1
|
Hernandez-Valencia JC, Gómez GF, Correa MM. Metagenomic analysis evidences a core virome in Anopheles darlingi from three contrasting Colombian ecoregions. PLoS One 2025; 20:e0320593. [PMID: 40305569 PMCID: PMC12043238 DOI: 10.1371/journal.pone.0320593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/20/2025] [Indexed: 05/02/2025] Open
Abstract
Anopheles darlingi is a main malaria vector in the neotropical region, but its viral component is not well studied, especially in the neotropics. This work aimed to analyze the virome in Anopheles darlingi from malaria endemic regions of Colombia. Specimens were collected from the Bajo Cauca, Chocoan Pacific and northwestern Amazonas regions and analyzed using an RNA-Seq approach. Results revealed a variety of RNA viral sequences with homology to those of Insect-Specific Viruses belonging to Rhabdoviridae, Partitiviridae, Metaviridae, Tymoviridae, Phasmaviridae, Totiviridae, Ortervirales and Riboviria. Despite geographical and ecological differences among regions, the An. darlingi viral composition remains consistent in different areas, with a core group of viral operational taxonomic units-vOTUs shared by the populations. Furthermore, diversity analysis uncovered greater dissimilarities in viral sequence among mosquitoes from geographically distant regions, particularly evident between populations located at both sides of the Andes Mountain range. This study provides the first characterization of the metavirome in An. darlingi from Colombia and lays the foundation for future research on the complex interactions among viruses, hosts, and microbiota; it also opens a new line of investigation on the viruses in Anopheles populations of Colombia.
Collapse
Affiliation(s)
- Juan C. Hernandez-Valencia
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Giovan F. Gómez
- Dirección Académica, Escuela de Pregrados, Universidad Nacional de Colombia, Sede de La Paz, La Paz, Colombia
| | - Margarita M. Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
2
|
Li T, Shafiul Alam M, Yang Y, Mohammad Al-Amin H, Rahman M, Islam F, Conte MA, Price DC, Hang J. Metagenome analysis of viruses associated with Anopheles mosquitoes from Ramu Upazila, Cox's Bazar District, Bangladesh. PeerJ 2025; 13:e19180. [PMID: 40183042 PMCID: PMC11967434 DOI: 10.7717/peerj.19180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Bangladesh has a warm climate and landscapes favourable for the proliferation of mosquitoes. Mosquito-borne pathogens including malaria and arthropod-borne viruses (arboviruses) remain a serious threat to the public health requiring constant vector control and disease surveillance. From November 2018 to April 2019, Anopheles mosquitoes were collected in three unions in the Ramu Upazila (sub-district) of Cox's Bazar District, Bangladesh. The mosquito specimens were combined into pools based on date of collection, household ID, and sex. Metagenome next-generation sequencing was conducted to elucidate diversity of virus sequences in each pool. Homology-based taxonomic classification and phylogenetic analyses identified a broad diversity of putative viruses from 12 known families, with additional unclassified viruses also likely present. Analysis of male mosquitoes showed some of these viruses are likely capable of being vertically transmitted. Moreover, many of the assembled virus sequences share homology and phylogenetic affinity with segments in sequenced Anopheles genomes, and may represent endogenous viral elements derived from a past evolutionary relationship between these putative viruses and their mosquito hosts.
