1
|
Gupta A, Shaw P, Sharma SN, Gupta S, Sinha S. Site-Specific Chemical Modulation of a Flexible Azaproline Transporter to Enhance Epirubicin Accumulation in Drug-Resistant Human Glioblastoma Cells and Blood-Brain Barrier Penetration in Adult Zebrafish. Mol Pharm 2025; 22:2413-2430. [PMID: 40230168 DOI: 10.1021/acs.molpharmaceut.4c01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Cell-penetrating peptides (CPPs) have emerged as nonviral biological carriers for the delivery of macromolecular therapeutics into cells. Despite their lower immunogenicity and cellular toxicity, CPPs often lack target specificity and proteolytic stability. Various modified CPPs have been reported to improve such selective targeting and pharmacokinetic properties in vivo. On this frontier, we have previously reported the synthesis and in vitro activity of a protease-stable non-natural δ-azaproline (δ-azp) containing CPP, named Flexible Azaproline Transporter-1 (FAT-1). In this study, we report the chemical synthesis of three modified FAT analogs (FAT-2, FAT-3, and FAT-4) and compare their biological efficacy in vitro. These analogs were designed by incorporating a β-alanine spacer between the two adjacent azaproline monomers, with structural variations (branched or linear) and terminal δ-N functionalization. Comparative biological efficacy studies demonstrated that FAT-2 exhibited the highest potency among the series, with enhanced cellular uptake and efficient endosomal escape in CHO cells. For the functional evaluation of FAT-2, the scaffold was conjugated to the antineoplastic drug, Epirubicin. The conjugate (Epi-FAT2) showed efficient induction of apoptosis in drug-resistant human glioblastoma (LN-229) cells, inhibited cell migration, and reduced ABCG2/P-glycoprotein-mediated drug efflux. The intraperitoneal (IP) administration of Epi-FAT2 in Wild Indian Karyotype (WIK) adult zebrafish revealed its superior blood-brain barrier (BBB) penetration capability with greater/diverse tissue-dependent accumulation. The promising results of FAT-2 in both in vitro and in vivo studies highlight its potential for the delivery of CNS therapeutics and exemplify the importance of suitable scaffold modification in CPPs for future studies.
Collapse
Affiliation(s)
- Abhishek Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Pallab Shaw
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Swrajit Nath Sharma
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shalini Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
2
|
Fernandez-Sánchez F, Flores-Ávila J, García HS, Mixcoha E, Balleza D. Molecular dynamics study of the helix-to-disorder transition in short antimicrobial peptides from Urodacus yaschenkoi. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2025; 54:135-148. [PMID: 40137971 DOI: 10.1007/s00249-025-01740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/27/2024] [Accepted: 01/14/2025] [Indexed: 03/29/2025]
Abstract
The bioactivity of the short antimicrobial peptides (ssAMPs) UyCT1, CT2, CT3, CT5, Uy17, Uy192, and Uy234 from the scorpion Urodacus yaschenkoi has been well-characterized. The antagonistic effect reported in those studies on some clinical isolates of pathogenic bacteria, including Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli was studied with an in silico approach to contrast their bioactivity in molecular terms. The peptides were modeled by generating high-quality structures with AlphaFold2, properly validated, and subjected to dynamic simulations in aqueous systems with the Gromos 43a1 and Charmm 36 force fields. Our analysis indicates that the degree of helicity of these peptides is closely linked to their composition and several physicochemical factors such as the hydrophobicity index, electrostatic potential, intrinsic flexibility, and dipole moment. We also found interesting parallels between the degree of order mentioned and the potency of each peptide with previously studied bacterial strains, specifically S. aureus. We analyzed in more detail of two specific peptides, UyCT1 and UyCT2, whose sequences are almost identical, except for the presence of a G-cap in the former. This subtle difference has a decisive impact on the conformational dynamics of these peptides, making the UyCT2 peptide more prone to disorder and the UyCT1 peptide more stable through the formation of multiple H-bonds. This analysis, based on an exhaustive characterization of the physicochemical properties of these ssAMPs, together with the determination of their conformational dynamics and the correlation with experimental data, could be the basis for the design and optimization of new drugs based on natural peptides found in scorpion venoms.
