1
|
Jabeen Z, Javaid S, Javaid S, Abbas G, Rehman S, Farooq A. Application of glycine betaine loaded chitosan nanoparticles mitigates lead toxicity and promotes plant growth in wheat. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025:1-12. [PMID: 40304379 DOI: 10.1080/15226514.2025.2497900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
In recent years, heavy metal toxicity has become a major threat to all living organisms due to the increase in human population and anthropogenic activities. Among heavy metals, lead (Pb) is regarded as a highly toxic pollutant for wheat. A hydroponic experiment was performed to examine the potential of exogenously applied glycine betaine loaded chitosan nanoparticles (NPs) (0.04%) in mitigating Pb phyto-toxicity in wheat. Under Pb stress (2 mM Pb), plant height, pigment contents were decreased and Pb accumulation was enhanced both in roots and shoots of plants. Moreover, the application of NPs decreased Pb accumulation and increased plant growth, pigment contents, soluble sugars, proline, and glycine betaine contents, Additionally, it enhanced the activities of antioxidative enzymes such as super dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) by 78%, 12%, and 36% in shoots, and 82%, 14%, and 40% in roots, respectively relative to plants under Pb stress alone. These findings suggest that the exogenous application of glycine- betaine loaded chitosan NPs is highly effective in mitigation of phytotoxicity of Pb in wheat grown under Pb contamination.
Collapse
Affiliation(s)
- Zahra Jabeen
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Shanza Javaid
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Shaziqa Javaid
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Ghulam Abbas
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Sidra Rehman
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Amjad Farooq
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Vehari, Pakistan
| |
Collapse
|
2
|
Song X, Kong F, Liu BF, Song Q, Ren NQ, Ren HY. Lipidomics analysis of microalgal lipid production and heavy metal adsorption under glycine betaine-mediated alleviation of low-temperature stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135831. [PMID: 39303609 DOI: 10.1016/j.jhazmat.2024.135831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/13/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Heavy metal pollution in the cold region is serious, affecting human health and aquatic ecology. This study investigated the ability of microalgae to remove heavy metals (HMs) and produce lipid at low temperature. The removal efficiency of different HMs (Cd2+, Cu2+, Cr3+ and Pb2+), cell growth and lipid synthesis of microalgae were analyzed at 15 °C. Moreover, addition of glycine betaine (GB) further enhanced the productivity of microalgae in treating HMs and lipid production, and simultaneously increased the antioxidant capacity of microalgae against environmental stresses. The results showed that the highest lipid productivity of 100.98 mg L-1 d-1 and the removal efficiency of 85.8 % were obtained under GB coupled with Cr3+. The highest glutathione content of 670.34 nmol g-1 fresh alga was achieved under GB coupled with Pb2+. In addition, lipidomics showed that GB was able to up-regulate the triglyceride and diglyceride content, influenced fatty acid composition to regulate the microalgal metabolism, and mediated lipid accumulation under 15 °C mainly through the regulation of glycerol ester metabolism. This study provided a new perspective on microalgal lipid production and the removal of HMs in cold regions and provided evidence for the use of phytohormones to improve the algal environmental resistance.
Collapse
Affiliation(s)
- Xueting Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fanying Kong
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingqing Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
3
|
Sharma J, Kumar S, Singh P, Kumar V, Verma S, Khyalia P, Sharma A. Emerging role of osmoprotectant glycine betaine to mitigate heavy metals toxicity in plants: a systematic review. Biol Futur 2024; 75:159-176. [PMID: 38183566 DOI: 10.1007/s42977-023-00198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/08/2023] [Indexed: 01/08/2024]
Abstract
Heavy metals (HMs) toxicity has become one of the major global issues and poses a serious threat to the environment in recent years. HM pollution in agricultural soil is caused by metal mining, smelting, volcanic activity, industrial discharges, and excessive use of phosphate fertilizers. HMs above a threshold level adversely affect the cellular metabolism of plants by producing reactive oxygen species (ROS), which attack cellular proteins. There are different mechanisms (physiological and morphological) adopted by plants to survive in the era of abiotic stress. Various osmoprotectants or compatible solutes, including amino acids, sugar, and betaines, enable the plants to counteract the HM stress. Glycine betaine (GB) is an effective osmolyte against HM stress among compatible solutes. GB has been shown to improve plant growth, photosynthesis, uptake of nutrients, and minimize oxidative stress in plants under HM stress. Additionally, GB increases the activity of antioxidant enzymes such as CAT (catalase), SOD (superoxide dismutase), and POD (peroxidase), which are effective in scavenging unwarranted ROS. Since not all species of plants can naturally produce or accumulate GB in response to stress, various approaches have been explored for introducing them. Plant hormones like salicylic acid, ABA (abscisic acid), and JA (jasmonic acid) co-ordinately stimulate the accumulation of GB inside the cell under HM stress. Apart from the exogenous application, the introduction of GB pathway genes in GB deficient species via genetic engineering also seems to be efficient in mediating HM stress. This review complied the beneficial effects of GB in mitigating HM stress and its role as a plant growth regulator. Additionally, the review explores the potential for engineering GB biosynthesis in plants as a strategy to bolster their resilience to HMs.