Collapse
Affiliation(s)
- Tao Li
- Viral Diseases Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yu Yang
- Viral Diseases Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States
| | - Hasan Mohammad Al-Amin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- School of the Environment, The University of Queensland, Queensland, Australia
| | - Mezanur Rahman
- Department of Zoology, Jagannath University, Dhaka, Bangladesh
| | - Farzana Islam
- Department of Zoology, Jagannath University, Dhaka, Bangladesh
| | - Matthew A. Conte
- Viral Diseases Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States
| | - Dana C. Price
- Department of Entomology, Center for Vector Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States
| | - Jun Hang
- Viral Diseases Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States
| |
Collapse
|
3
|
Braga CM, da Silva SP, Neto JPN, Medeiros DBDA, Cruz ACR, Nascimento BLSD, Pinheiro LRS, Martins LC. Viral metagenomics of hematophagous insects collected in the Carajas mining complex, Pará State, Brazil. Acta Trop 2025; 263:107551. [PMID: 39938727 DOI: 10.1016/j.actatropica.2025.107551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/28/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Hematophagous insects are vectors of viruses that cause diseases in humans and animals worldwide. Mosquitoes (Culicidae), biting midges (Ceratopogonidae), and sandflies (Psychodidae) were collected in three municipalities (Marabá, Canaã dos Carajás, and Curionópolis) in the state of Pará, Brazil, in 2019. Morphological keys were used for the taxonomic identification of insect species. High-throughput sequencing and metagenomic analysis were employed to characterize the viromes of the hematophagous insects. We characterized the virome of 839 insects grouped into 14 pools. A total of 729 million paired reads were generated, with 12 million viral sequences (3 % of the reads). The families Reoviridae, Myoviridae, Retroviridae, and Poxviridae were found in all samples of this study. Phylogenies of RNA-dependent RNA polymerase (RdRp) from viruses of the families Chuviridae, Dicistroviridae, Flaviviridae, Iflaviridae, Mesoniviridae, Phenuiviridae, and Rhabdoviridae were performed. In this study, the first isolation of the Guaico Culex Virus (GCXV) in the northern region of Brazil was obtained from a pool of Culex (Melanoconion) spp. mosquitoes collected in Curionópolis. The data obtained in this study demonstrate that the Carajás region has an ecosystem rich in viruses. Additional studies are needed to understand the dynamics of viruses in vectors, vertebrates, and the human population in the region.
Collapse
Affiliation(s)
- Camila Margalho Braga
- Evandro Chagas Institute, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, 67030-000, PA, Brazil; Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66087-662, Brazil.
| | - Sandro Patroca da Silva
- Evandro Chagas Institute, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, 67030-000, PA, Brazil
| | - Joaquim Pinto Nunes Neto
- Evandro Chagas Institute, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, 67030-000, PA, Brazil
| | | | - Ana Cecília Ribeiro Cruz
- Evandro Chagas Institute, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, 67030-000, PA, Brazil
| | | | | | - Lívia Carício Martins
- Evandro Chagas Institute, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, 67030-000, PA, Brazil
| |
Collapse
|
4
|
Guimarães LDO, Ribeiro GDO, da Couto R, Ramos EDSF, Morais VDS, Telles-de-Deus J, Helfstein VC, dos Santos JM, Deng X, Delwart E, Pandey RP, de Camargo-Neves VLF, da Costa AC, Kirchgatter K, Leal É. Exploring mosquito virome dynamics within São Paulo Zoo: insights into mosquito-virus-environment interactions. Front Cell Infect Microbiol 2025; 14:1496126. [PMID: 39867343 PMCID: PMC11757883 DOI: 10.3389/fcimb.2024.1496126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Background Mosquito-borne diseases have a significant public health threat worldwide, with arboviruses accounting for a high proportion of infectious diseases and mortality annually. Brazil, in particular, has been suffering outbreaks of diseases transmitted by mosquito viruses, notably those of the Aedes genus, such as dengue, Zika, and chikungunya. Against this background, the São Paulo Zoo is an intriguing ecological niche to explore the virome of mosquitoes, potentially shedding light on the dynamics of arbovirus transmission within a confined setting. Methods In this study, we conducted a comprehensive metagenomic analysis of mosquitoes collected from diverse habitats within the zoo, focusing on the Aedes, Anopheles, and Culex genera. From 1,039 contigs of viral origin, we identified 229 viral species infecting mosquitoes, with the orders Picornavirales, Nodamuvirales and Sobelivirales being the most prevalent and abundant. The difference in virome composition was primarily driven by mosquito host species rather than specific collection sites or trap height. Results Despite environmental disparities, the virome remained remarkably uniform across different areas of the zoo, emphasizing the strong association between mosquito species and their viral communities. Furthermore, we identified a core virome shared among mosquito species, highlighting potential cross-species transmission events and underscoring the need for targeted surveillance and control measures. Conclusion These results contribute to our understanding of the interplay between mosquitoes, the environment, and viruses, providing valuable insights for disease intervention strategies in mosquito-borne diseases.