Collapse
Affiliation(s)
- Flora Fernandez-Sánchez
- Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz, Mexico
| | - Jenny Flores-Ávila
- Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz, Mexico
| | - Hugo S García
- Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz, Mexico
| | - Edgar Mixcoha
- Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz, Mexico
| | - Daniel Balleza
- Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz, Mexico.
| |
Collapse
|
3
|
Artesani L, Gallo M, Giovati L, Bisignano FM, Ferrari E, Castronovo LM, Conti S, Santoro F, Pertinhez TA, Ciociola T. Anti- Staphylococcus aureus Activity and Structural Characterization of Rationally Designed Peptides. Antibiotics (Basel) 2025; 14:437. [PMID: 40426504 PMCID: PMC12108160 DOI: 10.3390/antibiotics14050437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Microbial infections represent a significant threat to public health due to the emergence and spread of antimicrobial resistance. Adjunctive and alternative therapeutic strategies are explored to tackle this issue, including the use of natural or synthetic antimicrobial peptides. Previous research showed that antibody-derived peptides possess antimicrobial, antiviral, and immunomodulatory properties. This study aimed to characterize newly designed antibody-derived peptides and evaluate their effectiveness against representative strains of Staphylococcus aureus, including drug-resistant isolates. Methods: Colony-forming unit assays and confocal microscopy studies were performed to evaluate peptide activity against planktonic microbial cells. Cytotoxicity tests were performed on THP-1 human monocytic cells. Circular dichroism (CD) and nuclear magnetic resonance (NMR) were employed for the conformational characterization of peptides. Results: The half-maximal effective concentrations of the peptides against bacterial reference strains and drug-resistant isolates ranged from 0.17 to 18.05 µM, while cytotoxic effects were not observed against mammalian cells. A killing kinetics analysis and observation by confocal microscopy of the interaction between peptides and bacteria suggested a mechanism of action involving membrane perturbation. CD studies showed that all peptides predominantly exhibit a random coil arrangement in aqueous solution. NMR spectroscopy revealed that the most active peptide adopts a helical conformation in the presence of membrane mimetics. Conclusions: The structural characterization and evaluation of the newly designed peptides' antimicrobial activity may lead to the selection of a candidate to be further studied to develop an alternative treatment against microbial infections caused by drug-resistant strains.
Collapse
Affiliation(s)
- Lorenza Artesani
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (L.A.); (L.G.); (F.M.B.); (T.C.)
| | - Mariana Gallo
- Laboratory of Biochemistry and Metabolomics, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.); (T.A.P.)
| | - Laura Giovati
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (L.A.); (L.G.); (F.M.B.); (T.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Francesca Maria Bisignano
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (L.A.); (L.G.); (F.M.B.); (T.C.)
| | - Elena Ferrari
- Laboratory of Biochemistry and Metabolomics, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.); (T.A.P.)
| | - Lara M. Castronovo
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (L.M.C.); (F.S.)
| | - Stefania Conti
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (L.A.); (L.G.); (F.M.B.); (T.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (L.M.C.); (F.S.)
| | - Thelma A. Pertinhez
- Laboratory of Biochemistry and Metabolomics, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.); (T.A.P.)
| | - Tecla Ciociola
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (L.A.); (L.G.); (F.M.B.); (T.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| |
Collapse
|
4
|
Wang C, Xue Y, Guo J, Ma Q, Lu X. From Antibacterial Activity to Molecular Mechanism: Case Study of Hexapeptide RWWRWW and Its Analogues. Chembiochem 2025; 26:e202401065. [PMID: 39835531 DOI: 10.1002/cbic.202401065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/22/2025]
Abstract
In recent years, antimicrobial peptides (AMPs) have emerged as a potent weapon against the growing threat of antibiotic resistance. Among AMPs, the ones containing tryptophan (W) and arginine (R) exhibit enhanced antimicrobial properties, benefiting from the unique physicochemical features of the two amino acids. Herein, we designed three hexapeptides, including WR, DWR (D-isomer), and RF, derived from the original sequence, RWWRWW-NH2 (RW). By combining sum frequency generation vibrational spectroscopy (SFG-VS) and molecular dynamics (MD) simulation, we examined AMPs' interactions with model bacterial membrane at the molecular level. Our findings revealed the innate different structural features associated with molecular aggregation and membrane activity between L-(WR, RF and RW) and D-isomer. The D-isomer was demonstrated to aggregate via intermolecular hydrogen bonding, which reduced its membrane adsorption quantity and consequently weakened its disruptive effect on the model membrane; while L-isomers rarely aggregated and thus could fully interact with the model membrane. D-isomer was proven to lack a stable helical structure, while L-isomers adopted helical structures, which was believed to be the reason for DWR's tendency to aggregate easily. This study should contribute to designing novel short-chain AMPs with high efficiency, especially in the case that D-isomers will be used.