Collapse
Affiliation(s)
- Jyoti Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Sandeep Kumar
- Department of Botany, Baba Mast Nath University, Rohtak, Haryana, 124001, India
| | - Pooja Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vikram Kumar
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Shivani Verma
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Pradeep Khyalia
- Department of Environmental Science, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Asha Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
- Department of Botany, Baba Mast Nath University, Rohtak, Haryana, 124001, India.
- Department of Environmental Science, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
4
|
Singh D, Sharma NL, Singh D, Siddiqui MH, Sarkar SK, Rathore A, Prasad SK, Gaafar ARZ, Hussain S. Zinc oxide nanoparticles alleviate chromium-induced oxidative stress by modulating physio-biochemical aspects and organic acids in chickpea (Cicer arietinum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108166. [PMID: 38039586 DOI: 10.1016/j.plaphy.2023.108166] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023]
Abstract
Extensive chromium (Cr) release into water and soil severely impairs crop productivity worldwide. Nanoparticle (NP) technology has shown potential for reducing heavy metal toxicity and improving plant physicochemical profiles. Herein, we investigated the effects of exogenous zinc oxide NPs (ZnO-NPs) on alleviating Cr stress in Cr-sensitive and tolerant chickpea genotypes. Hydroponically grown chickpea plants were exposed to Cr stress (0 and 120 μM) and ZnO-NPs (25 μM, 20 nm size) twice at a 7-day interval. Cr exposure reduced physiochemical profiles, ion content, cell viability, and gas exchange parameters, and it increased organic acid exudate accumulation in roots and the Cr content in the roots and leaves of the plants. However, ZnO-NP application significantly increased plant growth, enzymatic activities, proline, total soluble sugar, and protein and gas exchange parameters and reduced malondialdehyde and hydrogen peroxide levels, Cr content in roots, and organic acid presence to improve root cell viability. This study provides new insights into the role of ZnO-NPs in reducing oxidative stress along with Cr accumulation and mobility due to low levels of organic acids in chickpea roots. Notably, the Cr-tolerant genotype exhibited more pronounced alleviation of Cr stress by ZnO-NPs. These findings highlight the potential of ZnO-NP in regulating plant growth, reducing Cr accumulation, and promoting sustainable agricultural development.
Collapse
Affiliation(s)
- Deepti Singh
- Department of Botany, Meerut College, Meerut, India.
| | | | - Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Susheel Kumar Sarkar
- Division of Design of Experiments, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Abhishek Rathore
- Regional Breeding Informatics Lead, Excellence in Breeding Platform, The International Maize and Wheat Improvement Center (CIMMYT) Building ICRISAT Campus, Patancheru, Hyderabad, India
| | - Saroj Kumar Prasad
- Department of Agronomy, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Abdel-Rhman Z Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sadam Hussain
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
5
|
Ye Y, Hao R, Shan B, Zhang J, Li J, Lu A. Mechanism of Cr(VI) removal by efficient Cr(VI)-resistant Bacillus mobilis CR3. World J Microbiol Biotechnol 2023; 40:21. [PMID: 37996766 DOI: 10.1007/s11274-023-03816-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
Cr(VI) is a hazardous environmental pollutant that poses significant risks to ecosystems and human health. We successfully isolated a novel strain of Bacillus mobilis, strain CR3, from Cr(VI)-contaminated soil. Strain CR3 showed 86.70% removal capacity at 200 mg/L Cr(VI), and a good Cr(VI) removal capacity at different pH, temperature, coexisting ions, and electron donor conditions. Different concentrations of Cr(VI) affected the activity of CR3 cells and the removal rate of Cr(VI), and approximately 3.46% of total Cr was immobilized at the end of the reaction. The combination of SEM-EDS and TEM-EDS analysis showed that Cr accumulated both on the cell surface and inside the cells after treatment with Cr(VI). XPS analysis showed that both Cr(III) and Cr(VI) were present on the cell surface, and FTIR results indicated that the presence of Cr on the cell surface was mainly related to functional groups, such as O-H, phosphate, and -COOH. The removal of Cr(VI) was mainly achieved through bioreduction, which primarily occurred outside the cell. Metabolomics analysis revealed the upregulation of five metabolites, including phenol and L-carnosine, was closely associated with Cr(VI) reduction, heavy metal chelation, and detoxification mechanisms. In addition, numerous metabolites were linked to cellular homeostasis exhibited differential expression. Cr(VI) exerted inhibitory effects on the division rate and influenced critical pathways, including energy metabolism, nucleotide metabolism, and amino acid synthesis and catabolism. These findings reveal the molecular mechanism of Cr(VI) removal by strain CR3 and provide valuable insights to guide the remediation of Cr(VI)-contaminated sites.
Collapse
Affiliation(s)
- Yubo Ye
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Ruixia Hao
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China.
| | - Bing Shan
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Junman Zhang
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Jiani Li
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Anhuai Lu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| |
Collapse
|
6
|
Ali S, Mir RA, Tyagi A, Manzar N, Kashyap AS, Mushtaq M, Raina A, Park S, Sharma S, Mir ZA, Lone SA, Bhat AA, Baba U, Mahmoudi H, Bae H. Chromium Toxicity in Plants: Signaling, Mitigation, and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12071502. [PMID: 37050128 PMCID: PMC10097182 DOI: 10.3390/plants12071502] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 05/31/2023]
Abstract
Plants are very often confronted by different heavy metal (HM) stressors that adversely impair their growth and productivity. Among HMs, chromium (Cr) is one of the most prevalent toxic trace metals found in agricultural soils because of anthropogenic activities, lack of efficient treatment, and unregulated disposal. It has a huge detrimental impact on the physiological, biochemical, and molecular traits of crops, in addition to being carcinogenic to humans. In soil, Cr exists in different forms, including Cr (III) "trivalent" and Cr (VI) "hexavalent", but the most pervasive and severely hazardous form to the biota is Cr (VI). Despite extensive research on the effects of Cr stress, the exact molecular mechanisms of Cr sensing, uptake, translocation, phytotoxicity, transcript processing, translation, post-translational protein modifications, as well as plant defensive responses are still largely unknown. Even though plants lack a Cr transporter system, it is efficiently accumulated and transported by other essential ion transporters, hence posing a serious challenge to the development of Cr-tolerant cultivars. In this review, we discuss Cr toxicity in plants, signaling perception, and transduction. Further, we highlight various mitigation processes for Cr toxicity in plants, such as microbial, chemical, and nano-based priming. We also discuss the biotechnological advancements in mitigating Cr toxicity in plants using plant and microbiome engineering approaches. Additionally, we also highlight the role of molecular breeding in mitigating Cr toxicity in sustainable agriculture. Finally, some conclusions are drawn along with potential directions for future research in order to better comprehend Cr signaling pathways and its mitigation in sustainable agriculture.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rakeeb A. Mir
- Department of Biotechnology, Central University of Kashmir, Ganderbal 191201, India
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Nazia Manzar
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Abhijeet Shankar Kashyap
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Muntazir Mushtaq
- MS Swaminathan School of Agriculture, Shoolini University, Bajhol 173229, India
| | - Aamir Raina
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Zahoor A. Mir
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Showkat A. Lone