Collapse
Affiliation(s)
| | - Geovani de Oliveira Ribeiro
- General-Coordination of Public Health Laboratories, Health and Environment Surveillance Secretariat, Ministry of Health, Brasilia, Brazil
- Department of Cellular Biology, University of Brasilia (UNB), Brasilia, Brazil
| | - Roseane da Couto
- Institute of Biological Sciences, Federal University of Pará, Belem, Pará, Brazil
| | | | - Vanessa dos Santos Morais
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA, United States
- Department Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Eric Delwart
- Department Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Ramendra Pati Pandey
- School of Health Sciences and Technology (SoHST), University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| | | | - Antonio Charlys da Costa
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Karin Kirchgatter
- Instituto Pasteur, São Paulo, SP, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Élcio Leal
- Institute of Biological Sciences, Federal University of Pará, Belem, Pará, Brazil
| |
Collapse
|
5
|
Onoja BA, Oguzie JU, George UE, Asoh KE, Ajayi P, Omofaye TF, Igeleke IO, Eromon P, Harouna S, Parker E, Adeniji AJ, Happi CT. Whole genome sequencing unravels cryptic circulation of divergent dengue virus lineages in the rainforest region of Nigeria. Emerg Microbes Infect 2024; 13:2307511. [PMID: 38240324 PMCID: PMC10829817 DOI: 10.1080/22221751.2024.2307511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Dengue is often misclassified and underreported in Africa due to inaccurate differential diagnoses of nonspecific febrile illnesses such as malaria, sparsity of diagnostic testing and poor clinical and genomic surveillance. There are limited reports on the seroprevalence and genetic diversity of dengue virus (DENV) in humans and vectors in Nigeria. In this study, we investigated the epidemiology and genetic diversity of dengue in the rainforest region of Nigeria. We screened 515 febrile patients who tested negative for malaria and typhoid fever in three hospitals in Oyo and Ekiti States in southern Nigeria with a combination of anti-dengue IgG/IgM/NS1 rapid test kits and metagenomic sequencing. We found that approximately 28% of screened patients had previous DENV exposure, with the highest prevalence in persons over sixty. Approximately 8% of the patients showed evidence of recent or current infection, and 2.7% had acute infection. Following sequencing of sixty samples, we assembled twenty DENV-1 genomes (3 complete and 17 partial). We found that all assembled genomes belonged to DENV-1 genotype III. Our phylogenetic analyses showed evidence of prolonged cryptic circulation of divergent DENV lineages in Oyo state. We were unable to resolve the source of DENV in Nigeria owing to limited sequencing data from the region. However, our sequences clustered closely with sequences in Tanzania and sequences reported in Chinese with travel history to Tanzania in 2019. This may reflect the wider unsampled bidirectional transmission of DENV-1 in Africa, which strongly emphasizes the importance of genomic surveillance in monitoring ongoing DENV transmission in Africa.
Collapse
Affiliation(s)
- Bernard Anyebe Onoja
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Judith Uche Oguzie
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun State, Nigeria
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Uwem Etop George
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun State, Nigeria
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Kaego Emmanuel Asoh
- Department of Medical Laboratory Science, College of Medicine, University of Ibadan, Ibadan, State Nigeria
| | - Philip Ajayi
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | | | - Philomena Eromon
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Soumare Harouna
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Edyth Parker
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Christian T. Happi
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun State, Nigeria
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
- Department of Immunology and Infectious Diseases, Harvard T H Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
6
|
Da Silva AG, Bach E, Ellwanger JH, Chies JAB. Tips and tools to obtain and assess mosquito viromes. Arch Microbiol 2024; 206:132. [PMID: 38436750 DOI: 10.1007/s00203-023-03813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 03/05/2024]
Abstract
Due to their vectorial capacity, mosquitoes (Diptera: Culicidae) receive special attention from health authorities and entomologists. These cosmopolitan insects are responsible for the transmission of many viral diseases, such as dengue and yellow fever, causing huge impacts on human health and justifying the intensification of research focused on mosquito-borne diseases. In this context, the study of the virome of mosquitoes can contribute to anticipate the emergence and/or the reemergence of infectious diseases. The assessment of mosquito viromes also contributes to the surveillance of a wide variety of viruses found in these insects, allowing the early detection of pathogens with public health importance. However, the study of mosquito viromes can be challenging due to the number and complexities of steps involved in this type of research. Therefore, this article aims to describe, in a straightforward and simplified way, the steps necessary for obtention and assessment of mosquito viromes. In brief, this article explores: the capture and preservation of specimens; sampling strategies; treatment of samples before DNA/RNA extraction; extraction methodologies; enrichment and purification processes; sequencing choices; and bioinformatics analysis.