Collapse
Affiliation(s)
- Chu Wang
- School of Biological Science and Medical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Yunmo Xue
- School of Biological Science and Medical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Jingyao Guo
- Department of General Dentistry, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210096, P. R. China
| | - Qian Ma
- Department of General Dentistry, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210096, P. R. China
| | - Xiaolin Lu
- School of Biological Science and Medical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
5
|
Pereira AE, Suarez L, Roman T, Guzmán F, Sierra L, Rincón-Orozco B, Hidalgo W. Achatina fulica haemocyanin-derived peptides as novel antimicrobial agents. Biochimie 2025; 231:84-97. [PMID: 39681185 DOI: 10.1016/j.biochi.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/28/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Haemocyanin-derived peptides were previously found in semi-purified fractions of mucus secretion from the snail Achatina fulica, which exhibited an inhibitory effect on Staphylococcus aureus strains. Here, an in silico rational design strategy was employed to generate new antimicrobial peptides (AMPs) from A. fulica haemocyanin-derived peptides (AfH). The designed peptides were chemically synthetized using the Fmoc strategy, and their antimicrobial activity against Escherichia coli and S. aureus strains was evaluated using the broth microdilution method. In addition, the cytotoxic activity on Vero, HaCat, and human erythrocyte cells was also determined. The results demonstrated that 15-residue alpha-helical and cationic synthetic peptides exhibited the highest biological activity against Gram-positive strains, with minimum inhibitory concentrations (MIC) in the range from 7.5 to 30 μM. The positive selectivity index suggests a higher selectivity, primarily on the microorganisms evaluated, but not on eukaryotic cells. In this study, A. fulica hemocyanin was identified as an appropriate protein model for the rational design of AMPs against bacteria of public health significance. Further studies are required to evaluate the activity of the peptides on Gram-negative bacteria other than E. coli.
Collapse
Affiliation(s)
- Andrés Esteban Pereira
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Edificio EDIC 403, Bucaramanga, Colombia.
| | - Libardo Suarez
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Edificio EDIC 403, Bucaramanga, Colombia
| | - Tanya Roman
- Laboratorio de Péptidos, Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Fanny Guzmán
- Laboratorio de Péptidos, Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Leidy Sierra
- Grupo CODEIM, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Colombia
| | - Bladimiro Rincón-Orozco
- Grupo CODEIM, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Colombia
| | - William Hidalgo
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Edificio EDIC 403, Bucaramanga, Colombia; Grupo CODEIM, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Colombia.
| |
Collapse
|
6
|
Kurniaty N, Fakih TM, Maharani R, Supratman U, Hidayat AT, Bakar NA, Wei X. Synthesis, Antimalarial Activity and Molecular Dynamics Studies of Pipecolisporin: A Novel Cyclic Hexapeptide with Potent Therapeutic Potential. Molecules 2025; 30:304. [PMID: 39860174 PMCID: PMC11767488 DOI: 10.3390/molecules30020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Malaria, caused by Plasmodium species and transmitted by Anopheles mosquitoes, continues to pose a significant global health threat. Pipecolisporin, a cyclic hexapeptide isolated from Nigrospora oryzae, has emerged as a promising antimalarial candidate due to its potent biological activity and stability. This study explores the synthesis, antimalarial activity, and computational studies of pipecolisporin, aiming to better understand its therapeutic potential. The peptide was successfully synthesized using Fmoc-based solid-phase peptide synthesis (SPPS) followed by cyclization in solution. The purified compound was characterized using HPLC and mass spectrometry, confirming a molecular ion peak at m/z [M + H]+ 692.4131, which matched the calculated mass. Structural verification through 1H- and 13C-NMR demonstrated strong alignment with the natural product. Pipecolisporin exhibited significant antimalarial activity with an IC50 of 26.0 ± 8.49 nM, highlighting its efficacy. In addition to the experimental synthesis, computational studies were conducted to analyze the interaction of pipecolisporin with key malaria-related enzymes, such as dihydrofolate reductase, plasmepsin V, and lactate dehydrogenase. These combined experimental and computational insights into pipecolisporin emphasize the importance of hydrophobic interactions, particularly in membrane penetration and receptor binding, for its antimalarial efficacy. Pipecolisporin represents a promising lead for future antimalarial drug development, with its efficacy, stability, and binding characteristics laying a solid foundation for ongoing research.
Collapse
Affiliation(s)
- Nety Kurniaty
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Jl. Ranggagading, Bandung 40116, Indonesia; (N.K.); (T.M.F.)
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia; (U.S.); (A.T.H.)
| | - Taufik Muhammad Fakih
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Jl. Ranggagading, Bandung 40116, Indonesia; (N.K.); (T.M.F.)
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| | - Rani Maharani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia; (U.S.); (A.T.H.)