- Centre of Research for Development, University of Kashmir, Srinagar 190006, India
| | - Ajaz A. Bhat
- Govt. Degree College for Women, University of Kashmir, Baramulla 193101, India
| | - Uqab Baba
- Centre of Research for Development, University of Kashmir, Srinagar 190006, India
| | - Henda Mahmoudi
- Directorate of Programs, International Center for Biosaline Agriculture, Dubai P.O. Box 14660, United Arab Emirates
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
7
|
Wei Z, Sixi Z, Xiuqing Y, Guodong X, Baichun W, Baojing G. Arbuscular mycorrhizal fungi alter rhizosphere bacterial community characteristics to improve Cr tolerance of Acorus calamus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114652. [PMID: 36822059 DOI: 10.1016/j.ecoenv.2023.114652] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) can improve plant tolerance to heavy metal stress in terrestrial ecosystems. However, in wetland ecosystems, AMF can improve the tolerance of wetland plants to heavy metals by changing the structure and composition of rhizosphere bacterial communities, which is still rarely studied. In this study, we investigated the effects of AMF on the structure and composition of bacterial communities in the rhizosphere of plants under different chromium concentrations. The results showed that Cr(Ⅵ) concentration in Acorus calamus. rhizosphere soil decreased by 12.6 % (5.6-21.7 %) on average after AMF inoculation, At the same time, it promoted the uptake of nutrients by A. calamus and increased soil carbon input. In addition, Cr stress decreased the bacterial community diversity and abundance index by 9.8 % (1.6-18.1 %) and 24.5 % (17.3-27.6 %) on average. On the contrary, the rhizosphere soil bacterial diversity and abundance index increased by 7.3 % (2.2-19.1 %) and 13.9 % (6.0-20.9 %) on average after AMF inoculation. Moreover, compared with the non-inoculated AMF group, the bacterial community structure of A. calamus rhizosphere changed by 24.6 % under Cr stress, The common number of species increased by 6.4 %. In addition, after inoculation of AMF significantly promote the growth of a large number of bacteria related to organic degradation, plant growth, and oxidative stress, increased soil carbon input improved the soil microenvironment. Meanwhile, After AMF inoculation, the Number of edges, Number of Nodes, Average degree, and Average Path length in the symbiotic network of rhizosphere soil bacterial community increased by 34.6 %, 10 %, 44.3 %, and 26.4 %, respectively. Therefore, it offers a possibility that AMF can enhance the tolerance of wetland plants to soil Cr pollution by improving the structure and composition of bacterial communities in the rhizosphere soils of wetland plants, which provide a basis for wetland plants to repair soil Cr pollution.
Collapse
Affiliation(s)
- Zhao Wei
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Zhu Sixi
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| | - Yang Xiuqing
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Xia Guodong
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Wang Baichun
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Gu Baojing
- College of Environment and Resources Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors. Life (Basel) 2023; 13:life13030706. [PMID: 36983860 PMCID: PMC10051737 DOI: 10.3390/life13030706] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/02/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Several environmental stresses, including biotic and abiotic factors, adversely affect the growth and development of crops, thereby lowering their yield. However, abiotic factors, e.g., drought, salinity, cold, heat, ultraviolet radiations (UVr), reactive oxygen species (ROS), trace metals (TM), and soil pH, are extremely destructive and decrease crop yield worldwide. It is expected that more than 50% of crop production losses are due to abiotic stresses. Moreover, these factors are responsible for physiological and biochemical changes in plants. The response of different plant species to such stresses is a complex phenomenon with individual features for several species. In addition, it has been shown that abiotic factors stimulate multi-gene responses by making modifications in the accumulation of the primary and secondary metabolites. Metabolomics is a promising way to interpret biotic and abiotic stress tolerance in plants. The study of metabolic profiling revealed different types of metabolites, e.g., amino acids, carbohydrates, phenols, polyamines, terpenes, etc, which are accumulated in plants. Among all, primary metabolites, such as amino acids, carbohydrates, lipids polyamines, and glycine betaine, are considered the major contributing factors that work as osmolytes and osmoprotectants for plants from various environmental stress factors. In contrast, plant-derived secondary metabolites, e.g., phenolics, terpenoids, and nitrogen-containing compounds (alkaloids), have no direct role in the growth and development of plants. Nevertheless, such metabolites could play a significant role as a defense by protecting plants from biotic factors such as herbivores, insects, and pathogens. In addition, they can enhance the resistance against abiotic factors. Therefore, metabolomics practices are becoming essential and influential in plants by identifying different phytochemicals that are part of the acclimation responses to various stimuli. Hence, an accurate metabolome analysis is important to understand the basics of stress physiology and biochemistry. This review provides insight into the current information related to the impact of biotic and abiotic factors on variations of various sets of metabolite levels and explores how primary and secondary metabolites help plants in response to these stresses.