Collapse
Affiliation(s)
- Amanda Gonzalez Da Silva
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Evelise Bach
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
7
|
Gómez M, Martínez D, Páez-Triana L, Luna N, Ramírez A, Medina J, Cruz-Saavedra L, Hernández C, Castañeda S, Bohórquez Melo R, Suarez LA, Palma-Cuero M, Murcia LM, González Páez L, Estrada Bustos L, Medina MA, Ariza Campo K, Padilla HD, Zamora Flórez A, De las Salas JL, Muñoz M, Ramírez JD. Influence of dengue virus serotypes on the abundance of Aedes aegypti insect-specific viruses (ISVs). J Virol 2024; 98:e0150723. [PMID: 38095414 PMCID: PMC10804971 DOI: 10.1128/jvi.01507-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024] Open
Abstract
A comprehensive understanding of the virome in mosquito vectors is crucial for assessing the potential transmission of viral agents, designing effective vector control strategies, and advancing our knowledge of insect-specific viruses (ISVs). In this study, we utilized Oxford Nanopore Technologies metagenomics to characterize the virome of Aedes aegypti mosquitoes collected in various regions of Colombia, a country hyperendemic for dengue virus (DENV). Analyses were conducted on groups of insects with previous natural DENV infection (DENV-1 and DENV-2 serotypes), as well as mosquito samples that tested negative for virus infection (DENV-negative). Our findings indicate that the Ae. aegypti virome exhibits a similar viral composition at the ISV family and species levels in both DENV-positive and DENV-negative samples across all study sites. However, differences were observed in the relative abundance of viral families such as Phenuiviridae, Partitiviridae, Flaviviridae, Rhabdoviridae, Picornaviridae, Bromoviridae, and Virgaviridae, depending on the serotype of DENV-1 and DENV-2. In addition, ISVs are frequently found in the core virome of Ae. aegypti, such as Phasi Charoen-like phasivirus (PCLV), which was the most prevalent and showed variable abundance in relation to the presence of specific DENV serotypes. Phylogenetic analyses of the L, M, and S segments of the PCLV genome are associated with sequences from different regions of the world but show close clustering with sequences from Brazil and Guadeloupe, indicating a shared evolutionary relationship. The profiling of the Ae. aegypti virome in Colombia presented here improves our understanding of viral diversity within mosquito vectors and provides information that opens the way to possible connections between ISVs and arboviruses. Future studies aimed at deepening our understanding of the mechanisms underlying the interactions between ISVs and DENV serotypes in Ae. aegypti could provide valuable information for the design of effective vector-borne viral disease control and prevention strategies.IMPORTANCEIn this study, we employed a metagenomic approach to characterize the virome of Aedes aegypti mosquitoes, with and without natural DENV infection, in several regions of Colombia. Our findings indicate that the mosquito virome is predominantly composed of insect-specific viruses (ISVs) and that infection with different DENV serotypes (DENV-1 and DENV-2) could lead to alterations in the relative abundance of viral families and species constituting the core virome in Aedes spp. The study also sheds light on the identification of the genome and evolutionary relationships of the Phasi Charoen-like phasivirus in Ae. aegypti in Colombia, a widespread ISV in areas with high DENV incidence.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Nicolás Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Angie Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Julián Medina
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Ramiro Bohórquez Melo
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Luis Alejandro Suarez
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Mónica Palma-Cuero
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Luz Mila Murcia
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | | | | | | | | | | | | | | | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Department of Pathology, Molecular and Cell-Based Medicine, Molecular Microbiology Laboratory, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
8
|
Mantilla-Granados JS, Castellanos JE, Velandia-Romero ML. A tangled threesome: understanding arbovirus infection in Aedes spp. and the effect of the mosquito microbiota. Front Microbiol 2024; 14:1287519. [PMID: 38235434 PMCID: PMC10792067 DOI: 10.3389/fmicb.2023.1287519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Arboviral infections transmitted by Aedes spp. mosquitoes are a major threat to human health, particularly in tropical regions but are expanding to temperate regions. The ability of Aedes aegypti and Aedes albopictus to transmit multiple arboviruses involves a complex relationship between mosquitoes and the virus, with recent discoveries shedding light on it. Furthermore, this relationship is not solely between mosquitoes and arboviruses, but also involves the mosquito microbiome. Here, we aimed to construct a comprehensive review of the latest information about the arbovirus infection process in A. aegypti and A. albopictus, the source of mosquito microbiota, and its interaction with the arbovirus infection process, in terms of its implications for vectorial competence. First, we summarized studies showing a new mechanism for arbovirus infection at the cellular level, recently described innate immunological pathways, and the mechanism of adaptive response in mosquitoes. Second, we addressed the general sources of the Aedes mosquito microbiota (bacteria, fungi, and viruses) during their life cycle, and the geographical reports of the most common microbiota in adults mosquitoes. How the microbiota interacts directly or indirectly with arbovirus transmission, thereby modifying vectorial competence. We highlight the complexity of this tripartite relationship, influenced by intrinsic and extrinsic conditions at different geographical scales, with many gaps to fill and promising directions for developing strategies to control arbovirus transmission and to gain a better understanding of vectorial competence. The interactions between mosquitoes, arboviruses and their associated microbiota are yet to be investigated in depth.