- Laboratorium Sentral, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
- Centre of Exploration and Utilization of Natural Resources and Environment Studies, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| | - Unang Supratman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia; (U.S.); (A.T.H.)
- Laboratorium Sentral, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
- Centre of Exploration and Utilization of Natural Resources and Environment Studies, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| | - Ace Tatang Hidayat
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia; (U.S.); (A.T.H.)
- Laboratorium Sentral, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
- Centre of Exploration and Utilization of Natural Resources and Environment Studies, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| | - Nurhidanatasha Abu Bakar
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (N.A.B.); (X.W.)
| | - Xiaoshuang Wei
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (N.A.B.); (X.W.)
| |
Collapse
|
7
|
Crnčević D, Ramić A, Kastelic AR, Odžak R, Krce L, Weber I, Primožič I, Šprung M. Naturally derived 3-aminoquinuclidine salts as new promising therapeutic agents. Sci Rep 2024; 14:26211. [PMID: 39482460 PMCID: PMC11528103 DOI: 10.1038/s41598-024-77647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
Quaternary ammonium compounds (QACs) are a biologically active group of chemicals with a wide range of different applications. Due to their strong antibacterial properties and broad spectrum of activity, they are commonly used as ingredients in antiseptics and disinfectants. In recent years, the spread of bacterial resistance to QACs, exacerbated by the spread of infectious diseases, has seriously threatened public health and endangered human lives. Recent trends in this field have suggested the development of a new generation of QACs, in parallel with the study of bacterial resistance mechanisms. In this work, we present a new series of quaternary 3-substituted quinuclidine compounds that exhibit potent activity across clinically relevant bacterial strains. Most of the derivatives had minimal inhibitory concentrations (MICs) in the low single-digit micromolar range. Notably, QApCl and QApBr were selected for further investigation due to their strong antibacterial activity and low toxicity to human cells along with their minimal potential to induce bacterial resistance. These compounds were also able to inhibit the formation of bacterial biofilms more effectively than commercial standard, eradicating the bacterial population within just 15 min of treatment. The candidates employ a membranolytic mode of action, which, in combination with the generation of reactive oxygen species (ROS), destabilizes the bacterial membrane. This treatment results in a loss of cell volume and alterations in surface morphology, ultimately leading to bacterial cell death. The prominent antibacterial potential of quaternary 3-aminoquinuclidines, as exemplified by QApCl and QApBr, paves the way for new trends in the development of novel generation of QACs.
Collapse
Affiliation(s)
- Doris Crnčević
- Faculty of Science, Department of Chemistry, University of Split, R. Bošković 33, Split, Croatia
- Faculty of Science, Doctoral Study in Biophysics, University of Split, R. Bošković 33, Split, Croatia
| | - Alma Ramić
- Faculty of Science, Department of Chemistry, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Andreja Radman Kastelic
- Faculty of Science, Department of Chemistry, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Renata Odžak
- Faculty of Science, Department of Chemistry, University of Split, R. Bošković 33, Split, Croatia
| | - Lucija Krce
- Faculty of Science, Department of Physics, University of Split, R. Bošković 33, Split, Croatia
| | - Ivana Weber
- Faculty of Science, Department of Physics, University of Split, R. Bošković 33, Split, Croatia
| | - Ines Primožič
- Faculty of Science, Department of Chemistry, University of Zagreb, Horvatovac 102a, Zagreb, Croatia.
| | - Matilda Šprung
- Faculty of Science, Department of Chemistry, University of Split, R. Bošković 33, Split, Croatia.
| |
Collapse
|
8
|
Takechi-Haraya Y. [Atomic Force Microscopy to Measure the Mechanical Property of Nanosized Lipid Vesicles and Its Applications]. YAKUGAKU ZASSHI 2024; 144:511-519. [PMID: 38692926 DOI: 10.1248/yakushi.23-00178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Nanoparticles, including liposomes and lipid nanoparticles, have garnered global attention due to their potential applications in pharmaceuticals, vaccines, and gene therapies. These particles enable targeted delivery of new drug modalities such as highly active small molecules and nucleic acids. However, for widespread use of nanoparticle-based formulations, it is crucial to comprehensively analyze their characteristics to ensure both efficacy and safety, as well as enable consistent production. In this context, this review focuses on our research using atomic force microscopy (AFM) to study liposomes and lipid nanoparticles. Our work significantly contributes to the capability of AFM to measure various types of liposomes in an aqueous medium, providing valuable insights into the mechanical properties of these nanoparticles. We discuss the applications of this AFM technique in assessing the quality of nanoparticle-based pharmaceuticals and developing membrane-active peptides.