Collapse
|
9
|
Effects of Cr Stress on Bacterial Community Structure and Composition in Rhizosphere Soil of Iris tectorum under Different Cultivation Modes. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
With the rapid development of industry, Cr has become one of the major heavy metal pollutants in soil, severely impacting soil microecology, among which rhizosphere microorganisms can improve the soil microenvironment to promote plant growth. However, how rhizosphere bacterial communities respond to Cr stress under different cultivation modes remains to be further studied. Therefore, in this study, a greenhouse pot experiment combined with 16S rRNA high-throughput sequencing technology was used to study the effects of Cr stress at 200 mg kg−1 on the bacterial community structure and diversity in the rhizosphere soil of Iris tectorum under different cultivation modes. The results showed that the rhizosphere bacterial community diversity index (Shannon and Simpson) and abundance index (Ace and Chao) increased significantly with wetland plant diversity under Cr stress. Moreover, the bacterial community changed by 20.1% due to the addition of Cr, further leading to a 15.9% decrease in the common species of the bacterial community, among which Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteriota accounted for more than 74.8% of the total sequence. However, with the increase in plant diversity, the abundance of rhizosphere-dominant bacteria and plant growth-promoting bacteria communities increased significantly. Meanwhile, the symbiotic network analysis found that under the two cultivation modes, the synergistic effect between the dominant bacteria was significantly enhanced, and the soil microenvironment was improved. In addition, through redundancy analysis, it was found that C, N, and P nutrients in uncontaminated soil were the main driving factors of bacterial community succession in the rhizosphere of I. tectorum, and Cr content in contaminated soil was the main driving factor of bacterial community succession in I. tectorum rhizosphere. In summary, the results of this study will provide a basis for the response of the rhizosphere bacterial community to Cr and the interaction between wetland plants and rhizosphere bacteria in the heavy metal restoration of wetland plants under different cultivation modes.
Collapse
|
10
|
Staszak K, Kruszelnicka I, Ginter-Kramarczyk D, Góra W, Baraniak M, Lota G, Regel-Rosocka M. Advances in the Removal of Cr(III) from Spent Industrial Effluents-A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 16:378. [PMID: 36614717 PMCID: PMC9822515 DOI: 10.3390/ma16010378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The review presents advances in the removal of Cr(III) from the industrial effluents published in the last ten years. Although Cr(III) has low solubility and is less dangerous for the aquatic environment than Cr(VI), it cannot be released into the aquatic environment without limitations and its content in water should be restricted. The development of efficient techniques for the removal of Cr(III) is also a response to the problem of chromium wastewater containing Cr(VI) ions. Very often the first step in dealing with such wastewater is the reduction in chromium content. In some cases, removal of Cr(III) from wastewaters is an important step for pretreatment of solutions to prepare them for subsequent recovery of other metals. In the review, hydrometallurgical operations for Cr(III) removal are presented, including examples of Cr(III) recovery from real industrial effluents with precipitation, adsorption, ion exchange, extraction, membrane techniques, microbial-enhanced techniques, electrochemical methods. The advantages and disadvantages of the operations mentioned are also presented. Finally, perspectives for the future in line with circular economy and low-environmental impact are briefly discussed.