Collapse
Affiliation(s)
- Juan S. Mantilla-Granados
- Saneamiento Ecológico, Salud y Medio Ambiente, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | - Jaime E. Castellanos
- Grupo de Virología, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | | |
Collapse
|
9
|
George U, George O, Oguzie J, Osasona O, Motayo B, Kamani J, Eromon P, Folarin O, Happi A, Komolafe I, Happi C. Genomic characterization of Alphacoronavirus from Mops condylurus bats in Nigeria. Virus Res 2023; 334:199174. [PMID: 37467933 PMCID: PMC10392604 DOI: 10.1016/j.virusres.2023.199174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Coronaviruses (CoVs) are responsible for sporadic, epidemic and pandemic respiratory diseases worldwide. Bats have been identified as the reservoir for CoVs. To increase the number of complete coronavirus genomes in Africa and to comprehend the molecular epidemiology of bat Alphacoronaviruses (AlphaCoVs), we used deep metagenomics shotgun sequencing to obtain three (3) near-complete genomes of AlphaCoVs from Mops condylurus (Angolan free-tailed) bat in Nigeria. Phylogenetic and pairwise identity analysis of open reading frame 1ab (ORF1ab), spike (S), envelope (E), membrane (M) and nucleocapsid (N) genes of AlphaCoV in this study to previously described AlphaCoVs subgenera showed that the Nigerian AlphaCoVs may be members of potentially unique AlphaCoV subgenera circulating exclusively in bats in the Molossidae bat family. Recombination events were detected, suggesting the evolution of AlphaCoVs within the Molossidae family. The pairwise identity of the S gene in this study and previously published S gene sequences of other AlphaCoVs indicate that the Nigerian strains may have a genetically unique spike protein that is distantly related to other AlphaCoVs. Variations involving non-polar to polar amino acid substitution in both the Heptad Repeat (HR) regions 1 and 2 were observed. Further monitoring of bats to understand the host receptor use requirements of CoVs and interspecies CoV transmission in Africa is necessary to identify and prevent the potential danger that bat CoVs pose to public health.
Collapse
Affiliation(s)
- Uwem George
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | | | - Judith Oguzie
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Oluwadamilola Osasona
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Babatunde Motayo
- Department of Medical Microbiology, Federal Medical Centre, Abeokuta, Nigeria
| | - Joshua Kamani
- Parasitology Division National Veterinary Research Institute NVRI PMB 01, Vom, Plateau state Nigeria
| | - Philomena Eromon
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria
| | - Onikepe Folarin
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Anise Happi
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria
| | - Isaac Komolafe
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Christian Happi
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria.