Collapse
|
9
|
Takechi-Haraya Y, Ohgita T, Usui A, Nishitsuji K, Uchimura K, Abe Y, Kawano R, Konaklieva MI, Reimund M, Remaley AT, Sato Y, Izutsu KI, Saito H. Structural flexibility of apolipoprotein E-derived arginine-rich peptides improves their cell penetration capability. Sci Rep 2023; 13:19396. [PMID: 37938626 PMCID: PMC10632520 DOI: 10.1038/s41598-023-46754-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023] Open
Abstract
Amphipathic arginine-rich peptide, A2-17, exhibits moderate perturbation of lipid membranes and the highest cell penetration among its structural isomers. We investigated the direct cell-membrane penetration mechanism of the A2-17 peptide while focusing on structural flexibility. We designed conformationally constrained versions of A2-17, stapled (StpA2-17) and stitched (StchA2-17), whose α-helical conformations were stabilized by chemical crosslinking. Circular dichroism confirmed that StpA2-17 and StchA2-17 had higher α-helix content than A2-17 in aqueous solution. Upon liposome binding, only A2-17 exhibited a coil-to-helix transition. Confocal microscopy revealed that A2-17 had higher cell penetration efficiency than StpA2-17, whereas StchA2-17 remained on the cell membrane without cell penetration. Although the tryptophan fluorescence analysis suggested that A2-17 and its analogs had similar membrane-insertion positions between the interface and hydrophobic core, StchA2-17 exhibited a higher membrane affinity than A2-17 or StpA2-17. Atomic force microscopy demonstrated that A2-17 reduced the mechanical rigidity of liposomes to a greater extent than StpA2-17 and StchA2-17. Finally, electrophysiological analysis showed that A2-17 induced a higher charge influx through transient pores in a planer lipid bilayer than StpA2-17 and StchA2-17. These findings indicate that structural flexibility, which enables diverse conformations of A2-17, leads to a membrane perturbation mode that contributes to cell membrane penetration.
Collapse
Affiliation(s)
- Yuki Takechi-Haraya
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan.
| | - Takashi Ohgita
- Center for Instrumental Analysis, Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Akiko Usui
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université de Lille, 59655, Villeneuve d'Ascq, France
| | - Kenji Uchimura
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université de Lille, 59655, Villeneuve d'Ascq, France
| | - Yasuhiro Abe
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-6 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Monika I Konaklieva
- Department of Chemistry, American University, 4400 Massachusetts Avenue NW, Washington, DC, 20016-8014, USA
| | - Mart Reimund
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yoji Sato
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Ken-Ichi Izutsu
- School of Pharmacy Department of Pharmaceutical Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| |
Collapse
|
10
|
Gori A, Lodigiani G, Colombarolli SG, Bergamaschi G, Vitali A. Cell Penetrating Peptides: Classification, Mechanisms, Methods of Study, and Applications. ChemMedChem 2023; 18:e202300236. [PMID: 37389978 DOI: 10.1002/cmdc.202300236] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
Cell-penetrating peptides (CPPs) encompass a class of peptides that possess the remarkable ability to cross cell membranes and deliver various types of cargoes, including drugs, nucleic acids, and proteins, into cells. For this reason, CPPs are largely investigated in drug delivery applications in the context of many diseases, such as cancer, diabetes, and genetic disorders. While sharing this functionality and some common structural features, such as a high content of positively charged amino acids, CPPs represent an extremely diverse group of elements, which can differentiate under many aspects. In this review, we summarize the most common characteristics of CPPs, introduce their main distinctive features, mechanistic aspects that drive their function, and outline the most widely used techniques for their structural and functional studies. We highlight current gaps and future perspectives in this field, which have the potential to significantly impact the future field of drug delivery and therapeutics.
