joung
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luke Koblan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonathan Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Omar O Abudayyeh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| | - Jonathan S Gootenberg
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| |
Collapse
|
7
|
Gunther D, Alford R, Johnson J, Neilsen P, Zhang L, Harrell R, Day C. Transgenic black soldier flies for production of carotenoids. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104110. [PMID: 38522557 DOI: 10.1016/j.ibmb.2024.104110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
The black soldier fly (BSF), Hermetia illucens, has gained traction recently as a means to achieve closed-loop production cycles. BSF can subsist off mammalian waste products and their consumption of such waste in turn generates compost that can be used in agricultural operations. Their environmental impact is minimal and BSF larvae are edible, with a nutritional profile high in protein and other essential vitamins. Therefore, it is conceivable to use BSF as a mechanism for both reducing organic waste and maintaining a low-impact food source for animal livestock or humans. The main drawback to BSF as a potential human food source is they are deficient in fat-soluble vitamins such as Vitamins A, D, and E. While loading BSF with essential vitamins may be achieved via diet-based interventions, this undercuts the goal of a closed-loop as specialized diets would require additional supply chains. An alternative is to genetically engineer BSF that can synthesize these essential vitamins. Here we describe a BSF line that has been engineered with the two main carotenoid biosynthetic genes, CarRA and CarB for production of provitamin carotenoids within the Vitamin A family. Our data describe the manipulation of the BSF genome to insert transgenes for expression of functional protein products.
Collapse
Affiliation(s)
- Derrick Gunther
- Echelon Biosciences, Salt Lake City, UT, 84109, United States.
| | - Robert Alford
- University of Maryland, Insect Transformation Facility (ITF), Institute for Bioscience and Biotechnology Research 9600 Gudelsky Drive, Rockville, MD, 20850, United States.
| | - Jeff Johnson
- Echelon Biosciences, Salt Lake City, UT, 84109, United States.
| | - Paul Neilsen
- Echelon Biosciences, Salt Lake City, UT, 84109, United States.
| | - Liuyin Zhang
- Echelon Biosciences, Salt Lake City, UT, 84109, United States.
| | - Robert Harrell
- University of Maryland, Insect Transformation Facility (ITF), Institute for Bioscience and Biotechnology Research 9600 Gudelsky Drive, Rockville, MD, 20850, United States.
| | - Cameron Day
- Echelon Biosciences, Salt Lake City, UT, 84109, United States.
| |
Collapse
|
8
|
Nishizawa-Yokoi A, Toki S. Precise genetic engineering with piggyBac transposon in plants. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:255-262. [PMID: 38434112 PMCID: PMC10905368 DOI: 10.5511/plantbiotechnology.23.0525a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/25/2023] [Indexed: 03/05/2024]
Abstract
Transposons are mobile genetic elements that can move to a different position within a genome or between genomes. They have long been used as a tool for genetic engineering, including transgenesis, insertional mutagenesis, and marker excision, in a variety of organisms. The piggyBac transposon derived from the cabbage looper moth is one of the most promising transposon tools ever identified because piggyBac has the advantage that it can transpose without leaving a footprint at the excised site. Applying the piggyBac transposon to precise genome editing in plants, we have demonstrated efficient and precise piggyBac transposon excision from a transgene locus integrated into the rice genome. Furthermore, introduction of only desired point mutations into the target gene can be achieved by a combination of precise gene modification via homologous recombination-mediated gene targeting with subsequent marker excision from target loci using piggyBac transposition in rice. In addition, we have designed a piggyBac-mediated transgenesis system for the temporary expression of sequence-specific nucleases to eliminate the transgene from the host genome without leaving unnecessary sequences after the successful induction of targeted mutagenesis via sequence-specific nucleases for use in vegetatively propagated plants. In this review, we summarize our previous works and the future prospects of genetic engineering with piggyBac transposon.
Collapse
Affiliation(s)
- Ayako Nishizawa-Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Yokohama
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| |
Collapse
|
9
|
Eslahi A, Alizadeh F, Avan A, Ferns GA, Moghbeli M, Reza Abbaszadegan M, Mojarrad M. New advancements in CRISPR based gene therapy of Duchenne muscular dystrophy. Gene 2023; 867:147358. [PMID: 36914142 DOI: 10.1016/j.gene.2023.147358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Duchenne muscular dystrophy (DMD) is caused by the dystrophin gene mutations and is one of the most common and lethal human hereditary disorders. A novel therapeutic approach using CRISPR technology has gained attention in the treatment of DMD. Gene replacement strategies are being proposed as a promising therapeutic option to compensate the loss of function mutations. Although, the large size of the dystrophin gene and the limitations of the existing gene replacement approach, could mean the gene delivery of shortened versions of dystrophin such as midystrophin and microdystrophins. There are also other approaches: including Targeted removal of dystrophin exons to restore the reading-frame; Dual sgRNA-directed DMD exon deletion, CRISPR-SKIP strategy; reframing of dystrophin using Prime Editing technology; exon removal using twin prime technology; TransCRISTI technology to targeted exon integration into dystrophin gene. Here we provide an overview of recent progresses in dystrophin gene editing using updated versions of CRISPR to introduce novel opportunities in DMD gene therapy. Overall, the novel CRISPR based technologies are improving and expanding to allow the application of more precise gene editing for the treatment of DMD.
Collapse
Affiliation(s)
- Atieh Eslahi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Alizadeh
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Genetic Center of Khorasan Razavi, Mashhad, Iran.
| |
Collapse
|