| |
Collapse
|
10
|
Grant DS, Samuels RJ, Garry RF, Schieffelin JS. Lassa Fever Natural History and Clinical Management. Curr Top Microbiol Immunol 2023. [PMID: 37106159 DOI: 10.1007/82_2023_263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Lassa fever is caused by Lassa virus (LASV), an Old World Mammarenavirus that is carried by Mastomys natalensis and other rodents. It is endemic in Sierra Leone, Nigeria, and other countries in West Africa. The clinical presentation of LASV infection is heterogenous varying from an inapparent or mild illness to a fatal hemorrhagic fever. Exposure to LASV is usually through contact with rodent excreta. After an incubation period of 1-3 weeks, initial symptoms such as fever, headache, and fatigue develop that may progress to sore throat, retrosternal chest pain, conjunctival injection, vomiting, diarrhea, and abdominal pain. Severe illness, including hypotension, shock, and multiorgan failure, develops in a minority of patients. Patient demographics and case fatality rates are distinctly different in Sierra Leone and Nigeria. Laboratory diagnosis relies on the detection of LASV antigens or genomic RNA. LASV-specific immunoglobulin G and M assays can also contribute to clinical management. The mainstay of treatment for Lassa fever is supportive care. The nucleoside analog ribavirin is commonly used to treat acute Lassa fever but is considered useful only if treatment is begun early in the disease course. Drugs in development, including a monoclonal antibody cocktail, have the potential to impact the management of Lassa fever.
Collapse
Affiliation(s)
- Donald S Grant
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health, Kenema, Sierra Leone
- College of Medicine and Allied Health Sciences (COMAHS), University of Sierra Leone, Freetown, Sierra Leone
| | - Robert J Samuels
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health, Kenema, Sierra Leone
| | - Robert F Garry
- School of Medicine, Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA
- Zalgen Labs, Frederick, MD, 21703, USA
- Global Virus Network (GVN), Baltimore, MD, 21201, USA
| | - John S Schieffelin
- School of Medicine, Department of Pediatrics, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
11
|
Braack L, Wulandhari SA, Chanda E, Fouque F, Merle CS, Nwangwu U, Velayudhan R, Venter M, Yahouedo AG, Lines J, Aung PP, Chan K, Abeku TA, Tibenderana J, Clarke SE. Developing African arbovirus networks and capacity strengthening in arbovirus surveillance and response: findings from a virtual workshop. Parasit Vectors 2023; 16:129. [PMID: 37059998 PMCID: PMC10103543 DOI: 10.1186/s13071-023-05748-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/18/2023] [Indexed: 04/16/2023] Open
Abstract
This meeting report presents the key findings and discussion points of a 3-h virtual workshop, held on 21 September 2022, and organized by the "Resilience Against Future Threats through Vector Control (RAFT)" research consortium. The workshop aimed to identify priorities for advancing arbovirus research, network and capacity strengthening in Africa. Due to increasing human population growth, urbanization and global movement (trade, tourism, travel), mosquito-borne arboviral diseases, such as dengue, Chikungunya and Zika, are increasing globally in their distribution and prevalence. This report summarizes the presentations that reviewed the current status of arboviruses in Africa, including: (i) key findings from the recent WHO/Special Programme for Research & Training in Tropical Diseases (WHO/TDR) survey in 47 African countries that revealed deep and widespread shortfalls in the capacity to cope with arbovirus outbreak preparedness, surveillance and control; (ii) the value of networking in this context, with examples of African countries regarding arbovirus surveillance; and (iii) the main priorities identified by the breakout groups on "research gaps", "networks" and "capacity strengthening".
Collapse
Affiliation(s)
- Leo Braack
- Malaria Consortium Asia, Bangkok, Thailand.