Collapse
Affiliation(s)
- Alessandro Gori
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Giulia Lodigiani
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Stella G Colombarolli
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, L.go F. Vito 1, 00168, Roma, Italy
| | - Greta Bergamaschi
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Alberto Vitali
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, L.go F. Vito 1, 00168, Roma, Italy
| |
Collapse
|
11
|
Aguilar-Toalá JE, Vidal-Limon A, Liceaga AM, Zambrano-Zaragoza ML, Quintanar-Guerrero D. Application of Molecular Dynamics Simulations to Determine Interactions between Canary Seed ( Phalaris canariensis L.) Bioactive Peptides and Skin-Aging Enzymes. Int J Mol Sci 2023; 24:13420. [PMID: 37686226 PMCID: PMC10487734 DOI: 10.3390/ijms241713420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Food bioactive peptides are well recognized for their health benefits such as antimicrobial, antioxidant, and antihypertensive benefits, among others. Their drug-like behavior has led to their potential use in targeting skin-related aging factors like the inhibition of enzymes related with the skin-aging process. In this study, canary seed peptides (CSP) after simulated gastrointestinal digestion (<3 kDa) were fractioned by RP-HPLC and their enzyme-inhibition activity towards elastase and tyrosinase was evaluated in vitro. CSP inhibited elastase (IC50 = 6.2 mg/mL) and tyrosinase (IC50 = 6.1 mg/mL), while the hydrophobic fraction-VI (0.2 mg/mL) showed the highest inhibition towards elastase (93%) and tyrosinase (67%). The peptide fraction with the highest inhibition was further characterized by a multilevel in silico workflow, including physicochemical descriptor calculations, antioxidant activity predictions, and molecular dynamics-ensemble docking towards elastase and tyrosinase. To gain insights into the skin permeation process during molecular dynamics simulations, based on their docking scores, five peptides (GGWH, VPPH, EGLEPNHRVE, FLPH, and RPVNKYTPPQ) were identified to have favorable intermolecular interactions, such as hydrogen bonding of polar residues (W, H, and K) to lipid polar groups and 2-3 Å van der Waals close contact of hydrophobic aliphatic residues (P, V, and L). These interactions can play a critical role for the passive insertion of peptides into stratum corneum model skin-membranes, suggesting a promising application of CSP for skin-aging treatments.
Collapse
Affiliation(s)
- José E. Aguilar-Toalá
- Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma. Av. de las Garzas 10. Col. El Panteón, Lerma de Villada 52005, Estado de México, Mexico;
| | - Abraham Vidal-Limon
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, Xalapa 91073, Veracruz, Mexico
| | - Andrea M. Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Purdue University, 745 Agriculture Mall, West Lafayette, IN 47907, USA
| | - Maria L. Zambrano-Zaragoza
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos-UIM, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Estado de México, Mexico;
| | - David Quintanar-Guerrero
- Laboratorio de Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México, Av. 1o de Mayo s/n, Cuautitlán Izcalli 54714, Estado de México, Mexico;
| |
Collapse
|
12
|
Singh V, Singh SK. A separable temporal convolutional networks based deep learning technique for discovering antiviral medicines. Sci Rep 2023; 13:13722. [PMID: 37608092 PMCID: PMC10444765 DOI: 10.1038/s41598-023-40922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023] Open
Abstract
An alarming number of fatalities caused by the COVID-19 pandemic has forced the scientific community to accelerate the process of therapeutic drug discovery. In this regard, the collaboration between biomedical scientists and experts in artificial intelligence (AI) has led to a number of in silico tools being developed for the initial screening of therapeutic molecules. All living organisms produce antiviral peptides (AVPs) as a part of their first line of defense against invading viruses. The Deep-AVPiden model proposed in this paper and its corresponding web app, deployed at https://deep-avpiden.anvil.app , is an effort toward discovering novel AVPs in proteomes of living organisms. Apart from Deep-AVPiden, a computationally efficient model called Deep-AVPiden (DS) has also been developed using the same underlying network but with point-wise separable convolutions. The Deep-AVPiden and Deep-AVPiden (DS) models show an accuracy of 90% and 88%, respectively, and both have a precision of 90%. Also, the proposed models were statistically compared using the Student's t-test. On comparing the proposed models with the state-of-the-art classifiers, it was found that they are much better than them. To test the proposed model, we identified some AVPs in the natural defense proteins of plants, mammals, and fishes and found them to have appreciable sequence similarity with some experimentally validated antimicrobial peptides. These AVPs can be chemically synthesized and tested for their antiviral activity.
Collapse
Affiliation(s)
- Vishakha Singh
- Department of Computer Science and Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India.