Collapse
Affiliation(s)
- Katarzyna Staszak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Izabela Kruszelnicka
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Dobrochna Ginter-Kramarczyk
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Wojciech Góra
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Marek Baraniak
- Institute of Chemistry and Technical Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Grzegorz Lota
- Institute of Chemistry and Technical Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Magdalena Regel-Rosocka
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
11
|
Singh D, Singh CK, Siddiqui MH, Alamri S, Sarkar SK, Rathore A, Prasad SK, Singh D, Sharma NL, Kalaji HM, Brysiewicz A. Hydrogen Sulfide and Silicon Together Alleviate Chromium (VI) Toxicity by Modulating Morpho-Physiological and Key Antioxidant Defense Systems in Chickpea ( Cicer arietinum L.) Varieties. FRONTIERS IN PLANT SCIENCE 2022; 13:963394. [PMID: 35971511 PMCID: PMC9374685 DOI: 10.3389/fpls.2022.963394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/21/2022] [Indexed: 05/31/2023]
Abstract
Extensive use of chromium (Cr) in anthropogenic activities leads to Cr toxicity in plants causing serious threat to the environment. Cr toxicity impairs plant growth, development, and metabolism. In the present study, we explored the effect of NaHS [a hydrogen sulfide; (H2S), donor] and silicon (Si), alone or in combination, on two chickpea (Cicer arietinum) varieties (Pusa 2085 and Pusa Green 112), in pot conditions under Cr stress. Cr stress increased accumulation of Cr reduction of the plasma membrane (PM) H+-ATPase activity and decreased in photosynthetic pigments, essential minerals, relative water contents (RWC), and enzymatic and non-enzymatic antioxidants in both the varieties. Exogenous application of NaHS and Si on plants exposed to Cr stress mitigated the effect of Cr and enhanced the physiological and biochemical parameters by reducing Cr accumulation and oxidative stress in roots and leaves. The interactive effects of NaHS and Si showed a highly significant and positive correlation with PM H+-ATPase activity, photosynthetic pigments, essential minerals, RWC, proline content, and enzymatic antioxidant activities (catalase, peroxidase, ascorbate peroxidase, dehydroascorbate reductase, superoxide dismutase, and monodehydroascorbate reductase). A similar trend was observed for non-enzymatic antioxidant activities (ascorbic acid, glutathione, oxidized glutathione, and dehydroascorbic acid level) in leaves while oxidative damage in roots and leaves showed a negative correlation. Exogenous application of NaHS + Si could enhance Cr stress tolerance in chickpea and field studies are warranted for assessing crop yield under Cr-affected area.
Collapse
Affiliation(s)
- Deepti Singh
- Department of Botany, Meerut College, Meerut, India
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Susheel Kumar Sarkar
- Division of Design of Experiments (DE), ICAR-Indian Agricultural Statistics Research Institute, ICAR Library Avenue, Pusa, New Delhi, India
| | - Abhishek Rathore
- Regional Breeding Informatics Lead, Excellence in Breeding Platform (EiB)-CIMMYT Building ICRISAT Campus, Patancheru, Hyderabad, India
| | - Saroj Kumar Prasad
- Department of Agronomy, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
| | - Adam Brysiewicz
- Institute of Technology and Life Sciences-National Research Institute, Falenty, Poland
| |
Collapse
|
12
|
Katiyar A, Bhaskar M, Singh A, Sharma D, Abhishek A, Garg V. Phytoremediation of chromium, iron and nickel by Indian Rice Plant (Oryza sativa L.): An opportunity for management of multi-metal contaminated tannery wastewaterPhytoremediation of chromium, iron and nickel by Indian Rice Plant (Oryza sativa L.): An opportunity for management of multi-metal contaminated tannery wastewater. JOURNAL OF EXPERIMENTAL BIOLOGY AND AGRICULTURAL SCIENCES 2022; 10:511-523. [DOI: 10.18006/2022.10(3).511.523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
India is the largest producer of leather and leather products. Tannery industries use a large number of synthetic chemicals for the processing of leather and generate a huge amount of wastewater containing a large amount of potentially toxic heavy metals (PTHMs) making them problematic for next-door soil and water system. Currently, phytoremediation is an inexpensive green technology used to move, eradicate, and stabilized heavy metal contamination from contaminated sludge, soil, and wastewater. In this study, the accumulation and distribution of PTHMs found in tannery wastewater and their physio-biochemical effects on Oryza sativa L. have been studied by ICP-MS, GC-MS, and biochemical analysis. The plant was grown in the soil spiked with a mixture of metals (Cr, Fe and Ni) and their five-level of treatment T1 (25mg/kg); T2 (50mg/kg); T3 (100mg/kg); T4 (200mg/kg) and T5 (400mg/kg). During the experiments, various morphological attributes, oxidative stress, enzymatic activities, chlorophyll, and protein content at the different stage was measured. Further, metal accumulation pattern in different parts of plants was also measured. Results of the study revealed that plant root, shoot length, chlorophyll content, and enzymatic activities were significantly reduced after the treatment with 200 mg/kg PTHMs; whereas oxidative stress was increase compared to control levels. Further, treatment of PTHMs suggested that the rice plant (Oryza sativa L.) is well adapted to tolerate and accumulate a high level of heavy metals (up to 200mg/kg) in the root and shoot of the treated plants. If it is treated above this, then seeds were also affected and not safe for human consumption.
Collapse
|