| | | | | | - Florence Fouque
- WHO Special Programme for Research & Training in Tropical Diseases (TDR), Geneva, Switzerland
| | - Corinne S Merle
- WHO Special Programme for Research & Training in Tropical Diseases (TDR), Geneva, Switzerland
| | - Udoka Nwangwu
- National Arbovirus & Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Raman Velayudhan
- Department for the Control of Neglected Tropical Diseases, WHO, Geneva, Switzerland
| | - Marietjie Venter
- Zoonotic Arbo- and Respiratory Virus Research Programme, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - A Gildas Yahouedo
- WHO Special Programme for Research & Training in Tropical Diseases (TDR), Geneva, Switzerland
| | - Jo Lines
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Kallista Chan
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | | | | | - Sian E Clarke
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
12
|
Gómez M, Martinez D, Muñoz M, Ramírez JD. Aedes aegypti and Ae. albopictus microbiome/virome: new strategies for controlling arboviral transmission? Parasit Vectors 2022; 15:287. [PMID: 35945559 PMCID: PMC9364528 DOI: 10.1186/s13071-022-05401-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023] Open
Abstract
Aedes aegypti and Aedes albopictus are the main vectors of highly pathogenic viruses for humans, such as dengue (DENV), chikungunya (CHIKV), and Zika (ZIKV), which cause febrile, hemorrhagic, and neurological diseases and remain a major threat to global public health. The high ecological plasticity, opportunistic feeding patterns, and versatility in the use of urban and natural breeding sites of these vectors have favored their dispersal and adaptation in tropical, subtropical, and even temperate zones. Due to the lack of available treatments and vaccines, mosquito population control is the most effective way to prevent arboviral diseases. Resident microorganisms play a crucial role in host fitness by preventing or enhancing its vectorial ability to transmit viral pathogens. High-throughput sequencing and metagenomic analyses have advanced our understanding of the composition and functionality of the microbiota of Aedes spp. Interestingly, shotgun metagenomics studies have established that mosquito vectors harbor a highly conserved virome composed of insect-specific viruses (ISV). Although ISVs are not infectious to vertebrates, they can alter different phases of the arboviral cycle, interfering with transmission to the human host. Therefore, this review focuses on the description of Ae. aegypti and Ae. albopictus as vectors susceptible to infection by viral pathogens, highlighting the role of the microbiota-virome in vectorial competence and its potential in control strategies for new emerging and re-emerging arboviruses.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Grupo de Investigación en Ciencias Básicas (NÚCLEO) Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martinez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia. .,Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
Truong Nguyen PT, Culverwell CL, Suvanto MT, Korhonen EM, Uusitalo R, Vapalahti O, Smura T, Huhtamo E. Characterisation of the RNA Virome of Nine Ochlerotatus Species in Finland. Viruses 2022; 14:1489. [PMID: 35891469 PMCID: PMC9324324 DOI: 10.3390/v14071489] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 02/01/2023] Open
Abstract
RNA viromes of nine commonly encountered Ochlerotatus mosquito species collected around Finland in 2015 and 2017 were studied using next-generation sequencing. Mosquito homogenates were sequenced from 91 pools comprising 16-60 morphologically identified adult females of Oc. cantans, Oc. caspius, Oc. communis, Oc. diantaeus, Oc. excrucians, Oc. hexodontus, Oc. intrudens, Oc. pullatus and Oc. punctor/punctodes. In total 514 viral Reverse dependent RNA polymerase (RdRp) sequences of 159 virus species were recovered, belonging to 25 families or equivalent rank, as follows: Aliusviridae, Aspiviridae, Botybirnavirus, Chrysoviridae, Chuviridae, Endornaviridae, Flaviviridae, Iflaviridae, Negevirus, Partitiviridae, Permutotetraviridae, Phasmaviridae, Phenuiviridae, Picornaviridae, Qinviridae, Quenyavirus, Rhabdoviridae, Sedoreoviridae, Solemoviridae, Spinareoviridae, Togaviridae, Totiviridae, Virgaviridae, Xinmoviridae and Yueviridae. Of these, 147 are tentatively novel viruses. One sequence of Sindbis virus, which causes Pogosta disease in humans, was detected from Oc. communis from Pohjois-Karjala. This study greatly increases the number of mosquito-associated viruses known from Finland and presents the northern-most mosquito-associated viruses in Europe to date.
Collapse
Affiliation(s)
- Phuoc T. Truong Nguyen
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
| | - C. Lorna Culverwell
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- The Natural History Museum, Cromwell Road, South Kensington, London SW5 7BD, UK
| | - Maija T. Suvanto
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, P.O. Box 66, FI-00014 Helsinki, Finland
| | - Essi M. Korhonen
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, P.O. Box 66, FI-00014 Helsinki, Finland
| | - Ruut Uusitalo
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, P.O. Box 66, FI-00014 Helsinki, Finland
- Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Gustaf Hällströmin Katu 2, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, P.O. Box 66, FI-00014 Helsinki, Finland
- Virology and Immunology, Diagnostic Center, HUSLAB, Helsinki University Hospital, FI-00029 Helsinki, Finland
| | - Teemu Smura
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
| | - Eili Huhtamo
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, P.O. Box 66, FI-00014 Helsinki, Finland
| |
Collapse
|