| | - Sanjay Kumar Singh
- Department of Computer Science and Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
13
|
Lin CH, Shyu CL, Wu ZY, Wang CM, Chiou SH, Chen JY, Tseng SY, Lin TE, Yuan YP, Ho SP, Tung KC, Mao FC, Lee HJ, Tu WC. Antimicrobial Peptide Mastoparan-AF Kills Multi-Antibiotic Resistant Escherichia coli O157:H7 via Multiple Membrane Disruption Patterns and Likely by Adopting 3-11 Amphipathic Helices to Favor Membrane Interaction. MEMBRANES 2023; 13:251. [PMID: 36837754 PMCID: PMC9961542 DOI: 10.3390/membranes13020251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
We investigated the antimicrobial activity and membrane disruption modes of the antimicrobial peptide mastoparan-AF against hemolytic Escherichia coli O157:H7. Based on the physicochemical properties, mastoparan-AF may potentially adopt a 3-11 amphipathic helix-type structure, with five to seven nonpolar or hydrophobic amino acid residues forming the hydrophobic face. E. coli O157:H7 and two diarrheagenic E. coli veterinary clinical isolates, which are highly resistant to multiple antibiotics, are sensitive to mastoparan-AF, with minimum inhibitory and bactericidal concentrations (MIC and MBC) ranging from 16 to 32 μg mL-1 for E. coli O157:H7 and four to eight μg mL-1 for the latter two isolates. Mastoparan-AF treatment, which correlates proportionally with membrane permeabilization of the bacteria, may lead to abnormal dents, large perforations or full opening at apical ends (hollow tubes), vesicle budding, and membrane corrugation and invagination forming irregular pits or pores on E. coli O157:H7 surface. In addition, mRNAs of prepromastoparan-AF and prepromastoparan-B share a 5'-poly(A) leader sequence at the 5'-UTR known for the advantage in cap-independent translation. This is the first report about the 3-11 amphipathic helix structure of mastoparans to facilitate membrane interaction. Mastoparan-AF could potentially be employed to combat multiple antibiotic-resistant hemolytic E. coli O157:H7 and other pathogenic E. coli.
Collapse
Affiliation(s)
- Chun-Hsien Lin
- Department of Entomology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ching-Lin Shyu
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Zong-Yen Wu
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, Chiayi 60054, Taiwan
| | - Shiow-Her Chiou
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 40227, Taiwan
| | - Jiann-Yeu Chen
- i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shu-Ying Tseng
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Veterinary Medical Teaching Hospital, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ting-Er Lin
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yi-Po Yuan
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shu-Peng Ho
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Kwong-Chung Tung
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Veterinary Medical Teaching Hospital, National Chung Hsing University, Taichung 40227, Taiwan
| | - Frank Chiahung Mao
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Han-Jung Lee
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien 974301, Taiwan
| | - Wu-Chun Tu
- Department of Entomology, National Chung Hsing University, Taichung 40227, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Kaohsiung 801301, Taiwan
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, West Java, Indonesia
| |
Collapse
|
14
|
Liao F, Chen Y, Shu A, Chen X, Wang T, Jiang Y, Ma C, Zhou M, Chen T, Shaw C, Wang L. A Novel Strategy for the Design of Aurein 1.2 Analogs with Enhanced Bioactivities by Conjunction of Cell-Penetrating Regions. Antibiotics (Basel) 2023; 12:412. [PMID: 36830322 PMCID: PMC9952496 DOI: 10.3390/antibiotics12020412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The rational design modification of membrane-active peptide structures by introducing additional membrane-penetrating regions has become a good strategy for the improvement of action and potency. Aurein 1.2 (GLFDIIKKIAESF-NH2) is a multifunctional antimicrobial peptide isolated from the green and golden bell frog, Litoria aurea, and the southern bell frog Litoria raniformis skin secretions. Its bio-functionality has been widely investigated. However, its lack of a potent action failed to provide aurein 1.2 with a competitive edge for further development as a therapeutic agent for clinical use. Herein, aurein 1.2 was chosen as a template for rational modification to achieve a more potent bio-functionality. KLA-2 (GLFDIIKKLAKLAESF-NH2), which a double KLA region inserted into the sequence, presented a 2-16-fold enhancement of antimicrobial activity, a 2-8-fold greater anti-biofilm activity (including biofilm prevention and eradication), and a 7-fold more potent anti-proliferation activity and hence was regarded as the most broad-spectrum active peptide. Additionally, with respect to antimicrobial activity, the IIKK-modified analog, IK-3 (GLFDIIKKIIKKIIKKI-NH2), also demonstrated a potent enhancement of activity against various pathogens, exhibiting a 2-8-fold enhanced activity compared to the parent peptide. Moreover, the selectivities of KLA-1 and KLA-2 were enhanced significantly. In conclusion, peptide modification, through the introduction of additional membrane penetrating regions, can increase both the potency and activity spectra of natural template peptides, making them suitable candidates for new drug development.
Collapse
Affiliation(s)
- Fengting Liao
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Yuping Chen
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Anmei Shu
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Tao Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Yangyang Jiang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
15
|
Jiménez-Munguía I, Beaven AH, Blank PS, Sodt AJ, Zimmerberg J. Interferon-induced transmembrane protein 3 (IFITM3) and its antiviral activity. Curr Opin Struct Biol 2022; 77:102467. [PMID: 36306674 DOI: 10.1016/j.sbi.2022.102467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 01/30/2023]
Abstract
Infections caused by enveloped viruses require fusion with cellular membranes for viral genome entry. Viral entry occurs following an interaction of viral and cellular membranes allowing the formation of fusion pores, by which the virus accesses the cytoplasm. Here, we focus on interferon-induced transmembrane protein 3 (IFITM3) and its antiviral activity. IFITM3 is predicted to block or stall viral fusion at an intermediate state, causing viral propagation to fail. After introducing IFITM3, we describe the generalized lipid membrane fusion pathway and how it can be stalled, particularly with respect to IFITM3, and current questions regarding IFITM3's topology, with specific emphasis on IFITM3's amphipathic α-helix (AAH) 59V-68M, which is necessary for the antiviral activity. We report new hydrophobicity and hydrophobic moment calculations for this peptide and a variety of active site peptides from known membrane-remodeling proteins. Finally, we discuss the effects of posttranslational modifications and localization, how IFITM3's AAH may block viral fusion, and possible ramifications of membrane composition.
Collapse
Affiliation(s)
- I Jiménez-Munguía
- Section on Integrative Biophysics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), MD, USA
| | - A H Beaven
- Unit on Membrane Chemical Physics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH) MD, USA; Postdoctoral Research Associate Program, National Institute of General Medical Sciences National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - P S Blank
- Section on Integrative Biophysics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), MD, USA
| | - A J Sodt
- Unit on Membrane Chemical Physics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH) MD, USA.
| | - J Zimmerberg
- Section on Integrative Biophysics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), MD, USA.
| |
Collapse
|
16
|
Cardoso PHDO, Boleti APDA, Silva PSE, Mukoyama LTH, Guindo AS, de Moraes LFRN, de Oliveira CFR, Macedo MLR, Carvalho CME, de Castro AP, Migliolo L. Evaluation of a Novel Synthetic Peptide Derived from Cytolytic Mycotoxin Candidalysin. Toxins (Basel) 2022; 14:toxins14100696. [PMID: 36287965 PMCID: PMC9610734 DOI: 10.3390/toxins14100696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 12/04/2022] Open
Abstract
The importance of neuroinflammation in neurology is becoming increasingly apparent. In addition to neuroinflammatory diseases such as multiple sclerosis, the role of neuroinflammation has been identified in many non-inflammatory neurological disorders such as stroke, epilepsy, and cancer. The immune response within the brain involves the presence of CNS resident cells; mainly glial cells, such as microglia, the CNS resident macrophages. We evaluated the peptide Ca-MAP1 bioinspired on the C. albicans immature cytolytic toxin candidalysin to develop a less hemolytic peptide with anti-neuroinflammatory, antibacterial, and cytotoxic activity against tumor cells. In silico and in vitro studies were performed at various concentrations. Ca-MAP1 exhibits low hemolytic activity at lower concentrations and was not cytotoxic to MRC-5 and BV-2 cells. Ca-MAP1 showed activity against Acinetobacter baumannii, Escherichia coli ATCC, E. coli KPC, Klebsiella pneumoniae ATCC, Pseudomonas aeruginosa, and Staphylococcus aureus ATCC. Furthermore, Ca-MAP1 exhibits anti-neuroinflammatory activity in the BV-2 microglia model, with 93.78% inhibition of nitrate production at 18.1 µM. Ca-MAP1 presents cytotoxic activity against tumor cell line NCI-H292 at 36.3 μM, with an IC50 of 38.4 µM. Ca-MAP1 demonstrates results that qualify it to be evaluated in the next steps to promote the control of infections and provide an alternative antitumor therapy.
Collapse
Affiliation(s)
- Pedro Henrique de Oliveira Cardoso
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Ana Paula de Araújo Boleti
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Patrícia Souza e Silva
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Lincoln Takashi Hota Mukoyama
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Alexya Sandim Guindo
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Luiz Filipe Ramalho Nunes de Moraes
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Caio Fernando Ramalho de Oliveira
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Unidade de Tecnologia de Alimentos e da Saúde Pública, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Mato Grosso do Sul, Brazil
| | - Maria Ligia Rodrigues Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Unidade de Tecnologia de Alimentos e da Saúde Pública, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Mato Grosso do Sul, Brazil
| | - Cristiano Marcelo Espínola Carvalho
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Alinne Pereira de Castro
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Ludovico Migliolo
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
- Correspondence: ; Tel.: +55-67-33123473
| |
Collapse
|
17
|
Analysis of the interaction of cyclosporine congeners with cell membrane models. J Pharm Biomed Anal 2022; 218:114874. [DOI: 10.1016/j.jpba.2022.114874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
|